SimSem: Fast Approximate String Matching in Relation to Semantic Category Disambiguation

Lexical Resources for Named Entity Recognition

State-of-the-art:

- Gazetteers to boost performance (Torii et al., 2009)
- Covers few semantic categories

Problems:

- Lexical variation poses a problem for gazetteers
- No resource perfectly matches an entity class (Wang et al., 2009)

Approximate String Matching

Observations:

- We have large collections of lexical resources for various classes
- Recent advances in approximate string matching makes approximate string matching computationally feasible (Okazaki and Tsujii, 2010) Idea:
- Approximate instead of strict gazetteers
- Use large collections to disambiguate semantic categories

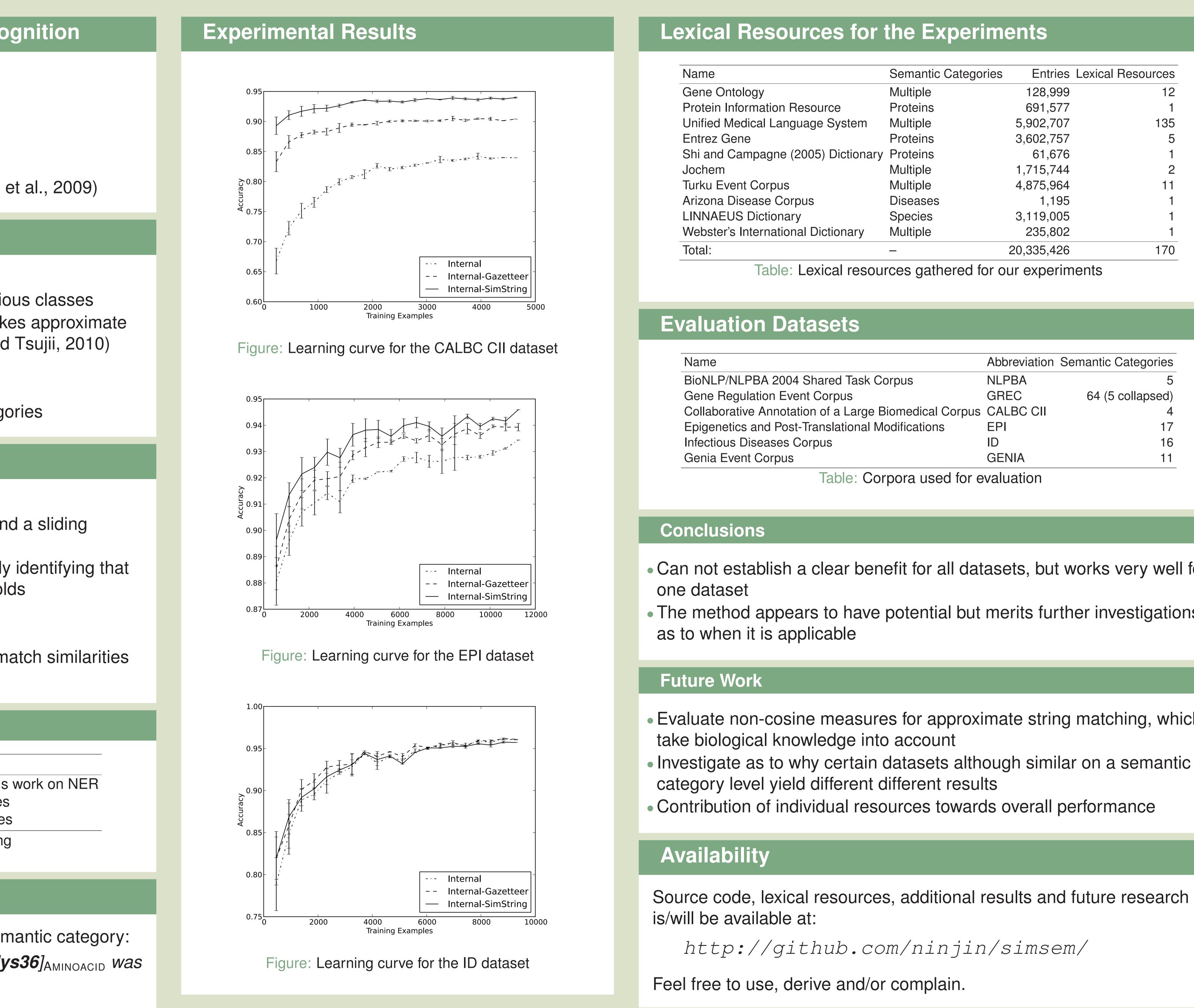
SimString Features

Feature generation:

- Query each lexical resource using cosine measure and a sliding similarity threshold [1.0, 0.7] with a step of 0.1
- 2. If the query returns a match, assign a feature uniquely identifying that data and threshold, and all subsequent lower thresholds To note:
- Threshold 1.0 is equivalent to strict matching
- Cut-off motivated by the fact that low thresholds will match similarities even at a superficial level

Models

_		
-	Name	Description
_	Internal	Span-internal features used in previous
	Internal+Gazetteer	Internal features and gazetteer features
	Internal+SimString	Internal features and SimString features
-	Table:	Models used in our experimental setting


Task Setting

Given a textual span (denoted by [...]), assign the semantic category: [Histone H3]_{PROTEIN} [methylation]_{METHYLATION} at [lys36]_{AMINOACID} was [catalysed]_{CATALYSIS} by [HMT]_{PROTEIN}.

BioNLP 2011 Workshop, The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, USA, June 23rd 2011

Pontus Stenetorp*[†], Sampo Pyysalo* and Jun'ichi Tsujii[‡] {pontus,smp}@is.s.u-tokyo.ac.jp, jtsujii@microsoft.com

{*Tsujii Laboratory, [†]Aizawa Laboratory}, The University of Tokyo | [‡]Microsoft Research Asia

antic Categories	Entries	Lexical Resources			
iple	128,999	12			
eins	691,577	1			
iple	5,902,707	135			
eins	3,602,757	5			
eins	61,676	1			
iple	1,715,744	2			
iple	4,875,964	11			
ases	1,195	1			
cies	3,119,005	1			
iple	235,802	1			
	20,335,426	170			

: Lexical resources gathered for our experiments

	Abbreviation	Semantic Categories			
	NLPBA	5			
	GREC	64 (5 collapsed)			
dical Corpus	CALBC CII	4			
ations	EPI	17			
	ID	16			
	GENIA	11			
used for evaluation					

• Can not establish a clear benefit for all datasets, but works very well for

• The method appears to have potential but merits further investigations

• Evaluate non-cosine measures for approximate string matching, which