
Simulate to detect: a multi-agent system for community detection

Remy Cazabet
IRIT

Toulouse University
Toulouse, France
cazabet@irit.fr

Frederic Amblard
IRIT-UT1

University of Social Science
Toulouse, France

frederic.amblard@univ-tlse1.fr

Abstract—Community detection in social networks is a well-
known problem encountered in many fields. Many traditional
algorithms have been proposed to solve it, with recurrent prob-
lems: impossibility to deal with dynamic networks, sensitivity
to noise, no detection of overlapping communities, exponential
running time... This paper proposes a multi-agent system that
replays the evolution of a network and, in the same time,
reproduces the rise and fall of communities. After presenting
the strengths and weaknesses of existing community detection
algorithms, we describe the multi-agent system we propose.
Then, we compare our solution with existing works, and show
some advantages of our method, in particular the possibility
to dynamically detect the communities.

Keywords-Multi-agent simulation, Community detection, Dy-
namic networks, Social Networks

I. INTRODUCTION

In the last few years, the democratization of the web 2.0
produced new kinds of network data. With millions of people
interacting by means of digital media – Web 2.0 social
networks like Facebook or Twitter, Media sharing website
like Flickr or Youtube, message boards, ... – it becomes
easier and easier to extract very large datasets of interaction
and communication among individuals. As a consequence,
much work has been done recently to study these networks.
One of the most interesting and challenging problem deals
with community detection.

A community in a network is frequently defined as a
set of nodes that are more strongly connected among each
others than with the remaining part of the network. This
definition stays quite imprecise, because in many networks
we know that there are some communities, we are able to
identify them intuitively, but there is no precise definition
for them. For example, think about your social network,
as it could be extracted from Facebook: you are probably
“friend” with many people from your family, and it is likely
that most of these people are also connected the one to the
others. But you may also have as “friends” some of your
co-workers, which again know each other. Same thing with
former classmates, and many other possible categories. In a
perfectly classified world, these groups of people would be
totally separated and their identification would be very easy,
a simple identification of connected components. However

in real life, some people from one community are also
connected with people from another one.

Many algorithms exist to try to identify communities. One
of the first very efficient solution was proposed by Girvan
and Newman [1]. This method and most of the other ones
proposed since then have a centralized and global approach.
They first define a metric – often the modularity –, which,
from a network and a given decomposition, gives a value
which represents the “quality” of this decomposition. They
then try to optimize this value for the network using different
metaheuristics and/or adaptations of the metric.

However these methods have two major drawbacks:

• They are not able to deal with overlaps between com-
munities

• They are not able to deal with dynamic networks

The first limitation comes from at least two reasons. First,
the computation time becomes much larger when one allows
communities to overlap, because the range of possible de-
compositions grows tremendously. Secondly, as the approach
is global, it is not the local quality of each community that
is evaluated, but rather the decomposition as a whole. It
is then quite difficult using this way to find a metric able
to compare, for instance with a network of 100 nodes, a
solution having 10 communities of 10 nodes with another
one having 20 communities of 10 nodes.

The second limitation, dealing with dynamic data, seems
even harder to overcome with these traditional techniques.
Indeed, all these algorithms are working on a snapshot of
the network at a given time, or an aggregation of data over
time. Some approaches [2] have tried to compute detections
on several snapshots in time and then to compare the results.
The difficulty is that the number of communities can change
and many nodes can switch from a community to another.
The recognition of the same community c at time t and
t+ 1 can be as hard as community identification itself. On
top of that, when networks become larger, computation time
increases exponentially, even with the fastest techniques. If
one wants to follow the network evolution by comparing
the evolution of communities at each time step, it implies
to compute at each step a complete community detection.
Such solution would become very expensive on a quickly



evolving network. (Like for example Facebook, which has
around half a million new users every day).

Some approaches, notably Palla [3], obtained interesting
results with local methods. However this method stays too
simple, and therefore can easily be fooled by tricky network
configurations.

What we aim to do in this paper is to present a solution
which apply the strengths of multi-agent systems – namely
robustness, efficient distributed problem solving and adap-
tivity – to the field of community detection.

II. DESCRIPTION OF THE SYSTEM

The multi-agent system we propose is composed of an
evolving environment – the network – and a variable amount
of agents.

A. Environment

The environment in which our agents live, evolve and die
is described by the set of dynamical edges composing the
network. Starting with empirical data on a specific dynamic
network, we know the history of the environment and we
simply aim at replaying it. In this respect it corresponds to
a data-driven approach. More precisely it is described by
an ordered set of time-stamped events that are either edge
creation or edge removal. Initially, the environment is empty.
Then, according to the ordered set of events, edges are added
and removed until the whole history of the network has been
played.

There are two kinds of agents evolving in this environ-
ment: the node agents and the community agents.

B. Node agents

Node agents are defined by their names (or labels) and
the following characteristics:
• The list of other node agents they are linked with
• The list of communities they belong to and for each

of them, the related value of representativeness (de-
tailed below).

The node agents have five actions:
• Create a new community
• Create a bond with another agent
• Remove a bond with another agent
• Ask to integrate a community
• Ask to ban a node from a community
1) Representativeness value: The value of

representativeness(i, c) of a node agent i to a community
c is first computed when the agent node is added to a
community. This value is defined as

nbNeighb(i, c)

ki

where nbNeighb(i, c) is the number of neighbors of agent
i that also belong to c, and ki represents the total number of
neighbors of the agent i in the network, i.e. its connectivity.

The node agent then update this value each time that it
creates or removes a bond with another agent.

2) Create a new community: Each time that a node agent
creates a new bond with another agent, they decide whether
or not to create a new community. This decision is taken by
scanning their respective neighbors to find common ones.
If a bunch of node agents detects that they now form a
clique – all the agents are connected the one to all the
others – of a minimal size, they create a community agent
which initially includes all the node agents of the clique. The
minimal clique required to generate a new community must
be defined initially, it is the only parameter of our multi-
agent system. It can be 3-clique if the graph is sparse, or
4-clique if the graph is denser.

3) Bond creation and removal: As explained beforehand,
the aim of this paper is to replay the network creation in
order to identify communities. Therefore, an ordered set
of events available from empirical data will result in links
creation or removal from the node agents following a data-
driven approach. More precisely, if at time t, an edge is
created between nodes n1 and n2, we order agent n1 to
asks for the creation of a bond with n2 and n2 with n1.
Therefore, n1 becomes a neighbor of n2 and vice versa.

Similarly, if we know that an edge is removed at a time t,
we make the two concerned node agents remove their bond
with the other.

4) Ask to integrate a community: As soon as an agent n
creates a bond with another agent n2, he asks n2 the list
of communities it belongs to. Then, for each community c
to which n doesn’t belongs to, he asks to integrate it. If his
request is accepted by the corresponding community agent
(described in next section), n joins the community c and
adds it to his list of communities.

5) Ask to ban a node from a community: When agent
n decides to remove a bond with n2, he checks if both
of them belong to the same communities. If so, for each of
these communities, n will asks to ban n2. The corresponding
community agent will then decide whether or not to keep
n2.

C. Community Agents

A community agent has the following attributes:

• A list of node agents that belong to this community
• A value of seclusion, which measures the quality of

this community.

A community agent is also defined by the following possible
behaviors:

• Decide for the integration of a node agent
• Decide for the banning of a node agent
• Decide whether or not to integrate another community
• Die



1) Value of seclusion: The value of seclusion of the
community is first computed when the community agent is
created. This value measures the quality of the community,
more precisely how well the community is separated from
the remaining part of the system. This value is computed as∑

n∈c
representativeness(n, c)

The smaller this value, the more the agents of the community
have bonds with agents outside of it. However, a high value
of seclusion does not guarantee the quality of the commu-
nity structure. Even if the nodes inside the community are
scarcely connected between them, as soon as they have few
bounds outside the community, its value of seclusion will be
high. The quality of the community structure is guaranteed
by the choices of the community agent when asked to add
or remove a node.

2) Decide to integrate or not a node agent: When a
community agent c receives a request from a node agent
n asking for his integration, it first computes its potential
belonging, pb(c, n). This value is defined as

pb(c, n) =
∑

n2∈neighb(n)

representativeness(n2, c)

This value represents how strongly n is related to c. To
evaluate if an agent should be integrated to it, the community
agent compares pb(c, n) to its value of seclusion. If n is
linked to all agents in c, we have

pb(c, n) = seclusion(c)

The community integrates n if

pb(c, n) ≥ seclusion(c)

2

The value of pb(c, n) is, of course, related to the number of
neighbors of the candidate agent. But it obviously depends
also on which specific agents he is connected to. Indeed, in
most of real networks, one observes a power law distribution
of nodes’ degrees, i.e. there are a lot of nodes with a small
degree – few bonds – and few nodes – usually called hubs –
with a lot of bonds. These hubs are good candidates to be-
long to several communities, but, according to our previous
definition, with a small representativeness. Consequently,
the choice of the community agent to integrate or not a node
depends on the nodes he is connected to. If the agent n is
only connected to hubs in c – therefore less representative
of c, the community agent will not accept to integrate n.
We consider that an agent belongs to a community when it
is connected to its “core” agents, i.e. the ones who really
represent it.

3) Decide to ban or not a node: This operation is very
similar to the decision to integrate or not an agent. When a
community agent c receives a request to ban an agent n, he

computes the same test than for his integration. Therefore,
if

pb(c, n) <
seclusion(c)

2

n is banned from the community. As a consequence, c will
also computes recursively the same test for all the neighbors
of n. The rationale is that removing n from c is likely to
reduce the potential belonging of its neighbors, which could
be consequently banned from the community.

4) Decide to integrate or not another community: Each
time a community agent c takes the decision to integrate or
ban a node agent, the community could become more similar
to another existing community. As the aim of community
detection is to discriminate among possible communities,
we integrated a mechanism that enables the merging of
communities when they become too similar. In order to do
so, the community agent c will asks to his agents the list
of the communities they belong to. The community agent c
then asks its integration to each one of these communities
c2 when they are younger.

More precisely, c asks c2 the list of its members (agents),
and computes the sum of the potential belonging of each of
them. We named this sum the community likeness CL

CL(c, c2) =
∑
n∈c2

pb(n, c)

If CL(c, c2) ≥ 0.75 ∗ seclusion(c2), c2 dies and each of
its agents ask for their integration in c. To summarize, if
most of the agents from c2 could be integrated in c or are
already part of it, c2 dies and most, if not all, of its nodes
are integrated into c.

5) Death of communities: As a reminder, a community is
created as soon as a clique of a minimal size s is detected,
s being a parameter of the system. Apart of the preceding
mechanism for the merging of communities that implies the
death of some communities, when a community counts less
than s agents, it is considered as non viable and therefore it
dies.

III. EVALUATION OF THE PROPOSED ALGORITHM

A. Computation time

As explained in introduction, the networks we are now
able to obtain from Web 2.0 platforms and other digital
resources are huge networks. Networks composed of mil-
lions of nodes and edges are now freely available, and their
size is growing every day. Most of the existing community
detection algorithms are not thought to deal with so large
datasets, and their computation time grows exponentially
with the size of the network. Even if a complexity is
calculated for some of them, it stays theoretical because the
computation time depends a lot on the density of the network
considered, on the intrication of the existing communities,
and so on and so forth.



0 100000 200000 300000 400000 500000
number of nodes

0

200

400

600

800

1000

ru
nt

im
e 

(s
.)

CFinder
FastGreedy
ILCD
Infomap
Blondel

Figure 1. Comparison of the evolution of the speed with the size of the
network for several well known community detection algorithms

On the contrary, with the proposed multi-agent system,
all operations are made locally, which ensures that the
complexity will not grow exponentially with the network
size but rather linearly with the number of edges.

Practically, each addition of an edge (n1, n2) to the
network will generate the following actions:
• The node agents will ask for their integration to their

neighbour’s communities. But the only communities
concerned are those which contains both n1 and n2,
so very few compared to the exisiting ones on a large
graph.

• The community agents decide whether or not they
integrate the node agent. So, they only need to ask
information to their members, again, a tiny portion of
the agents from the total population.

• The modified communities (and only them) try to merge
with other communities which have common nodes.
Same remark as above.

The same analysis stands for edge removal.
Therefore it is clear that, as the network grows in size, the

cost of each edge addition or removal will remain mostly
similar, due to the local nature of the algorithm. The only
thing that could slow down the computation time would be
an important increase of the number of communities, with
many agents belonging to several communities. In this case,
the mechanism of communities merging ensures that similar
communities will be merged, limiting this risk.

In figure 1, we compare some of the current fastest
algorithms and our system. Tested algorithms are CFinder
[3], FastGreedy [4], Infomap [5] and Blondel [6]. These
tests were achieved on a recent personal computer with
4GB of memory. Implementations are either the ones given
by their authors or the ones included in the iGraph open
source library. They are implemented in C or C++. Only
our algorithm and CFinder are implemented in JAVA. Our
implantation can be downloaded on our website.

Benchmark graphs are built using a generator of graphs
with community structure, the LFR Benchmark [7]. We
generate graphs with the default settings (average degree
= 15, max community size = 50), and make vary only the
number of nodes. The number of edges changes linearly with
the number of nodes.

1) FastGreedy: FastGreedy is one of the many algorithms
that propose to optimize the modularity at the global level.
We chose this method as it is presented as one of the fastest.
To give an idea, the original method by Girvan and Newman
[1] was not able to deal with graphs larger than a few
thousands of nodes. We can see on the figure 1 that even
with this really optimized method, the complexity grows
exponentially considering the size of the graph, and therefore
does not allow to study very large graphs.

2) CFinder: CFinder is the only well known method able
to detect overlapping communities. Due to its local nature
(the algorithm first detect all cliques of a given size and
then merge all the ones that have only one different node),
its runtime grows linearly with the size of the network.
However, its main drawback is its memory usage. On our
test, the algorithm exceeds our memory capacity before
300,000 nodes.

3) Blondel : Blondel is a method thought to be fast. We
can see that it is way faster than all other methods. However,
it is also a very naive method, with a greedy approach,
which can be easily fooled by complex configurations. It
tries to optimize the modularity by local assignation, but do
not guarantee high values of modularity.

4) Infomap: Infomap is a more recent algorithm, propos-
ing a new approach using random walks, and considered
both as very quick and as efficient. We can see that its speed
is quite comparable to our solution below 400,000 nodes, but
from this limit, its slowly exponential evolution curve begins
to penalize it.

5) iLCD: iLCD is the name given here to our system. As
predicted, its complexity grows linearly with the network
size, and seems to be rapid enough to study very large
graphs.

B. Dynamic detection

Another characteristic of these large datasets now avail-
able, is their dynamic nature. By studying the logs of inter-
actions on social networks, of exchange on media sharing
platforms, of cell-phone calls, and so on and so forth, we
have not only the information of who communicate with
who, but also when and for how long. All existing methods
to detect communities work only on static networks. When
one wants to study the evolution of a network, one takes
several snapshots of it, do static detection on them, and
then try to compare the results [2]. However this method
is strongly limited, as, on a quickly evolving network, it is
nearly impossible to map the communities detected at time
t with the ones detected at time t + 1. Furthermore, the



detection made at time t+ 1 does not take into account the
results of the detection made at time t, therefore there is a
major risk of inconsistency between the two results.

On the contrary, our multi-agent system tries to simulate
the existence of communities at every step of the evolution
of the network. Community agents are actually created at
a given timestep, can live for a period of time, evolve by
integrating or rejecting nodes, and then die. As we initially
have the empirical data concerning the complete evolution
of the network, the system produces as a readable output
the complete evolution of the communities, as simulated by
our system. (see [8] for more details)

One strength of the multi-agent systems often pointed out
is their ability to adapt to real-time, changing problems. It
is also the case here, as the system is not only able to detect
communities on a given dataset, but could also be deployed
to detect communities in real time on a large network at very
small cost. As we shown in the previous part, the cost of one
change of the environment (edge added or removed) is very
small and stays the same as the network grows. Therefore,
the system could be deployed on a very large social network
like Facebook, and compute current communities in real
time, updating them as soon as a new action is done on
the network. This could leads to a lot of applications, from
user assistance features (friend retrieval, friends organizer...)
to business oriented services (targeted advertisement, new
insights into the network’s organization...)

C. Independent communities

As we explained in introduction, most of current commu-
nity detection techniques are not able do detect communities
with overlaps. Among the algorithms compared previously,
which are the most considered currently, only one is able
to detect overlapping communities (CFinder). The reason is
that in most techniques, the network division is seen as a
problem to solve at the global level. As a consequence, what
will be detected as a community does not only depends on
how well its members are linked, but also on how big is the
whole graph, how dense it is, and whether or not the addition
of a node in one community or another will improve or not
the “quality of communities” at the global level.

On the contrary, in our multi-agent system, communities
are autonomous entities that take or not the decision to
integrate a node agent based only on their local view of
the network and on their internal state. Therefore, if two
communities consider that they should integrate the same
node, both of them can do it and this particular node can
belong to both communities. This ensures that each detected
community really matches with reality, and is not an artifact
caused by local variations of the global properties of the
network.

The ability to detect overlapping communities is now
widely recognized as an important feature when studying
real world networks, especially social networks. To illustrate

the importance of overlap detection, we generated with the
LFR Benchmark (same generator as previously) some graphs
with a structure as close as possible to the structure of a real
social network, but with community structure that is known a
priori. To find the parameters to give to the LFR Benchmark,
we took inspiration from [9].In this paper, a large study has
been done on several large Web 2.0 social networks, in order
to know more about their properties. Especially, on several
of them (YouTube, FlickR, LiveJournal and Orkut), there is
a “group” structure, i.e. people can create groups and declare
that they belong to one or several groups. Results differ from
one social network to another, but the constants are:
• Most users belong to several groups
• Clustering is very high inside groups: nodes are linked

to 50-90% of other nodes of the group.
• Group size remains quite small (depends strongly of

the network, but in average around 20 - 50)
• Degree of nodes is quite high, with a power law

distribution.
The LFR Benchmark does not allow to fit all these param-
eters. It also has some strong limitations, as for instance
the equal repartition of edges: all nodes must have the same
ratio of their edges inside and outside their communities, and
must belong to the same number of communities, which is
not realistic.

However, we chose as fixed parameters:
• The size of communities: between 20 and 30 nodes
• Each node must have 25% of its edges outside of all

its communities (noise)
• The nodes degree distribution follows a power law
• Degree = 25 * number of communities to which it

belongs to. It ensures a realistic number of edges with
other nodes in the same community.

Moreover, we made vary only one parameter: the number
of communities to which each node belongs to. Results are
shown in figure 2.

The Y axis, which represents the quality of the detection,
is a comparison between the results given by each algorithm
and the correct decomposition in communities known by
construction. To obtain this value, we used a version of
the Normalized Mutual Information as described in [10]. A
value of 1 means that the two sets of communities compared
are exactly similar when 0 means they are totally different.

We compare our solution with CFinder, which is also able
to deal with overlap, and with Infomap, which is considered
as the most efficient algorithm but unable to deal with
overlap. Unfortunately, CFinder was not able to run on
all graphs. To run, it first needs to detect all cliques of a
given size existing in the network. On dense graphs, this
number becomes quickly enormous, and needs very large
amounts of memory. However, the comparison with Infomap
is enlightening: Infomap is the best algorithm when each
node belongs to only one community, with a nearly perfect



1 2 3 4
Number of communities of each node

0

0.2

0.4

0.6

0.8

1
Q

ua
lit

y 
of

 d
et

ec
tio

n
iLCD
CFinder
Infomap

Figure 2. Comparison of the quality of the community detection made by
several algorithms on generated graphs with an overlapping structure

detection. When each node belongs to two communities, the
algorithm still manages to recognize communities, and just
miss the “second belonging” of the nodes. However, when
nodes belong to 3 communities or more, the algorithm seems
unable to detect anything with success. It is not only that
many nodes are misclassified: if we look more closely at
the results given by the algorithm, we can see that nearly
all nodes are in the same giant community.

Concerning our method, even with a very strong overlap,
for instance with each node belonging to 4 different
communities, our method is still able to do a reliable
detection.

As a limit, we have to say that our algorithm is not as
efficient with sparse communities. With the LFR benchmark,
we can generate graphs with communities of, for example,
30 nodes, and a node’s degree of 5. In this case, a node of
a community will be linked to only a very small amount of
other nodes of its community. Infomap and other ”global”
algorithms are still able to detect these sparse communities,
because they are still ”denser” than the remaining of the
network. On the contrary, with what we have chosen as a
definition of a community, the community must be recog-
nizable in itself. However, this kind of sparse communities
seems not really representative of what we found in real
networks, and we should be able to detect them by searching
for communities of communities.

IV. CONCLUSION

In this paper, we presented a multi-agent system aiming
at simulating both the evolution of a network and the
joint evolution of communities on it. By giving an existing
network, the multi-agent system therefore performs efficient
community detection along time.

We shown that this method is fast compared to existing
community detection methods, allows to deal with overlap-

ping communities and seems to give good results.
Its simulation nature also brings the new possibilities of

dynamic and/or real-time detection on an evolving graph.
In a future work, we want to enhance this system on two

sides:
• Playing with organization scales of our system by

considering community agents as node agents and
allowing them to act as such (by creating and removing
edges with other community agents). By allowing them
to make communities composed of communities, we
could propose a solution for hierarchical community
detection, which would give new insights into the
network structure for very large graphs.

• By giving the possibility to node agents to create and
remove bonds autonomously, after a learning period on
empirical data for instance, we could generate realistic
networks and try to predict the future evolution of a
given network, while keeping a realistic community
structure, which is another challenge in network sci-
ence.

REFERENCES

[1] M. Girvan and M. E. J. Newman, “Community structure in
social and biological networks,” Proceedings of the National
Academy of Sciences of the United States of America,
vol. 99, no. 12, pp. 7821–7826, Jun. 2002. [Online].
Available: http://www.pnas.org/content/99/12/7821.abstract

[2] G. Palla, A. Barabasi, and T. Vicsek, “Quantifying
social group evolution,” Nature, vol. 446, no.
7136, pp. 664–667, Apr. 2007. [Online]. Available:
http://dx.doi.org/10.1038/nature05670

[3] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek,
“Uncovering the overlapping community structure of
complex networks in nature and society,” Nature, vol.
435, no. 7043, pp. 814–818, Jun. 2005. [Online]. Available:
http://dx.doi.org/10.1038/nature03607

[4] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community structure in very large networks,” Phys. Rev. E,
vol. 70, no. 6, p. 066111, Dec 2004.

[5] M. Rosvall and C. T. Bergstrom, “Maps of random
walks on complex networks reveal community structure,”
Proceedings of the National Academy of Sciences, vol.
105, no. 4, pp. 1118–1123, Jan. 2008. [Online]. Available:
http://www.pnas.org/content/105/4/1118.abstract

[6] V. D. Blondel, J. Guillaume, R. Lambiotte, and
E. Lefebvre, “Fast unfolding of communities in large
networks,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2008, no. 10, p. P10008,
2008. [Online]. Available: http://iopscience.iop.org/1742-
5468/2008/10/P10008?ejredirect=migration

[7] A. Lancichinetti, S. Fortunato, and F. Radicchi,
“Benchmark graphs for testing community detec-
tion algorithms,” Physical Review E, vol. 78,
no. 4, p. 046110, Oct. 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.78.046110



[8] R. Cazabet, F. Amblard, and C. Hanachi, “Detection of
overlapping communities in dynamical social networks,” in
IEEE International Conference on Social Computing. IEEE,
2010, pp. 309–314.

[9] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee, “Measurement and analysis of online
social networks,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, ser. IMC ’07. New
York, NY, USA: ACM, 2007, pp. 29–42. [Online]. Available:
http://doi.acm.org/10.1145/1298306.1298311

[10] A. Lancichinetti and S. Fortunato, “Community detection
algorithms: A comparative analysis,” Physical Review E,
vol. 80, no. 5, p. 056117, Nov. 2009. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.80.056117


