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Abstract  

In this work we present a new hybrid approach for solv-

ing the clustering problem for geographic data, which is 

known to be NP-hard. Two metaheuristics that have prov-

en efficiency in combinatory optimization problems have 

been chosen for the comparison: Simulated Annealing 

(SA) and Variable Neighborhood Search (VNS). The 

proposed model is based on the partitioning around the 

medoids and on P-median. Previous test runs have shown 

satisfactory results (in terms of quality and time) for in-

stances of 469 geographic objects, but when instances of 

greater size are used then variability in the results has 

been detected. 

In an effort to achieve better results for the clustering 

problem, we have incorporated a hybridization of simu-

lated annealing and variable neighborhood search to the 

geographic clustering problem. We have considered dif-

ferent sizes in the tests runs for distinct groups observing 

that the solutions obtained with the hybrid approach, 

named SA-VNS hybrid, overcome SA and VNS when 

they have been implemented individually. 

Finally, with the aim of evaluating the benefits of the me-

ta-heuristic proposed, we have measured the internal con-

nection of the obtained clusters by means of the Dunn In-

dex. The results obtained show that the hybrid SA-VNS 

performs better than SA and VNS with respect to the 

compactness feature.  

Keywords: Clustering, Dunn, Simulated Annealing, Var-

iable Neighborhood Search, Hybrid Metaheuristic. 

1. Introduction 

A big amount of combinatory problems such as the clus-

tering, imply that their solution could be obtained through 

heuristics techniques. However, once a metaheuristic has 

been implemented for a real clustering problem, it be-

comes necessary to compare the results with other meth-

ods including the statistical ones. In this process, is possi-

ble to distinguish if a determined metaheuristic is better 

than another one for certain specified factors. On the oth-

er hand, when the algorithm is tested using bigger in-

stances, the increment with regard to the response time 

and even the lower quality solutions is notable. In this 

point, is reasonable to assume that these instances demand 

the use of other alternative approximation methods that 

improve the quality of the solutions incorporating some 

improvements through different options, one of these is 

hybridizing 2 metaheuristics as we expose in this paper.  

The problem we deal with in this work is discrete, combi-

natory and consists in grouping geographic data consider-

ing partitioning restrictions.  

A clustering problem can be seen as an optimization 

problem that locates the optimal clusters’ centroids in-

stead of finding the optimum partition. The clustering al-

gorithm that we employed in this work is partitional: giv-

en a database with n objects, a method by partitions builds 

k data groups, where each partition represents a cluster 

and k ≤ n. This is, it classifies the data into k groups 
where each group must contain at least one element and 

each element must belong exclusively to one group. 

Achieving a global optimization of a clustering based on 

partitions would require an exhaustive enumeration of all 

the possible partitions. In this point, the importance of in-

corporating approximation methods for the problem we 

expose stands out, this problem forms groups of geo-

graphic data under partitioning around the medoids prop-

erties (Kaufman 1987) and P-Median (Resse 2005). The 

approximation proposal consists of the combination of the 

Variable Neighborhood Search (VNS) (Mladenovic 2004) 

and Simulated Annealing (SA) (Dowsland 2003) 

metaheuristics integrated into an algorithm about parti-

tions and the geographic clustering problem is applied 

with the objective to improve the results obtained by these 

two metaheuristics in a separate way. The results obtained 

with this hybrid proposal have been satisfactory when it 

has been applied to sets of geographic-spatial data. Final-

ly, the quality of the solutions is tested by using the Dunn 

index (Dunn 1973, XiuLi 2011). The evidence given by 

this test revealed that the SA-VNS hybrid that we have 

implemented obtains better compactness than VNS and 

SA individually. 

The remaining of this paper is organized as follows: 

Section 2 describes the partitioning as an optimization 

problem. In section 3 the basic aspects of VNS and SA 
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are treated. Section 4 presents the hybrid combination of 

SA-VNS and finally in section 5 we present the applica-

tion of the Dunn method, which allows evaluating the 

clustering quality. Finally the conclusions are described in 

Section 6. 

2. The Partitioning Problem in Combinatory Optimi-

zation 

The classification techniques are of prominent usefulness 

in data analysis. Its main objective is to group objects into 

well differentiated classes or clusters in accordance to the 

dissimilarities between them and the best internal homo-

geneity possible, in such a way that the objects that be-

long to a cluster are closer to each other rather than to the 

ones in other groups. In this scenario, having a measure D 

of dissimilarity between objects becomes necessary, 

which can be expressed as a quality function. The tradi-

tional methods that look for a partition of a set of objects 

in a prefixed number of classes, only obtain partial solu-

tions to the problem, locating barely some local optimums 

(Piza et al.1999). In the non-hierarchical methods the data 

set is partitioned into a pre-specified number of clusters k, 

and then the observations are reallocated to the clusters in 

an iterative way until a stopping criterion (function to op-

timize) is met. In this way, the partitioning methods pos-

sess the advantage of satisfying an optimality criterion 

even if it is approximately. On the other hand, the existent 

clustering methods differ from one another in the way of 

structuring the clusters. Those that find clusters that cor-

respond to a partition of the set of objects are known as 

hard-clustering methods or partitional clustering. The 

method proposed in this work is considered within the 

hard-clustering or partitional clustering techniques. To 

that end the partitioning around the medoids methods 

have been studied as well as P-median and iterative parti-

tioning or optimization methods due to the strong influ-

ence in our partitioning algorithm (Carrizosa et al.1998; 

Resse 2005). The most influential algorithm for the geo-

graphic clustering from this work is PAM (Partitioning 

Around the Medoids) (Kaufman 1987). 

 

2.1. Partitioning 

In the classification by partitions we have that being  

 1 nx ,. . . ,  xX   the finite set of n objects to classify 

and k n the number of classes into which the objects 

will be classified. A partition 1( ,..., )
k

P C C of Ω in k 

classes
1,..., k

C C , is characterized by the following 2 con-

ditions for i≠ j the following is met 1)
1

k

i

i

C


W  and 

2)  i jC C  . However, in this case, is eventually pos-

sible to allow one of the classes 
i

C to be empty, such that 

in reality the partitions 1P (C , ,  C )
k

   being consid-

ered are partitions of Ω into k or fewer classes. However 

the optimal partitions in accordance to an inertia criterion 

contain exactly k not empty classes (Piza et al. 1999). 

 

2.2. Description of the Clustering Problem as one of 

Optimization 

In regard to the optimization methods, their main charac-

teristic is that they produce a unique partition of objects 

into a particular number k, specified beforehand, of non-

overlapping clusters, as a result of the minimization or the 

maximization of some objective function. Regularly, the-

se methods start with an initial partition of the set of ob-

jects into k clusters, for each one of them a centroid is de-

fined; every object is located then in the cluster which 

centroid is the closest one, to calculate later the new cen-

troids and reallocate each object again. So on and so forth 

until no changes are produced in the clusters. Generally, 

the objects are represented by D descriptive attributes in 

form of vectors in the space R
D
, and with a similarity 

comparison measure, such as the distance, and the clus-

ters are created with similar objects. In the groups or clus-

ters formation process, there isn’t a previous knowledge 

about how to form a cluster; for that reason, the clustering 

process is also known as unsupervised classification. In 

the clustering, the information of a series of variables for 

every object is used and in accordance to these variables, 

the similarity between these objects is measured. Once the 

similarity has been determined, the objects are grouped 

into internally homogeneous groups and different to each 

other. The similarity measures rely on the assumptions 

and the use that is given to the data; different results of 

the same, can result from the different similarity 

measures, where each one can be equally valid for a do-

main in particular. Given the set of n objects denoted by 

 1 nx ,. . . ,  xX   in which 
D

i
x R , let K  be an un-

signed integer known beforehand, the clustering problem 

consists in finding a partition:  1,..., k
P C C of X, being 

j
C  a cluster formed by similar objects, satisfying an ob-

jective function  : D
f R R  with the conditions 

 i jC C  for i j y,
j i

C C X  . To measure the 

similarity between two objects 
a

x and
b

x a distance func-

tion denoted by 
a bd(x ,x )  is used, being the Euclidean 

distance the most used to measure the similarity. Thus the 

distance between two different elements 

 i i1 iDx x ,  ...,  x   and  j j1 jDx x ,  ...,  x   is 

2

1

( , ) ( )
D

l

i j il jld x x X X


  . The objects from a cluster 

are similar when the distances between them is minimal; 

this allows to formulate the objective function f as 

2

1

( , )

j

k

i j
j

ix C

d x x
 
   ; this is, minimizing f is 

wished; where j
x , known as representative element of 
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the cluster, is the measure of the elements of the clus-

ter
j

C , 
1

j i j

j

x X C
C

  and corresponds to the cluster’s 

center. Under these characteristics, the clustering is a 

combinatory optimization problem and has been proven 

that it is an NP-hard one (Vicente et al. 2005). 

 

2.2.1 Combinatory Nature of the Partitioning Algo-

rithms 
 

Given that the clustering can be approached as an NP-

hard combinatory optimization problem, is similar to say 

that the non-hierarchical grouping is a combinatory prob-

lem. The computational complexity of this problem is of 

the NP-hard kind, since is in fact a generalization of the 

known NP problem, which originated the terminology for 

this complexity rank for analogue problems (Laarhoven, 

1988). Is necessary to note that when is wished to obtain a 

partition into K classes of a set with n individuals, it 

doesn’t make sense to examine all the possible partitions 
of the set of individuals into K classes. In effect, we are 

before a very complex combinatory problem. Just for il-

lustrative purposes, we mention that the number of parti-

tions of a set with 60 elements into 2 classes is about 10
18

, 

and for 100 elements into 5 classes is close around 10
68

. 

In fact, it can be proven that the number  S n, K of dif-

ferent partitions of a set of n individuals into K classes, 

fulfills the recurrence equation  

     n,K   S n-1,K-1 +kS n-1,K . This leads to  

 
1

1
( , ) ( 1)

!

K
K i K

i

i

ni
S n k

K





 
 

(Piza et al. 1999). From the above, the need for methods 

and algorithms that provide a satisfactory solution to this 

problem is deduced. The metaheuristics incorporated to 

the partitioning algorithm for geographical data are pre-

sented in the following section. 

3. Simulated Annealing and Variable Neighborhood 

Search Metaheuristics in Geographic Clustering 

One simple and logical technique that can be used to 

solve an optimization problem consists in examining all 

the feasible solutions of the problem, evaluating them 

with the objective function and then choosing the best 

one. This technique called enumeration despite it is ap-

plied in different computing problems, can be impractical 

even for instances of regular size due to the big amount of 

possible solutions (Cristian 2011). However, given the 

underlying difficulty in the NP-hard optimization prob-

lems, as the partitioning is, the inclusion of heuristic 

methods is necessary even though they can’t ensure 
achieving optimal solutions but they can be reached in a 

reasonable time. In this work the metaheuristics VNS and 

SA are combined along a K-medoids algorithm into one 

single algorithm which is applied to the geographic clus-

tering problem with the goal to improve the results 

achieved by both metaheuristics in an independent way. 

The results obtained with this hybrid proposal have been 

satisfactory when applied to sets of geographic data. In 

the following lines, SA and VNS are described briefly.  

 

3.1. Simulated Annealing 

The SA algorithm is a neighborhood-based search method 

characterized by an acceptance criterion for neighboring 

solutions that self-adapts at run time.  It uses a parameter 

called temperature (T), that according to its value deter-

mines the degree in which worse neighboring solutions 

can be accepted. The temperature variable is initialized 

with a high value, called initial temperature To and is re-

duced with each iteration through a cooling temperature 

mechanism (cooling factor α) until a final temperature 
(Tf) is reached.  During each iteration a specific number 

of neighbors L(T) is generated, which may be fixed for all 

the execution time or may change for each iteration.  Each 

time a neighbor is generated, an acceptance criterion is 

applied to determine if it will substitute the current solu-

tion (Kirkpatrick et al. 1983). If the neighbor solution is 

better than the current one, it is automatically accepted, as 

a classic local search would do (LS). On the contrary, if it 

is worse, there still exists the possibility for the neighbor 

to substitute the current solution. This allows the algo-

rithm to escape from local optima where LS would get 

trapped. The higher the temperature, the more likely it is 

to accept worse solutions. In this way, the algorithm ac-

cepts solutions much worse than the current one at the 

beginning of the execution but not at the end. By incorpo-

rating this procedure to the geographical clustering mod-

el, an appropriate algorithm for geographical clustering 

with simulated annealing is obtained (Bernábe et al. 

2009). The general procedure for simulated annealing is 

presented as follows (Dowsland 2003): 

 
SIMULATED ANNEALING 

INPUT (To, α, L(t), Tf) 
T To /* Initial value for the control pa-

rameter* / 

Scur Generate initial solution  

WHILE T Tf DO /* Stopping condition */ 
  BEGIN    

    FOR cont 1 To L(T) DO /* Cooling 

speed(T) */ 

      BEGIN  

Scand Select solution N(Scur) /* Creationof 

a new solution  */ 

cost(Scand) - cost(Scur) /* Computation of 

cost difference */ 

      IF (U(0,1) < e
(-/T)

 OR <0)  
    THEN ScurScand /* Acceptance crite-

rion*/  

  END 

        Tα*T /* Cooling mechanism */ 
   END  

{/* WRITE as solution the best of the visited 

Scur*/} 
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.  

In this work from 2009, a statistical experiment was 

developed to achieve a calibration of the best parameters 

for SA where 469 geographic data were used as input, 

which have been processed as well with the hybrid of the 

present paper. The main test in 2009 focused in forming 

24 groups and we pick again this instance for the experi-

mental phase of this article. This has been an important 

test because it's been an inflection point for groups be-

tween 10 and 200. The cost of the solutions obtained in 

Bernábe (2009) was satisfactory; however, measuring the 

solutions was necessary, in such a way that the results 

were compared with Variable Neighborhood Search 

(Bernábe et al. 2011).  

The general model for geographical partitioning that 

has derived the SA and VNS implementations, is present-

ed next. 

 

 

3.2. Partitioning Model for Geographic Data 

1) Data: gU  total of objects. Let the initial set of n ge-

ographical units be  g , ,...,1 2U nx x x where x
i

is 

the geographical unit ( gi U index); k is the zone 

number (group). The following variables are defined to 

refer to the different groups:
i

Z is the set of geographical 

units that belong to the
th

i zone  (group), n is the number 

of geographical units,
t

C  is the centroid and ( , )d i j is the 

Euclidean distance from node i to node j (from one objet  

to another); 

2) Constraints: Z
i
 : for i 1,..,k   (non empty 

groups), Z Z
i j

 for i j , (the same objects cannot 

be in different groups), 
1

gZ U
k

ii
 (the union of 

all the groups are all the objects) and 

3) Objective Function: Once the number of centroids (k) 

is decided (C, with 1,..,i k ), the centroids will be ran-

domly selected and the objects will be assigned to the 

nearest centroids. Then, for each object, the objective 

function is defined as the minimum of the sum of the dis-

tances between the centroids (for each k), and the objects 

assigned to them (each object is assigned to the closest 

centroid). For every k (where 1,..,k n ) the sum of the 

distances from every object assigned to each centroid is 

calculated, and the minimum is selected. Therefore the 

objective function f can be written as:   

1
1

k

t
k ,...,n

t  iit
t

Min d (  i,c ) 
c

 
{ }  where nit is the number of 

iterations 

 

3.3 Variable Neighborhood Search VNS 
 

The VNS metaheuristic, proposed by Hansen and 

Mladenovic (1997) is based on the observation that local 

minima tend to cluster in one or more areas of the search 

space. Therefore when a local optimum is found, one can get 

advantage of the information it contains. For example, the 

value of several variables may be equal or close to their val-

ues at the global optimum. Looking for better solutions, 

VNS starts exploring, first the nearby neighborhoods of its 

current solution, and gradually the more distant ones. There 

is a current solution Sa and a neighborhood of order k associ-

ated to each iteration of VNS. Two steps are executed in eve-

ry iteration: first, the generation of a neighbor solution of Sa, 

named SpNk(Sa), and second, the application of a local 

search procedure on Sp, that leads to a new solution Sol. If 

Sol improves the current solution Sa, then the searching pro-

cedure will restart now from sol using k = 1. Otherwise, k is 

incremented and the procedure is repeated from Sa. The algo-

rithm stops after a certain number of times that the complete 

exploration sequence N1;N2; … ;Nkmax is performed. The fol-

lowing algorithm shows how the solutions are obtained.  

 

Procedure Variable Neighborhood Search  

 
BEGIN 

/*Nk: k=1,…,kmax, neighborhood structures */  
/* Sa: current solution */  

/* Sp: neighbor solution of Sa */  

/* Sol: local optima solution */ 

 

REPEAT UNTIL (END) DO 

k 1 

  REPEAT UNTIL (kkmax) DO  

/* Generate neighbor Sp of the k
th
 neighbor-

hood of Sa(SpNk(Sa))*/ 
SpGetNeighbor (Sa, Nk); 

     Sol LocalSearch (Sp); 

       IF (Sol is better than Sa) THEN Sa  

Sol; 

       ELSE k k + 1 

  END DO  

END DO 

END 

 

Comparing the quantitative and qualitative behavior of 

the geographical partitioning between VNS and SA was a 

needed task, therefore, in a separate way, each 

metaheuristic has been incorporated to the exposed model 

where a response surfaces analysis in a factorial experi-

ment was validated and it was reported that VNS throws 

better results than SA for the 24 groups test with 469 geo-

graphic objects (Bernábe et al. 2011). From this result, we 

assumed that better solutions were possible if we hybrid-

ized VNS and SA. In this point,an additional effort has 

been combining VNS and SA into one hybrid heuristic 

with the goal to achieve approximations that surpass VNS 

and SA when independently implemented to solve this 

geographic clustering problem. The computing experi-

ence is shown below. 
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4. SA-VNS Hybrid for Geographic Clustering  

Although trajectory methods only deal with a single 

solution, they have shown their potential in exploiting the 

promising regions in the search space with high quality 

solutions such as VNS. VNS is a simple and effective tra-

jectory metaheuristic. The basis of VNS involves using 

more than one neighborhood structure and systematically 

changing the neighborhood within a local search process. 

Unlike many other metaheuristics, the basic scheme of 

VNS and its extensions require few and sometimes no pa-

rameters. However, it is still prone to premature conver-

gence traps due to the limited exploration ability. Hence, 

it is a likely choice to consider the hybridization of 

metaheuristics. It has been decided to start the clustering 

process with SA given its high capability to escape local 

optimums, then when it has “convergence” in its last iter-

ation, this final solution is given as an argument to VNS, 

where VNS only searches for even better solutions. A 

summarized version of the algorithm is presented as fol-

lows: 

 
Algorithm SA-VNS Hybrid 

Input k number of groups 

Input for SA To initial temperature, Tf fi-

nal temperature, alfa α cooling factor and 
, L(t). 

Input for VNS: ni number of iterations for 

neighborhood structures (NS in VNS), nbl 

number of iterations for Local Search (LS 

in VNS). 

Initialize SA(To,Tf,alfa,L(t))and 

VNS(ni,nbl) 

 initSolGenerate a Random Initial 

Solution(k) 

  saSolExecute SA (initSol) 

  Sol* Execute VNS (saSol) 

 Generate Clusters (Sol*) 

 

4.1. Computing Experience 

To measure the hybrid's behavior against other competi-

tive implementations, we have done different test runs 

gathering them into tables 1 and 2, which show the differ-

ent number of groups formed for 2 geographic zones: To-

luca Valley Metropolitan Zone (TVMV) with 469 geo-

graphic units Ug (objects) and Mexico Valley Metropoli-

tan Zone (MVMV) with 5023 geographic units. 

One of the general characteristics metaheuristics is the 

randomness of the initial solution. In our hybrid algo-

rithm, we have kept such property and just as it is sto-

chastic, is recommended to carry out at least 20 runs for 

each test and to calculate the average of each one of them. 

We register these results in tables 1 and 2. 

On the other hand, we have statistically calibrated the 

combined parameters for the hybrid algorithm, then, we 

randomly select the following parameters for the tests: for 

SA the parameters for all the test runs have been To= 

5000, Tf=.01, α=.95, L(t)=5 and for VNS LS=20, NS=2, 
T=time (sec.) and H is Hybrid. In the tables, 1), 2), 3), 4) 

and 5) represent Hybrid, SA, VNS, P-median with GAMS 

(General Algebraic Modeling System) and PAM respec-

tively. 

Table 1. Test runs gathering for Geographic Clustering (ZMVT) 

 Instance 

TZMV 

24 47 94 

Cost T Cost T Cost T 

1) 11.59 3 8.11 2 4.97 4 

2) 11.89 9 8.36 15 5.17 21 

3) 11.85 1 8.19 1 5.02 2 

4) 9.20 936 5.73 1123 3.29 93 

5) 9.19 79 5.73 431 3.20 71 

Table 2. Test runs gathering for Geographic Clustering 

(ZMVM) 

 Instance 

MVMV 

255 508 1018 

Cost T Cost T Cost T 

1) 73.01 628 50.42 1387 31.01 2434 

2) 72.49 191 51.94 554 30.82 843 

3) 70.93 555 50.74 1240 29.24 1337 

4) -- -- -- -- -- -- 

5) -- -- -- -- -- -- 

 

As we can observe for small instances of 469 objects, 

the hybrid algorithm responds with better solution quality 

in a very reasonable amount of time, but still far from an 

“optimum” like the one provided by PAM and GAMS, of 

course these 2 with a high computing cost. However for 

big instances of 5023 objects, only for 508 groups, the 

hybrid algorithm is the best one. For GAMS and PAM it 

wasn’t possible to obtain a solution in a running time of 
44 hours. 

The following figure shows the behavior of the best so-

lution obtained for 24 groups, with an objective function 

cost of 11.5958. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Plotting of the SA clustering: cost of the 

solution vs. number of iterations 
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An implementation with a Geographic Information 

System GIS eases the numerical interpretation of the pre-

vious figure, which makes possible to see the result in the 

map (the data under study are geographic units that be-

long to a territorial zone), (Bernábe, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Graphic associated to the result of the 

clustering for 24 groups. 

Once that it has been proven that hybrid SA-VNS par-

titioning achieves better results than the implementations 

already reported (Bernábe et al. 2011), the next step con-

sist in developing another test: knowing the connection of 

the algorithm; this is, it's important to prove that the algo-

rithm improves the geometric compactness, a property 

always sought in territorial design and partitioning prob-

lems over territorial or geographic units (Bernábe et al. 

2011). The next step resides in having another algorithm 

that measures such connection. In the literature we can 

find an algorithm that has been proven to measure the 

connectedness among the group members but is possible 

to adapt it to geographical data (XiuLi et al. 2011). In the 

following section, the application of the Dunn index to 

the groups obtained from the test runs is presented. 

5. Evaluating compactness with the Dunn Index va-
lidity measure 

In this section we perform an assessment of the presented 

approaches: SA, VNS and SA-VNS using the Dunn Index 

metric. The aim is to evaluate the quality of each cluster-

ing method, and use this metric for determining the ap-

proach that performed better, from the point of view of 

compactness. The Dunn index is a widely used metric for 

evaluating clustering algorithms (Dunn, 1974). It is basi-

cally, an internal validity measure which aims to identify 

sets of clusters that are compact, with a small variance 

between members of the cluster, and well separated, 

where the means of different clusters are sufficiently far 

apart, as compared to the cluster variance within. The 

higher the Dunn index, the better the clustering quality. 

Let Ci be a cluster of m objects, let x and y be any two ob-

jects assigned to the same cluster Ci. The Dunn Index (DI) 

is defined as follows: 

1 1 ,

1

( , )
min min

max

i j

i m j m j i
k

k m

C C
DI

    

 

           

 

where ( , )
i j

C C is the intercluster distance metric between 

clusters Ci and Cj, whereas 

1

1
, , ( ( , ))

i

i i

x y C x y d x y
C C 

     

calculates the average distance between all pairs. 

In Table 3 we can see the obtained Dunn index values for 

each approach. The values obtained by de internal validity 

measure show that the SA-VNS approach performed bet-

ter than the other two approaches. 

 
Table 3. Evaluating compactness by means of the Dunn In-

dex metric 
Approach Dunn Index Ranking 

Hybrid 0.923 1st 

SA 0.584 2nd 

VNS 0.465 3rd 

 

The results suggested by the Dunn Index metric can be 

visually corroborated when the 24 clusters obtained by 

each approach are plotted. Figure 3, 4 and 5, show the 

distribution of similarities among objects for the VNS, SA 

and Hybrid approach, respectively.  

 

 
Figure 3. Plotting of the SA clustering approach. 

 
 

Figure 4. Plotting of the VNS clustering approach. 
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Figure 5. Plotting of the Hybrid clustering approach. 

 

We have re-ordered the real objects, so that consecutive 

objects now belong to the same cluster. In theory, the 

ideal clustering algorithm should obtain a perfect object 

grouping which will show a graphic with squares of 

points in the diagonal of the plotting. In other words, in a 

perfect clustering there will be not points outside the 

diagonal. 

The maximum Euclidean distance obtained between two 

objects was 0.577332, whereas the minimum distance was 

0.000447214. Let us consider that the lower the Euclidean 

distance, the more similar the pair of objects. Being 

similar is a subjective issue, however, we may propose a 

threshold for determining a positive degree of similarity, 

which in this case was empirically established as 0.1730. 

Future work will analyze the behaviour of each approach 

with different thresholds of similarity.  

In this research work, all those object pairs that share a 

distance lower than the empirical threshold are plotted in 

the above mentioned figures.By observing the number of 

points plotted outside the diagonal, we can easily con-

clude that the hybrid approach performed better than the 

other two approaches, a fact that confirms the results ob-

tained with the Dunn Index. 

6. Conclusions 

In this work we have reported an experience with SA 

and VNS combined in an effort to achieve better solutions 

than the ones already reported. For small instances, is 

possible to rely on our hybrid proposal and as can be seen 

in table 2, for a bigger sized problem the results are not 

very encouraging, at least for the number of groups we 

have chosen.  

The internal validity measure has shown that the hybrid 

approach has performed better than the other two ap-

proaches. This fact was also visually confirmed by plot-

ting the groups obtained by each approach when a thresh-

old of similarity is established. 

As future work, we propose a factorial experiment de-

sign for VNS, SA and the hybrid algorithm proposed, and 

then the number of groups and the parameters of the 

metaheuristics would be variable and would indicate the 

behavior of the metaheuristics with more reliability to de-

termine their performance. On the other hand, PAM and 

GAMS result untreatable for big instances. This issue im-

plies proposing a Lagrange Relaxation scheme to com-

pare our results.  

In previous works, we have applied VNS partitioning 

to the location of ovitraps for a Dengue mosquito problem 

and with the results obtained in this article we ensure that 

is possible to apply SA-VNS to the Dengue problem with 

bigger size instances obtaining satisfactory solutions in 

regard to time and quality, furthermore SA-VNS can be 

applied to similar problems of bioinspired nature 

(Bernábe 2012). 

Currently we are working with the geographic parti-

tioning with homogeneity restrictions in a multiobjective 

context. 
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