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Simulated annealing based economic dispatch 
algorithm 

K.P. Wong 
C.C. Fung 

Indexing terms: Algorithms, Annealing, B-matrix, Simulated annealing, Economic dispatch 

Abstract: This paper develops an economic dis- 
patch algorithm for the determination of the 
global or near global optimum dispatch solution. 
The algorithm is based on the simulated annealing 
technique. In the algorithm, the load balance con- 
straint and the operating limit constraints of the 
generators are fully accounted for. In the develop 
ment of the algorithm, transmission losses are first 
discounted and they are subsequently incorpor- 
ated in the algorithm through the use of the B- 
matrix loss formula. The algorithm is 
demonstrated by its application to a test system. 
The results determined by the new algorithm are 
compared to those found by dynamic pro- 
gramming with a zoom feature. 

List of principal symbols 

B = loss coefficient matrix 
Bo = loss coefficient vector 
Boo = loss constant 
D = total system demand 
AC’ = average increment in cost 
AF, = increment in fuel cost 
fLPJ = fuel cost of the ith generator operating at power 

F, = total fuel cost 
I 
k 
K, = Boltzmann’s constant 
rn 
N = vector of perturbation 
P 
P(A) = probability of acceptance 
Pi, M1 = maximum operation limits of the ith generator 
Pi, = minimum operation limits of the ith generator 
PL = total transmission network loss 
P, = dependent generator loading 
r = reduction factor for control parameter 
T =temperature 
X, = acceptance ratio 
A 
y = scaling factor 
U = control parameter 
U, 

level Pi 

= maximum number of iteration 
= iteration number in solution process 

= number of trials in an iteration 

= vector of generator power loadings 

= increment in energy level 

= final value of control parameter 
~ ~~ 
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1 Introduction 

One of the most important aspects of power system oper- 
ation is to supply power to the customers economically. 
The problem of deciding how power supplies are shared 
among generators in a system in the most economic 
manner has been studied extensively [l, 23, and various 
mathematical programming methods and optimisation 
techniques [3-111 have been developed and applied. 

In the above methods, the fuel cost characteristic of a 
thermal generator is usually approximated by (i) a quad- 
ratic function, (ii) piecewise quadratic functions, or (iii) a 
polynomial function with order higher than two. When 
functions in (ii) or (iii) are adopted, the economic dispatch 
problem may have several local optimum solutions with 
one being the global optimum solution. In these cases, 
conventional methods may have difficulties in the deter- 
mination of the global optimum solution. To find the 
global or near-global optimum solution, a more general 
method for solving the economic dispatch problem is 
needed. 

The simulated annealing method [12] is a powerful 
optimisation technique and it has the ability to find 
global or near global optimum solutions for large com- 
binatorial optimisation problems. This method is similar 
to the local search technique [13] in optimisation, which 
can only guarantee a local optimum solution. However, 
the simulated annealing method in addition employs a 
probabilistic approach in accepting candidate solutions 
in its solution process such that it can ‘jump’ out of the 
local optimum solutions. The simulated annealing tech- 
nique has previously been applied to some optimisation 
problems [14-161 in power engineering. However, it has 
not been used to solve the problem of economic dispatch. 

This paper first develops an economic dispatch algo- 
rithm using the local search approach 1131. Based on the 
initial development, a simulated annealing based eco- 
nomic dispatch algorithm to find the global or near 
global optimum solution for the economic dispatch 
problem is developed. Transmission losses are first dis- 
counted in the development and they are subsequently 
incorporated in the simulated annealing based algorithm 
through the use of the B-matrix loss formula [lo]. 

The developed algorithm is validated by applying it to 
a test system [ll] having three generators. The fuel cost 
characteristics of the generators are expressed as third- 

The support given to the work reported in this 
paper by the Australian Research Council is grate- 
fully acknowledged. 

= control parameter at iteration k 
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order polynomials. The results obtained by the new algo- 
rithm are compared to those found by the method of 
dynamic programming with a zoom feature reported 
recently [ 1 I]. 

2 Economic dispatch problem 

When transmission losses are discounted, for a total 
system load demand D, the total fuel cost F, for running 
n generators to meet the system load is given by 

F, =f,(P1) +f2(P2) + ‘. . +f.(P3 (1) 

and the total load is 
” 

D =  X P i  - 
1-1  

In eqn. 1,J{PJ is the fuel cost of the ith generator oper- 
ating at power level P i .  To solve for the economic load- 
ings of all the n generators, F, in eqn. 1 is minimised 
subject to the equality constraint in eqn. 2 and the 
inequality constraint 

(3) 
where P,, ,  and Pi , -  are the minimum and maximum 
operation limits of the ith generators, respectively. 

When transmission losses are considered, the system 
load demand is given by 

Pi. < Pi < Pi. MZ for i = 1, . . . , n 

8 

D =  C P i - P p ,  
i =  1 

(4) 

where PL is the total loss in the transmission network. 
While this loss can be found from a load flow study, it 
can also be approximated by the B-matrix loss formula 
[lo] below. 

P L  = P B P  + P E 0  + Boo (5 )  

where P is the vector of generator loadings (Pl, P z ,  . . . , 
PA. B, Bo and Boo are the loss coefficient matrix, the loss 
coefficient vector and the loss contant, respectively. 

3 The local search technique 

The local search technique [13] is widely used in the area 
of optimisation and it guarantees to find a local optimum 
solution. This metod also gives some of the foundations 
of the simulated annealing based economic dispatch algo- 
rithm to be developed in this paper. 

Central to the local search method is the concept of 
local optimality. This concept can be defined in the fol- 
lowing way. Let S be the solution space of a com- 
binatorial optimisation problem and i is a solution state 
in S. Let R be a possible set of solution states in the 
neighbourhood of state i. When the cost associated with 
state i is less than, or equal to, all its neighbouring solu- 
tions in R, then solution state i is a local optimum wrt R. 
Based on the above concept, the local search method iter- 
ates on a number of solutions until a maximum number 
of iterations is reached or no further improvement is 
found after a fixed number of iterations has been camed 
out. This local search method can be applied to find the 
local optimum solution of the economic dispatch 
problem. 

3.1 Determination of a local optimum solution 
Consider the case where there are n thermal generators 
for economic dispatch and transmission losses are dis- 
counted. Assume that the power loadings of any n - 1 
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generators are specified, from the equality constraint in 
eqn. 2, the power level of the remaining generator (i.e. the 
dependent generator) is given by 

” 
P , = D -  C P i  (6) 

i =  1 
i + r  

The loading levels of all the generators are then taken as 
the starting values in the iterative solution process pro- 
vided that they satisfy the constraint in eqn. 3 on the 
operation limits of the generators. The generation of a 
neighbourhood solution of power loadings in an iteration 
is now described. 

3.1.1 Generation of a neighbourhood solution 
At any iteration k, let the solution of the power loadings 
of any n - 1 generators be held in vector P. To find a 
solution in the neighbourhood of the loadings in P ,  the 
amount of perturbation for each loading in P is first 
found according to a probability distribution function 
(PDF). In the present work, the Gaussian PDF [17] is 
assumed and its standard deviation is set to the product 
of the control parameter U, and a scaling factor y. This 
means that the probability of generating a perturbation 
of the amount in the range between -yo and +yu is 

Let the perturbations be stored in vector N .  A solution 
in the neighbourhood of the loadings in P is then given 
by (P + N). The power loading of the dependent gener- 
ator is calculated according to eqn. 6. The complete set of 
power loadings of the n generators generated is then a 
new solution in the neighbourhood of the current solu- 
tion. 

3.1 2 Control parameter 
The primary function of the control parameter in the 
local search algorithm is to regulate the amount of per- 
turbation in the neighbourhood of the current solution. 
In the present work, the value of the control parameter 
uk at any iteration k is calculated [12] from 

(7) 
where ul is the initial value when k = 1 and r is a con- 
stant, the value of which is slightly less than 1. The value 
of the control parameter is reduced as the number of iter- 
ation increases, and its rate of reduction is dependent on 
the value of r. Since the amount of perturbation is pro- 
portional to the control parameter, this will effectively 
reduce the range of the neighbourhood space of the 
current solution as the number of iteration increases. 

3.1.3 Generation of a local optimum solution 
Within each iteration, a chain of neighbourhood solu- 
tions are generated one by one. When a neighbourhood 
solution is found, it is tested against an acceptance cri- 
terion. The acceptance criterion is that, when the cost 
associated with a most recently generated neighbourhood 
solution is lower, this solution is accepted and is taken as 
the current solution for the generation of the next neigh- 
bourhood solution. When the specified size of the chain 
of solutions is reached, the last accepted solution will be 
the starting solution for the next iteration. The solution 
process is terminated when a termination criterion is met. 

3.1.4 Termination criterion 
The iterative solution process can be terminated by one 
of the following ways: (i) when the specified number of 
iterations is reached; (ii) when there is no improvement in 
the solution over a specified number of iterations. 

68.26%. 

U k -  - f ik -1)  u1 
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In the present work, approach (i) is adopted. The 
maximum number of iteration I for a specified final value 
of the control parameter denoted by U, can be deter- 
mined in the following way. From eqn. 7 and at k = 1 

The size of the neighbourhood space in the final iteration 
depends on the choice of U, and hence U, governs the 
resolution or closeness of the solution to the optimum 
point. 

4 Economic dispatch algorithm bared on local 
rearch 

The economic dispatch algorithm based on the local 
search method when transmission losses are discounted 
can be summarised in the following steps 

(i) Select a set of initial power loadings for the n gener- 
ators such that the constraints in eqns. 2 and 3 are satis- 
fied. Initialise k to 1 and calculate the total fuel cost using 
eqn. 1. 

(ii) Calculate the control parameter using eqn. 7. 
(iii) For any iteration k and for a prespecified number 

of trials in the chain of neighbourhood solutions within 
that iteration, determine the best loadings of all the gen- 
erators in the neighbourhood of the current loading set- 
tings by the following steps. 

At iteration k and trial m 
(a) Select randomly a generator as a dependent gen- 

erator. From the known current loadings of the gener- 
ators, set dependent generator loading to P, and set 
the loadings of the remaining (n - 1) generators in 
pk. m). 

(b) Generate vector Nk- '"I. 
(c) Form new power loading vector P using 

( p k .  m) + N ( k ,  m'). 

(d) Using eqn. 6, find the new power loading, Pi of 
the dependent generator. 

(e) If the power loadings satisfy the operating limits 
in the inequality constraints in eqn. 3, calculate the 
new total cost using eqn. 1. Otherwise, discard the new 
power loadings and return to Step (iii.a). 
(f) Calculate the increment in total fuel cost AF,,  

by subtracting the cast associated with the old loading 
levels from the cost associated with the new loading 
levels. 

(g) Check whether the new power loadings can be 
accepted: 

(1) If (AF, Q 0), the new power loadings are 
accepted as the current solution in the next trial as 
described by 

p k .  m+ 1) = pk. m) + ~ ( k ,  m) 

and 

p: E,"  k +1)= 

(2) If (AF, > 0), the new loadings are discarded. 
The old loadings of the current solution are 
retained and used in the next trial as described by 

p k .  m+ I )  = p ' k .  n ~ )  

and 
p r k .  m+ 1) = p 

(iv) If k is greater than the maximum number of iter- 
ations, stop. Otherwise, increment iteration counter k by 
1, and go to Step (ii). 
IEE PROCEEDINGS-C, Yd. 140, No. 6, NOVEMBER 1993 

4.1 Local and global optimum solutions 
The algorithm in the last Section always finds a local 
optimum solution for the economic dispatch problem. It 
will find the global optimum dispatch solution only if the 
composite fuel cost charactersistic is unimodal. 

When the composite characteristic is multimodal, the 
concept of the local optimality in local search can be 
extended in the following way. If a local optimum solu- 
tion is also the local optimum solution wrt all the pos- 
sible sets of neighbourhood solutions, the local optimum 
solution is also the global optimum. 

It follows that, when the neighbourhood solution 
space is small, the local search based algorithm may not 
find the global optimum solution, and the solution 
process may be trapped in a local optimum point. If this 
local optimum point is also the global optimum point 
and the initial settings of the loadings of the generators 
are close to this point, the global optimum solution may 
be found. In general, the chances for the algorithm to find 
the global optimum solution starting from any initial set- 
tings of loadings can be greatly increased by one of the 
three ways below. 

(i) Enlarge the neighbourhood solution space. 
(ii) Repeat executions with Merent initial settings of 

loadings. 
(iii) Assist the algorithm to Tump' out of the local 

optimum point by accepting in a limited way a solution 
in a trial having an increased value of cost. When this 
acceptance criterion is included, the algorithm becomes 
the simulated annealing based algorithm. 

The enlargement of the neighbourhood space in item (i) 
can be achieved by setting the initial control parameter 
u1 in eqn. 7 to a very large value. However, this will lead 
to the generation of a large number of unfeasible neigh- 
bourhood solutions resulting in long computing time. 
While general guidelines for the determination of the 
appropriate initial settings of loadings are not available, 
the approach in item (ii) is impractical. 

5 The simulated annealing twhnique 

The simulated annealing method E121 takes the analogy 
between the physical annealing process of solids and the 
process of solving combinatorial optimisation problems 
such as the economic dispatch problem. In physical 
annealing, when a molten particle at a very high tem- 
perature is cooled slowly, the particle can reach the state 
of thermal equilibrium at each temperature. At any tem- 
perature T, the thermal equilibrium state is characterised 
by the Boltzmann probability factor (BPF), exp( 
- EJK, T )  where E, is the energy of the configuration of 
the particle, K, is the Boltzmann's constant and T is the 
temperature. The probability of the particle having 
energy E,, P(E,) is given by 

(9) 

where the summation term is the sum of BPFs of all the 
possible states that the particle can have at temperature 
T. 

The denominator in eqn. 9 suggests the examination of 
all the possible states of the particle at temperature T. 
This is computationally equivalent to generating a large 
number of trials for the particle, as in the case of the local 
search method described previously. By checking the 
energy levels of the states of the particle against the 
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acceptance criteria in the next Section, a state will be 
accepted as the current state of the particle for the next 
temperature. The cooling process continues in the same 
manner until the temperature is sufftciently low for the 
particle to become a solid. 

5.1 Acceptance criteria 
The acceptance criteria for accepting a state of the parti- 
cle within a number of trials consist of a deterministic 
criterion and a probabilistic criterion. They are sum- 
marised below. 

(i) The state with a lower energy level will be accepted. 
(ii) The state with a higher energy level will be 

accepted in a limited way with a probability of accept- 
ance, P(A) [18]. The expression of the probability of 
acceptance adopted in the present work is 

P ( 4  = 1/(1 + exp T)) (10) 
where A is the increment in energy level between the 
current state of the particle and the state formed by a 
small random displacement of the current state. 

Metropolis [19] proposed that the acceptance of the 
new state with higher energy level is determined by com- 
paring a random number generated from a uniform dis- 
tribution on the interval between 0 and 1 with the value 
of the acceptance probability P(A). If the random number 
is less than the value of P(A), the new state is accepted as 
the current state. 

52  Cooling schedule 
The rate of cooling in the annealing process can be con- 
trolled by a number of different schedules [20]. The 
cooling schedule [12] adopted here is 

= * Tl (11) 
where k is the cooling step counter and r is a scaling 
factor less than 1. Tl is the initial temperature. 

5.3 Application to optimisation problems 
As the concept of the temperature in physical annealing 
has no equivalent in the problem being optimised [12], 
the temperature can be taken as the control parameter U 
previously described. Moreover, the cooling step counter 
k in the last Section can be regarded as the iteration 
counter k as in the local search method. 

With the above considerations, the control parameter 
in eqn. 7 and the cooling schedule in eqn. 11 are therefore 
identical and U, = TI. Replacing (K, T )  by U,, the prob- 
abilistic acceptance criterion in eqn. 10 can now be reex- 
pressed as 

P(A) = 1/(1 exP (A/%)) (12) 
The deterministic acceptance criterion (i) above is equiva- 
lent to the acceptance criterion used in the local search 
method. 

6 

From the discussion above, the simulated annealing tech- 
nique is similar to the local search method described, but 
it also has the probabilistic acceptance criterion. For the 
economic dispatch problem, the increment in energy level 
A in eqn. 12 is equivalent to the increment in fuel cost. 
Denoting the change in fuel cost by AFt, eqn. 12 becomes 

(13) 

Simulated annealing based economic dispatch 
algorithm 

P(AF,) = 1/(1 + exp (AFJuA) 
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Representing the random number uniformly distributed 
in the interval CO, 11 by random (0, 1) and based on the 
steps in the local search based algorithm, the simulated 
annealing based economic dispatch algorithm can be 
established by replacing step (iii.g.2) with the following 
step: 

If (AFt > 0) and (P(AF,) > random (0, 1)) 
p ( k . m + l )  = p ( k . m )  + p . m )  

and 

p , k . m + l )  = p' 

Otherwise 
p ( k , m + l )  = p c k . m )  

and 
E k . m + l )  = p 

6.1 Initial loadings and initial control parameter 
While the values of generator loadings may be set arbi- 
trarily at the beginning of the solution process in the 
simulated annealing based algorithm above, the initial 
settings of the loadings can be set on the basis that the 
generators share the total load demand in proportion to 
their ratings. 

The initial value of the control parameter is usually set 
to a large value so that neighbourhood solutions with 
higher costs can be accepted. Consequently, as the 
control parameter is reduced gradually from this very 
high initial value, it is possible for the solution process to 
'jump' out of many local optimum points in seeking for 
the global optimum solution. However, the control 
parameter value should not be too high as many 
unfeasible solutions will be generated in a very large 
neighbourhood space. To determine the appropriate 
initial control parameter values, the probability of accep- 
tance in eqn. 13 can be approximated by a ratio X,, such 
that 

X ,  = 1/(1 + exp (AC+/Ul)) (14) 
The ratio X, is defined as the ratio of the number of 
accepted higher cost solutions to the total number of 
higher cost solutions generated. In the above equation, 
AC+ is the average increment in cost of the higher cost 
so I u t i o n s. 

The value of X, can be obtained numerically by per- 
forming an iteration according to the simulated anneal- 
ing based algorithm prior to the actual first iteration. 
With the known value of X , ,  the value of the initial 
control parameter can then be estimated from 

(15) g1 = I A C + b  ( (WO)  - 1) I 

7 Incorporation of transmission losses 

In Step (iii.4 in the algorithm of Section 4, the loading 
level of the dependent generator is found from eqn. 6 for 
the lossless case. When transmission losses are required 
to be reflected in the algorithm, from eqn. 4, the loading 
of the dependent generator P, is given by 

P , = D -  C P i + P ,  (16) 

If the value of the total transmission loss P, is available 
from load flow studies, P, can be calculated using eqn. 16. 

i = 1  
i f ,  
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Alternatively, the network losses can be approximated 
using the B-matrix loss formula in eqn. 5 and this 
approach is adopted in the present work. 

7.1 Expression for dependent generator loading 
The transmission loss P ,  in eqn. 5 is a function of the 
loadings of aLl the generators including that of the 
dependent generator. Partitioning P, B, and Bo in eqn. 5 

where Po is the row vector of the loadings of the (n - 1) 
generators, (PI, P , ,  ..., P A  excluding P , .  B, is a 
(n - 1) x (n - 1) matrix. Bo, and B,,, are (n - 1) column 
vectors. Bra is a (n - 1) row vector. B,, Bo, and Boo are 
scalars. 

Expanding and rearranging, eqn. 17 becomes 

P ,  = aP: + bP, + c (18) 
where 

a = B,, 

b = B,m Po + Pa B, + Bo, 

c = c B , P ,  + RBo, + Boo 
From eqn. 16 

(22) 
i # r  

In the above equation, the difference between P,  and P, 
can be evaluated since the total system demand D and 
the new loadings of the (n - 1) generators formed by per- 
turbing the current solution loadings are known. Let the 
known value of the difference be denoted by P,,. There- 
fore Pd is equal to (P ,  - PJ and on using eqn. 18 it can 
be shown that 

(23) 
The loading of the dependent generator P,  can then be 
found by solving the above equation using standard alge- 
braic method. 

aP: + (b - 1)P, + (c + Pd) = 0 

8 Application example 

The developed simulated annealing based economic dis- 
patch algorithm has been implemented using the C pro- 
gramming language. The software system runs on a 
PC/486 computer. The new algorithm is applied to a test 
system having three generators. The optimum dispatch 
solution of the test system, when the load demand is 
1400MW, has previously been solved by the dynamic 
programming method with a zoom feature incorporated 
[ll]. The third-order fuel cost functions of the generators 
in the test system and the B-matrix coefficients can be 
found in Reference 11. The incremental fuel cost func- 
tions of the generators are nonmonotonic. 

In applying the new algorithm to the test system, the 
calculation of the initial generator settings is based upon 
the proportional approach described in Section 6.1. The 
initial control parameter is calculated using eqn. 15. The 
value of y is set to 0.01. The effect of enlarging the neigh- 
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bourhood solution space has been investigated by 
increasing the value of y to 0.1. The final value of the 
control parameter is chosen to be 1. The reduction rate of 
the control parameter r in eqn. 11 is 0.95 and the number 
of trials in an iteration is 1OOO. 

Table 1 summarises the dispatch solutions found by 
the new method and that by the recent dynamic pro- 
gramming method. From the Table, for scaling factor 

Table 1 : Comparison of dispatch solutions 

a Solutions from Ref. 11 

Gen Loadings Fuel cost 

MW $/h A 
1 380.2 1681.956 4.82517 
2 406.4 1843.420 4.81883 
3 676.8 3137.083 4.82366 
Total 1443.4 6642.459 
losses 43.4 

b Solutions from new algorithm 

Gen Loadings Fuel cost 

when y = 0.01 

MW $/h A 
1 359.5459 1659.018 4.82237 
2 406.7342 1844.985 4.82583 
3 677.1525 3138.656 4.82377 
Total 1443.4339 6642.657 
losses 43.4339 

C Solutions from new algorithm 
when y = 0.1 

Gen Loadings Fuel cost 

MW A 
1 376.1226 ??33.799 4.88146 
2 100.0521 397.030 8.10834 
3 986.2728 4508.675 4.85014 
Total 1462.448 6639.504 
losses 62.448 

y = 0.01, the solution obtained by the two methods are 
almost identical, and the percentage difference in costs 
determined by both is only 0.00296. However, when the 
neighbourhood solution space is enlarged by a factor of 
10 by setting y to 0.1, the dispatch solution obtained by 
the new algorithm leads to a lower cost of 6639.504 as 
compared to 6642.459 found by the dynamic pro- 
gramming method, although the transmission loss is now 
62.4475 MW instead of 43.4 MW. The loading of gener- 
ator 2 is very close to the 100 MW limit, and the loading 
of generator 3 is close to its upper limit of lo00 MW. The 
respective incremental fuel costs of these two generators 
are 7.8935 and 4.3825, and the respective values of the 
Lagrange multipliers A are 8.1083 and 4.850 as shown in 
Table 1. These results confirm that the new algorithm has 
the ability to determine the global or the near global 
optimum solution. 

Assuming that the three generators are the only gener- 
ators used to supply the range of load demands from 
450 MW to 1900 MW, the generator loadings, fuel costs 
and transmission losses in this range in steps of 50 MW 
have been determined by the new algorithm. The results 
are tabulated in Tables 2 and 3 in steps of 100 MW. 
Table 2 is for the case that the scaling factor y is set to 
0.1. Table 3 is for the case that y is set to 0.01. 

From Tables 2 and 3, solutions for the loadings, fuel 
costs and transmission losses are similar for load 
demands in the range of 450 MW to 750 MW, and in the 
range of 1450 MW to 1900 MW. This shows that a near 
global optimum solution can be determined when the 
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Table 2: DisDatch solutions with Y - 0.1 

Load Generator loadings Fuel cost Losses 
demand 

Gen 1 Gen 2 Gen 3 

MW 
500 
600 
700 
800 
900 

1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 

MW 
100.0086 
100.0597 
261.5951 
298.4908 
330.1 606 
348.1 436 
361.1 604 
381.5067 
41 4.71 76 
376.1 226 
368.031 4 
371.7842 
371.1941 

MW MW S/h 
100.001 6 306.2836 2379.9622 
100.0007 409.9377 2840.6670 
100.0081 351.5866 3307.3391 
100.3291 41 8.9266 3772.0664 
100.0245 492.8260 4239.6001 
100.7676 580.0187 471 5.2363 
100.1 61 0 674.4479 51 90.7461 
100.2550 761.6805 5672.41 36 
100.6995 836.421 6 61 60.3027 
100.0521 986.2728 6639.5043 
407.7335 776.1051 71 26.6680 
407.9640 881.7268 761 3.2847 
407.81 10 993.3748 81 01.3330 

MW 
6.2936 
9.9983 

13.1 895 
17.7465 
23.01 18 
28.9303 
35.7694 
43.4424 
51.8388 
62.4480 
51.8714 
61.4764 
72.381 2 

1800 457.5262 423.1 195 999.9993 8605.0674 80.6463 
1900 499.9968 486.9898 999.9942 91 90.2998 86.9812 

Table 3: DisDatch solutions with r = 0.01 

Load Generator loadings Fuel cost Losses 
demand 

Gen 1 Gen 2 Gen3 

MW 
500 
600 
700 
800 
900 

1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 

MW MW MW 
100.0050 100.0007 306.2873 
100.0642 100.0007 409.9324 
282.9852 100.0325 330.3979 
100.0048 397.9365 31 2.9480 
100.0024 400.8333 41 4.3950 
275.1006 399.3372 344.2293 
309.8751 400.3426 41 3.5573 
330.8108 403.5294 495.1 281 
347.6868 405.371 2 582.9395 
359.5459 406.7342 677.1 525 
367.81 81 407.5905 776.4725 
371.721 3 408.1 905 881.5497 
371.4536 407.7474 993.1 752 
457.7585 422.9009 999.9979 
499.9997 486.9839 999.9966 

MW 
is79.9546 6.2937 
2840.6648 9.9982 
3307.7041 13.41 50 
3817.3701 10.8906 
4281.3169 15.2321 
4748.3428 18.6686 
5214.6982 23.7763 
5686.0342 29.4699 
6162.1 973 35.9989 
6642.6562 43.4339 
71 26.6680 51 B825 
761 3.2842 61.4629 
81 01.3330 72.3777 
8605.0693 80.6584 
91 90.2832 86.981 5 

value of y is in the range of 0.01 to 0.1. In the range of 
800 MW to 1400 MW, however, dispatch solutions with 
lower fuel costs are found when y is 0.1. At 800 MW, the 
difference in fuel cost is 45 $,?I or 1.2%.The difference in 
cost gradually reduces to zero at 1450 MW as shown in 
Fig. 1. The difference in transmission losses, however, 
increases from 6.856 MW to 18.87 MW when the load 
demand is increased from 800 MW to 1400 MW. This is 
also shown in Fig. 1. The results of transmission losses 

power demand, M W ‘c 
U 

Fig. 1 
~ diUerena in fuel cost 
_ _ _ _  diUerence in transmission losses 

Diffiences infuer cost and transmission losses 

indicate that a more economical dispatch solution can 
lead to higher transmission losses in this range. The 
average number of iteration and computing time for the 
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solutions in Table 1 are 95 and 27.253 seconds, respec- 
tively. In this test example, the optimum dispatch solu- 
tions have been found after 6 and 20 iterations for y = 0.1 
and y = 0.01, respectively. 

9 Conclusion 

A general simulated annealing based economic dispatch 
algorithm has been developed. A method for incorpor- 
ating the effects of transmission losses into the algorithm 
based on the B-matrix loss formula has also been devel- 
oped. The ability of this algorithm to find the global or 
near global optimum solution has been demonstrated by 
a test example. The dispatch results obtained for the test 
system by the new algorithm are more economical than 
those found by the dynamic programming technique with 
a zoom feature recently reported. The advantages of the 
new algorithm are summarised below. 

(i) The solution process is independent of the fuel cost 
characteristic function of the generators. 

(ii) Its convergence property is not affected by the 
inclusion of the inequality constraints due to the oper- 
ation limits of generators. 

(iii) Exact dispatch solution to meet the load demand 
and transmission losses is guaranteed. 

(iv) The need to evaluate the Lagrange multipliers and 
penalty factors is avoided. 

(v) The computer memory requirement is low. 

The main disadvantage of the new algorithm is that the 
computing time requirement is high. However, the speed 
of the algorithm can be greatly reduced by means of 
parallel processing. This can be achieved by further 
developing the present algorithm into a form suitable for 
execution in a multiprocessor system. 
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