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Abstract

Simulated Annealing (SA) is one of the simplest and best-known meta-

heuristic method for addressing the difficult black box global optimization

problems (those whose objective function is not explicitly given and can

only be evaluated via some costly computer simulation). It is massively used

on real-life applications. The main ad- vantage of SA is its simplicity. SA

is based on an analogy with the physical annealing of materials that avoids

the drawback of the Monte-Carlo approach (which can be trapped in local

minima), thanks to an efficient Metropolis acceptance criterion. When the

evaluation of the objective-function results from complex simulation pro-

cesses manipulating a large-dimension state space involving much memory,

population-based algorithms are not applicable and SA is the right answer to

address such issues. This chapter is an introduction to the subject. It presents

the principles of local search optimization algorithms, of which simulated

annealing is an extension, and the Metropolis algorithm, a basic component

of SA. The basic SA algorithm for optimization is described together with

two theoretical aspects that are fundamental to SA: statistical equilibrium

(inspired from elementary statistical physics) and asymptotic convergence

(based on Markov chain theory). The chapter surveys the following prac-

tical issues of interest to the user that wishes to implement the SA algo-

rithm for its particular application: finite-time approximation of the theoret-

ical SA, polynomial-time cooling, Markov-chain length, stopping criteria,

and simulated-based evaluations. To illustrate these concepts, this chapter

presents the straightforward application of SA to two classical and simple
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classical NP-hard combinatorial optimization problems: the knapsack prob-

lem and the traveling salesman problem. The overall SA methodology is

then deployed in detail on a real-life application: a large-scale aircraft tra-

jectory planning problem involving nearly 30,000 flights at the European

continental scale. This exemplifies how to tackle nowadays complex prob-

lems using the simple scheme of SA by exploiting particular features of the

problem, by integrating astute computer implementation within the algo-

rithm, and by setting user-defined parameters empirically, inspired by the

SA basic theory presented in this chapter.
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1 Introduction

Simulated Annealing (SA) is one of the simplest and best-known meta-

heuristic methods for addressing the difficult black box global optimization

problems (those whose objective function is not explicitly given and can

only be evaluated via some costly computer simulation). It is massively

used in real-life applications. The expression ”simulated annealing” yields

over one million hits when searching through the Google Scholar web search

engine dedicated to the scholarly literature.

This chapter is an introduction to the subject. It is organized as follows.

The first section introduces the reader to the basics of the simulated anneal-

ing algorithm. Section 2 deals with two fundamental theoretical aspects of

SA: statistical equilibrium and asymptotic convergence. Practical issues of

interest when implementing SA are discussed in Section 3: finite-time ap-

proximation, polynomial-time cooling, Markov-chain length, stopping cri-

teria and simulation-based evaluations. Section 4 illustrates the application

of SA to two classical NP-hard combinatorial optimization problems: the

knapsack problem and the traveling salesman problem. A real-life appli-

cation, large-scale aircraft trajectory planning problem, is finally tackled in

Section 5 in order to illustrate how the particular knowledge of an applica-

tion and astute computer implementation must be integrated within SA in

order to tackle nowadays complex problems using the simple scheme of SA.

2 Basics

In the early 1980s three IBM researchers, Kirkpatrick, Gelatt and Vecchi [12],

introduced the concepts of annealing in combinatorial optimization. These

concepts are based on a strong analogy with the physical annealing of ma-

terials. This process involves bringing a solid to a low energy state after

raising its temperature. It can be summarized by the following two steps

(see Figure 1) :

• Bring the solid to a very high temperature until ”melting” of the struc-

ture;

• Cooling the solid according to a very particular temperature decreas-

ing scheme in order to reach a solid state of minimum energy.

In the liquid phase, the particles are distributed randomly. It is shown

that the minimum-energy state is reached provided that the initial tempera-

ture is sufficiently high and the cooling time is sufficiently long. If this is
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not the case, the solid will be found in a metastable state with non-minimal

energy; this is referred to as hardening, which consists in the sudden cooling

of a solid.
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Figure 1: When temperature is high, the material is in a liquid state (left). For

a hardening process, the material reaches a solid state with non-minimal energy

(metastable state; top right). In this case, the structure of the atoms has no sym-

metry. During a slow annealing process, the material reaches also a solid state but

for which atoms are organized with symmetry (crystal; bottom right).

Before describing the simulated annealing algorithm for optimization,

we need to introduce the principles of local search optimization algorithms,

of which simulated annealing is an extension.

2.1 Local search (or Monte Carlo) algorithms

These algorithms optimize the cost function by exploring the neighborhood

of the current point in the solution space.

In the next definitions we consider (S, f ) an instantiation of a combinato-

rial optimization problem (S: set of feasible solutions, f : objective function

to be minimized).

Definition 1 Let N be an application that defines for each solution i ∈ S

a subset Si ⊂ S of solutions ”close” (to be defined by the user according to

the problem of interest) to the solution i. The subset Si is called the neigh-

borhood of solution i.

In the next definitions, we consider that N is a neighborhood structure

associated to (S, f ).
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Definition 2 A generating mechanism is a mean for selecting a solution j

in any neighborhood Si of a given solution i.

A local search algorithm is an iterative algorithm that begins its search from

a feasible point, randomly drawn in the state space. A generation mecha-

nism is then successively applied in order to find a better solution (in terms

of the objective function value), by exploring the neighborhood of the cur-

rent solution. If such a solution is found, it becomes the current solution.

The algorithm ends when no improvement can be found, and the current

solution is considered as the approximate solution of the optimization prob-

lem. One can summarize the algorithm by the following pseudo-code for a

minimization problem:

Local search

1. Draw an initial solution i;

2. Generate a solution j from the neighborhood Si of the current so-

lution i;

3. If f ( j)< f (i) then j becomes the current solution;

4. If f ( j)≥ f (i) for all j ∈ Si then END;

5. Go to step 2;

Definition 3 A solution i∗ ∈ S is called a local optimum with respect to N

for (S, f ) if f (i∗)≤ f ( j) for all j ∈ Si∗ .

Definition 4 The neighborhood structure N is said to be exact if, for every

local optimum with respect to N , i∗ ∈ S, i∗ is also a global optimum of

(S, f ).

Thus, by definition, local search algorithms converge to local optima

unless one has an exact neighborhood structure. This notion of exact neigh-

borhood is theoretical because it generally leads in practice to resort to a

complete enumeration of the search space.

Intuitively, if the current solution “falls” in a subdomain over which

the objective function is convex, the algorithm remains trapped in this sub-

domain, unless the neighborhood structure associated with the generation

mechanism can reach points outside this subdomain.

In order to avoid being trapped in local minima, it is then necessary to

define a process likely to accept current state transitions that momentarily
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reduce the performance (in terms of objective) of the current solution: this

is the main principle of simulated annealing function such that.

Before describing this algorithm, it is necessary to introduce the Metropo-

lis algorithm [15] which is a basic component of SA.

2.2 Metropolis Algorithm

In 1953, three American researchers (Metropolis, Rosenbluth, and Teller [15])

developed an algorithm to simulate the physical annealing, as described in

Section 2. Their aim was to reproduce faithfully the evolution of the physi-

cal structure of a material undergoing annealing. This algorithm is based on

Monte Carlo techniques which consist in generating a sequence of states of

the solid in the following way.

Starting from an initial state i of energy Ei, a new state j of energy E j is

generated by modifying the position of one particle.

If the energy difference, Ei−E j, is positive (the new state features lower

energy), the state j becomes the new current state. If the energy difference

is less than or equal to zero, then the probability that the state j becomes the

current state is given by:

Pr{Current state = j}= e

(

Ei−E j
kb .T

)

where T represents the temperature of the solid and kB is the Boltzmann

constant (kB = 1.38×10−23 joule/Kelvin).

The acceptance criterion of the new state is called the Metropolis crite-

rion. If the cooling is carried out sufficiently slowly, the solid reaches a state

of equilibrium at each given temperature T . In the Metropolis algorithm,

this equilibrium is achieved by generating a large number of transitions at

each temperature. The thermal equilibrium is characterized by the Boltz-

mann statistical distribution. This distribution gives the probability that the

solid is in the state i of energy Ei at the temperature T :

Pr{X = i}=
1

Z(T )
e
−
(

Ei
kbT

)

where X is a random variable associated with the current state of the solid

and Z(T ) is a normalization coefficient, defined as:

Z(T ) = ∑
j∈S

e
−
(

E j
kbT

)

.
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2.3 Simulated annealing (SA) algorithm

In the SA algorithm, the Metropolis algorithm is applied to generate a se-

quence of solutions in the state space S. To do this, an analogy is made

between a multi-particle system and our optimization problem by using the

following equivalences:

• The state-space points represent the possible states of the solid;

• The function to be minimized represents the energy of the solid.

A control parameter c, acting as a temperature, is then introduced. This

parameter is expressed with the same units as the objective that is optimized.

It is also assumed that the user provides for each point of the state space,

a neighborhood and a mechanism for generating a solution in this neighbor-

hood. We then define the acceptance principle :

Definition 5 Let (S, f ) be an instantiation of a combinatorial minimization

problem, and i, j two points of the state space. The acceptance criterion

for accepting solution j from the current solution i is given by the following

probability :

Pr{ accept j}=

{

1 if f ( j)< f (i)

e

(

f (i)− f ( j)
c

)

else.

where c is the control parameter.

By analogy, the principle of generation of a neighbor corresponds to the

perturbation mechanism of the Metropolis algorithm, and the principle of

acceptance represents the Metropolis criterion.

Definition 6 A transition represents the replacement of the current solution

by a neighboring solution. This operation is carried out in two stages: gen-

eration and acceptance.

In the sequel, let ck be the value of the temperature parameter, and Lk be

the number of transitions generated at some iteration k. The principle of SA

can be summarized as follows:
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Simulated annealing

1. Initialization i := istart , k := 0, ck = c0, Lk := L0);

2. Repeat

3. For l = 0 to Lk do

• Generate a solution j from the neighborhood Si of the current

solution i;

• If f ( j)< f (i) then i := j ( j becomes the current solution);

• Else, j becomes the current solution with probability e

(

f (i)− f ( j)
ck

)

;

4. k := k+1;

5. Compute(Lk,ck);

6. Until ck ≃ 0

One of the main features of simulated annealing is its ability to accept

transitions that degrade the objective function.

At the beginning of the process, the value of the temperature ck is high,

which makes it possible to accept transitions with high objective degrada-

tion, and thereby to explore the state space thoroughly. As ck decreases,

only the transitions improving the objective, or with a low objective dete-

rioration, are accepted. Finally, when ck tends to zero, no deterioration of

the objective is accepted, and the SA algorithm behaves like a Monte Carlo

algorithm.
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3 Theory

This section addresses two theoretical aspects that are fundamental to SA:

statistical equilibrium and asymptotic convergence. More details and proofs

of the theorems cited in this section can be found in the books [1, 13].

3.1 Statistical Equilibrium

Based on the ergodicity hypothesis that a particle system can be considered

as a set having observable statistical properties, a number of useful quantities

can be deduced from the equilibrium statistical system: mean energy, energy

distribution, entropy. Moreover, if this particle set is stationary, which is

the case when the statistical equilibrium is reached, the probability density

associated with the states in the equilibrium phase depends on the energy of

the system. Indeed, in the equilibrium phase, the probability that the system

is in a given state i with an energy Ei is given by the Boltzmann law:

Theorem 1 After a sufficient number of transitions with fixed c (”control

parameter”) and using the following probability of acceptance:

Pc{accept j|Si}=

{

1 if f ( j)< f (i)

e

(

f (i)− f ( j)
c

)

else,

the simulated annealing algorithm will find a given solution i ∈ S with the

probability:

Pc{X = i}= qi(c) =
1

N0(c)
e

(

− f (i)
c

)

,

where X is the random variable representing the current state of the anneal-

ing algorithm, and N0(c) is the normalization coefficient:

N0(c) = ∑
j∈S

e

(

− f ( j)
c

)

.

Definition 7 Let A and B be two sets such that B ⊂ A. We define the charac-

teristic function of B, noted κ(B), to be the function such that for any B ⊂ A:

κ(B)(a) =

{

1 if a ∈ B

0 else.

Corolary 1 For any given solution i, we have:

lim
c→0+

Pc{X = i}= lim
c→0+

qi(c) = q∗i =
1

|Sopt |
κ(Sopt)(i),
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where Sopt represents the set of global optima, and κ is the characteristic

function.

This result guarantees the asymptotic convergence of the simulated an-

nealing algorithm towards an element of the set of global optima, provided

that the stationary distribution qi(c) is reached at each value of c.For a dis-

crete state space, such distributions are discrete and one can compute the

probability to reach one particular point xi in the state space with an objec-

tive value yi:

qi(c) =
e

(

−
yc
i
c

)

∑
j∈S

e

(

−
yc

j
c

)

The expected value of the function f to optimize at equilibrium for any

positive value of c is donoted 〈 f 〉c and the variance is donoted 〈 f 2〉c.

At a very high temperature c, the SA algorithm moves randomly in the

state space. With each point xi addressed by this process, is associated an

objective value yi by the mapping yc
i = f (xi). If we consider this process for

a long period, it is possible to build the distribution of the objective-function

values yc
i ,(i = 1,2, ...,N) generated by the SA process. This distribution de-

pends on the temperature c and will be noted q(c). For large values of c, this

distribution is equal to the objective distribution. Figure 2 gives an example

of such a distribution. The figure shows a one-dimensional objective func-

tion for which the circles represent the samples of the SA algorithm at some

high temperature c1. The dashed horizontal line shows the mean of this dis-

tribution (< f (c1)>), and on the left-hand side the associated distribution is

represented by the dashed graph (q(c1)). For a lower temperature c2, some

transitions in the SA process are not accepted, meaning that the associated

distribution q(c2) is shifted to the lower levels (squares and solid graph on

the left) with a lower expected value.

Definition 8 The entropy at equilibrium is

Hc = ∑
i∈S

qi(c)ln(qi(c)).

Corolary 2 One has:
∂ 〈 f 〉c

∂c
= σ2

c

c2

∂Sc

∂c
= σ2

c

c3

These last two expressions play an important role in statistical mechan-

ics. We also deduce the following expressions:
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Figure 2: Distribution of the objective-function values at some high temperature

c1 and at a lower temperature c2.

Corolary 3

limc→∞〈 f 〉c = 〈 f 〉∞ = 1
|S| ∑i∈S f (i) limc→0〈 f 〉c = 〈 f 〉0 = fOpt

limc→∞ σ2
c = σ2

∞ = 1
|S| ∑i∈S( f (i)−〈 f 〉∞)

2 limc→0 σ2
c = σ2

0 = 0

limc→∞ Hc = H∞ = ln(|S|) limc→0 Hc = H0 = ln(|SOpt |)

where fOpt denotes the optimal value of f . This last formula represents

the third law in thermodynamics (assuming that there is only one state of

minimum energy, we then obtain: S0 = ln(1) = 0).

In physics, the entropy measures the level of disorder associated with the

system: a high entropy value indicates a chaotic structure, while a low value

reflects organization.

In the context of optimization, the entropy is related to a measure of

the degree of optimality achieved. During the successive SA iterations, the

mathematical expectation of the objective-function value and of the entropy

only decrease and converge respectively towards fOpt and ln(|SOpt |).
The derivative of the distribution qi(c) with the temperature c is given

by the following expression:
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∂qi(c)

∂c
=

qi(c)

c2
[〈 f 〉c − f (i)]

Since 〈 f 〉c ≤ 〈 f 〉∞, one can exhibit three regimes in the simulated an-

nealing process. More precisely one can show the following:

Corolary 4 Let (S, f ) be an instantiation of a combinatorial optimization

problem with SOpt 6= S , and let qi(c) be the stationary distribution associ-

ated with the annealing process. We then have:

(i) ∀i ∈ SOpt
∂qi(c)

∂c
< 0;

(ii) ∀i 6∈ SOpt such that f (i)≥ 〈 f 〉∞ :
∂qi(c)

∂c
> 0;

(iii) ∀i 6∈ SOpt such that f (i)< 〈 f 〉∞,∃c̃i > 0 satisfying:











∂qi(c)
∂c

> 0 if c < c̃i
∂qi(c)

∂c
= 0 if c = c̃i

∂qi(c)
∂c

< 0 if c > c̃i

This corollary indicates that the probability of finding an optimal so-

lution increases monotonically when c decreases. Moreover, for any non-

optimal solution, there exists a positive value c̃i such that for c < c̃i, the

probability of finding this solution decreases as c decreases.

Definition 9 The acceptance rate associated with the simulated annealing

algorithm is defined by:

χ(c) =
Number of accepted transitions

Number of proposed transitions

As a general rule, when c has a high value, all transitions are accepted

and χ(c) is close to 1. Then, when c decreases, χ(c) decreases slowly until

reaching 0, indicating that no transitions are accepted.

By observing the evolution of 〈 f 〉c and σ2
c as a function of c, we note

that there exists a critical value called the transition threshold (denoted ct),

that delimits two distinct regions of the distribution at equilibrium. This

threshold is the value ct such that

〈 f 〉ct
≈

1

2
(< f∞ >+ fopt)

12



and
σ2

c ≈ σ2
∞ if c ≥ ct

< σ2
∞ if c < ct

For any given value of c, the search space S can therefore be partitioned into

two regions:

1. Region R1: where σ2
c remains roughly constant (close to σ2

∞) when c

decreases.

2. Region R2: where σ2
c decreases when c decreases.

When c approaches the value of ct , the acceptance rate is about 0.5 (i.e.,

χ(ct)≈ 0.5).

Furthermore, one can show:

• In R1, for large values of c, 〈 f 〉c is linear in c−1, and σ2
c is roughly

constant.

• In R2, for small values of c, 〈 f 〉c is proportional to c, and σ2
c is pro-

portional to c2

One can then propose the following approximation models for 〈 f 〉c

and σ2
c :











〈 f 〉c
∼= f< = fmin +Nt

(

〈 f 〉∞ − fmin −
σ2

∞

c

)

c
1−γc

if c ≤ ct

〈 f 〉c
∼= f> = 〈 f 〉∞ − σ2

∞

c
if c > ct















































σ2
c = σ2

< = N2
t σ2

∞

(

c
1−γc

)

if c ≤ ct

σ2
c = σ2

> = σ2
∞ if c > ct

with

ct =
2σ2

∞

〈 f 〉∞− f min
and Nt =

1−γct

ct

where, roughly speaking, γ is the first-order approximation of 〈 f 〉c. Finally,

let us introduce the specific heat, noted H(c) which is given by the following

formula:

H(c) =
d〈 f 〉c

dc
=

〈 f 〉2
c −〈 f 〉2

c

kbc2
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A large value of H(c) indicates that the material starts to become solid: in

this case, the decreasing rate of the temperature has to be reduced.

3.2 Asymptotic convergence

The simulated annealing algorithm possesses the property of stochastic con-

vergence towards a global optimum provided that it provides an infinitely-

long temperature decay diagram with infinitely-small decay steps. This de-

cay scheme is purely theoretical and one will try in practice to get closer to

this ideal while remaining within reasonable times of execution.

Definition 10 A Markov chain is a sequence of states, where the probability

of reaching a given state depends only on the previous state. Let X(k) be the

state reached at the kth iteration. Then, the probability of transition at the kth

iteration for each state pair i, j is given by Pi j(k) = Pr{X(k) = j|X(k−1) = i}.

The associated matrix [Pi j(k)] is called the transition matrix.

In the simulated annealing context, a Markov-chain transition corre-

sponds to a move in the state space (generation plus acceptance).

Definition 11 The transition probabilities of the SA algorithm are given by:

∀i, j ∈ S Pi j(k) = Pi j(ck) =

{

Gi j(ck)Ai j(ck) if i 6= j

1−∑l 6=i Pil(ck) if i = j
(1)

where Gi j(ck) denotes the probability of generating state j from state i; and

Ai j(ck) is the probability of accepting the state j generated from the state i.

For all i, j ∈ S, Ai j(ck) is given by:

Ai j(ck) = e

(

− ( f ( j)− f (i))+

ck

)

with a+ =

{

a if a > 0

0 else

Theorem 2 Let the transition probability associated with the SA algorithm

defined by (1). Suppose that the following condition is satisfied:

∀i, j ∈ S ∃p ≥ 1,∃l0, l1, ..., lp ∈ S,

with l0 = i, lp = j, and Glk,lk+1
> 0,k = 0,1, ..., p−1.

14



Then, the Markov chain has a stationary distribution, noted q(c), whose

components are given by:

qi(c) =
1

N0(c)
e

(

− f (i)
c

)

, ∀i ∈ S

where N0(c) is the normalization parameter.

Furthermore,

lim
c→0

q(c) = q ∗

with q ∗ = 1
|Sopt |

κ(Sopt)(i) i ∈ S.

Finally,

lim
c→0

lim
k→∞

Pr{Xc
k = i}q(c) = q ∗

and

lim
c→0

lim
k→∞

Pr{Xc
k ∈ Sopt}= 1,

where Xc
k denotes the kth iterate obtained at temperature c. This result in-

dicates the convergence of the simulated annealing algorithm to one of the

optimal solutions.

Generalization:

Theorem 3 Assume that the probabilities of generation and acceptance sat-

isfy the following assumptions:

(G1)∀ck > 0, ∀i, j ∈ S ∃p ≥ 1, ∃ l0, l1, ..., lp ∈ S :

l0 = i lp = j and Glklk+1
(ck)> 0 k = 0,1, .., p−1;

(G2) ∀ck > 0, ∀i, j ∈ S : Gi j(ck) = G ji(ck);

(A1) ∀ck > 0, ∀i, j,k ∈ S :

{

Ai j(ck) = 1, if f (i)≥ f ( j)
Ai j(ck) ∈]0,1[, if f (i)< f ( j)

(A2) ∀ck > 0, ∀i, j,k ∈ S with f (i)≤ f ( j)≤ f (k), Aik(ck) = Ai j(ck)A jk(ck)

(A3) ∀i, j ∈ S with f (i)< f ( j), limck→0+ Ai j(ck) = 0

Then, at any iteration k there exists a stationary distribution q(ck) whose

components are given by:

qi(ck) =
AiOpt i(ck)

∑ j∈S AiOpt j(ck)
∀ i ∈ S and iOpt ∈ SOpt .
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Moreover, for any iOpt ∈ SOpt , we have:

lim
ck→0+

qi(ck) =
1

|SOpt |
κ(SOpt)(i)

In practice, it is very hard to find acceptance distributions, other than

exponential distributions, that satisfy A1,A2,A3.

The theoretical results presented above are not directly applicable to a

practical SA algorithm since they assume an infinite number of iterations

for each value of ck, which moreover decreases continuously towards zero.

In the case where the number of iterations at each temperature step is

finite, the simulated annealing can be modeled using a Markovian inhomo-

geneous model for which similar results can be established.

The simulated annealing algorithm converges towards an optimal solu-

tion of the optimization problem but it reaches this optimum only for an

infinite number of transitions. The approximation of the asymptotic behav-

ior requires a number of iterations whose order of magnitude is equal to the

cardinality of the state space, which is unrealistic in the context of NP-hard

problems. It is therefore necessary to see the annealing as a mechanism for

approaching the global solution of a combinatorial optimization problem, to

which it will be necessary to add a local search method allowing an optimum

to be reached exactly. In other words, the simulated annealing makes it pos-

sible to move in the right attraction basin, and a local method completes the

optimization process by determining a local optimum within this basin of

attraction corresponding to a global optimum of the problem.

4 Practical issues

This section surveys the following practical issues of interest to the user

that wishes to implement the SA algorithm for its particular application:

finite-time approximation, polynomial-time cooling, Markov-chain length,

stopping criteria, and simulated-based evaluations.

4.1 Finite-Time Approximation.

In practice, the convergence conditions will be approximated by choosing,

at every iteration k, relatively small steps of decay of the parameter ck and a

sufficiently large number, Lk, of transitions at this temperature. Intuitively,

the greater the decrement, the greater the length of the stabilization steps to
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achieve a quasi-equilibrium (defined below). There is therefore a trade-off

to find between “large decrement” and “length” Lk.

A finite-time implementation of a simulated annealing algorithm can be

achieved by generating homogeneous Markov chains of finite length for a

finite decreasing sequence of values of the control parameter c.

Definition 12 A cooling process is defined by:

1. A finite sequence of values of the control parameter c, that is to say:

• An initial value c0;

• A decay function of parameter c;

• A final value for c.

2. A finite number of transitions for each value of the control parameter,

i.e. a finite length of the associated Markov chain.

Definition 13 Let ε be a sufficiently small positive value, k a given iteration

number, Lk the length of the kth Markov chain and ck the value of the control

parameter. We say that we have a quasi-equilibrium if the probability distri-

bution of the solutions after Lk iterations of the Markov chain (distribution

denoted by a(Lk,ck)) is sufficiently close to the stationary distribution q(ck):

qi(ck) =
1

N0(ck)
e
− f (i)

ck ∀ i ∈ S

N0(ck) = ∑
j∈S

e
− f ( j)

ck

That is :

||a(Lk,ck)−q(ck)||< ε

The cooling process using the quasi-equilibrium principle is based on

the following observation. When the parameter ck tends to ∞, the stationary

distribution is given by a uniform law on the set of possible solutions S:

lim
ck→∞

q(ck) =
1

|S|
~1,

where~1 is the vector of dimension |S| whose components are all one.

Thus, for ck sufficiently large, each point of the search space is visited

with the same probability and a state of quasi-equilibrium is directly reached

whatever the value of Lk. Then, the cooling process consists in determining

the value (Lk,ck) that will lead to a quasi-equilibrium at the end of each

Markov chain.
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There are many possible cooling processes but the two most common

ones are the geometric process proposed by Kirkpatrick [11, 12] and the

polynomial-time cooling proposed by Aart and Van Laarhoven [2, 3].

4.2 Geometric cooling.

• Initial Temperature This prior heating is performed so that we can

find a value of c0 large enough so that nearly all transitions are ac-

cepted at the first iterations. In order to find such a value, one starts

with a small value c0. Then; thie value is progressively multiplied by

a number greater than 1 until the acceptance rate χ(c0) is close to 1.

• Decay of the control parameter: ck+1 := αck where typically 0.8 <
α < 0.99

• Stopping criterion: One decides that the algorithm is terminated when

the current solution does not change any longer from one iteration to

the next during a sufficiently large number of iterations.

• Length of the chain: In theory, it is necessary to allow each chain to

reach a state of quasi-equilibrium. To this end, a sufficient number of

acceptable transitions must be performed, which generally depends on

the problem. Since the number of accepted transitions decrease over

time with respect to the number of proposed transitions Lk, the latter

must be lower bounded.

4.3 Cooling in polynomial time

Let us explain how the initial value of the temperature parameter can be set

and how it should then be iteratively decreased.

4.3.1 Initial temperature c0

Let m1 be the total number of transitions proposed that improves strictly the

value of objective function, and let m2 be the number of other (indreasing)

proposed transitions. Moreover, let ∆̄ f
(+)

be the average of the cost differ-

ences over all the increasing transitions. Then, the acceptance rate can be

approximated by:

χ(c)≃
m1 +m2e

−

(

∆̄ f
(+)

c

)

m1 +m2
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which yields

c ≃
∆̄ f

(+)

ln
(

m2

m2.χ(c)−m1.(1−χ(c))

) (2)

The proposed initial value of c0 is then defined as follows:

Initially c0 is set to zero. Thereafter, a sequence of m0 transitions is

generated for which the values of m1 and m2 are computed. The initial value

of c0 is then calculated from equation (2), where the value of the acceptance

rate, χ(c), is defined by the user. The final value of c0 is then taken as the

initial value in the cooling process.

4.3.2 Decay of the control parameter

The quasi-equilibrium condition is replaced by:

∀k ≥ 0 ||q(k)−q(k+1)||< ε ,

Thus, for two successive values ck and ck+1 of the control parameter, it is

desired for the stationary distributions to be close. This can be quantified by

the following formula:

∀i ∈ S
1

1+δ
<

qi(ck)

qi(ck+1)
< 1+δ , (3)

where δ is some small positive number a priori given. The following theo-

rem provides a necessary condition for satisfying equation (3).

Theorem 4 Let q(ck) be the stationary distribution of the Markov chain

associated with the simulated annealing process at iteration k, and let ck

and ck+1 be two successive values of the control parameter with ck+1 < ck,

then (3) is satisfied if:

∀i ∈ S e
∆i

(

1
ck+1

− 1
ck

)

< 1+δ , (4)

where ∆i = f (i)− fOpt .

The necessary condition (4) can be rewritten as:

∀i ∈ S ck+1 >
ck

1+ ck.ln(1+δ )
f (i)− fopt

(5)

One can show that the latter condition (5) can be approximated by:
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∀i ∈ S ck+1 >
ck

1+ ckln(1+δ )
3σck

(6)

where σck
is the standard deviation at temperature ck.

The decrement of the temperature parameter c is then determined by the

user-defined parameter δ . A large value of δ induces large decrements of c,

and small value of δ produces small decrements.

4.3.3 Length of Markov chains

In the SA cooling process, the length of the Markov chains must allow a

significant percentage of the neighborhood Si of a given solution i ∈ S to be

visited. The following theorem is used to quantify this percentage:

Theorem 5 Let S be a set of cardinality |S|. Then, the average number of

elements of S visited during a random walk with N iterations is given by:

|S|.
[

1− e
− N

|S|

]

for large N and large |S|.

Thus, if no transition is accepted and if N = |Si|, the percentage of the

search space visited in the neighborhood Si of a solution i is : 1−e−1 ≃ 2/3.

A good choice for the number of iterations of the inner loop (at temper-

ature ck) at iteration k is given by Lk = |Si| where, obviously, |Si| is problem

dependent and to be designed by the user.

4.3.4 Stopping criterion

Let ∆〈 f 〉ck
= 〈 f 〉ck

− fopt . Then, the execution of the algorithm should ter-

minate when ∆〈 f 〉ck
is ”sufficiently” small with respect to 〈 f 〉c0

. For suffi-

ciently high values of c0, we have < fc0
>≃ 〈 f 〉∞

Moreover, for ck << 1:

∆〈 f 〉ck
≃ ck

∂ 〈 f 〉ck

∂ck

The end of the algorithm is then fixed by the following condition:

ck

〈 f 〉∞

∂ 〈 f 〉ck

∂ck

< εs for ck << 1

with some small tolerance εs to be set by the user.
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4.3.5 Summary

The cooling process in polynomial time is thus parameterized by:

• The initial rate of acceptance: χ(c0)

• The distance between successive stationary distributions controlled by

the parameter σ

• The stopping criterion, controlled by the parameter δ

The number of iterations of this cooling process is bounded and can be

characterized by the following theorem:

Theorem 6 Let the decrement function given by:

ck+1 =
ck

1+αkck

where

αk =
ln(1+δ )

3σck

And let K be the first integer for which the stopping criterion is satisfied.

Then, we have K = O(ln(|S|)).

Consequently, if ln(|S|) is polynomial on the size of the problem (which

is the case for many combinatorial optimization problems), then this type of

cooling induces a polynomial execution of the algorithm.

There is an optimal annealing scheme for each problem and it is up to

the user to define which one is the most suitable for his application. When

one has no prior information about the optimal annealing scheme, which is

generally the case, one should rely on a standard geometrical scheme for

which the parameter ck evolves as follows: ck+1 := αkck, and tune empiri-

cally the parameters αk and Lk on some representative instances of the class

of problem of interest.

This geometric approach is not optimal for all problems but has the ad-

vantage of being robust and ensures convergence towards an approximate

solution, even though it requires more time to converge than it would do

with an optimal annealing scheme.
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Figure 3: Objective-function evaluation based on a simulation process

4.4 Evaluation-based simulation

In many optimization applications, the objective function is evaluated thanks

to a computer simulation process which requires a simulation environment.

In such a case, the optimization algorithm controls the vector of decision

variables, X , which are used by the simulation process in order to compute

the performance (quality), y, of such decisions, as shown on Figure 3.

In this situation, population-based algorithms may not be adapted to ad-

dress such problems, mainly when the simulation environment requires huge

amount of memory space as is often the case in nowadays real-life complex

systems. As a matter of fact, in the case of a population-based approach,

the simulation environment has to be duplicated for each individual of the

population of solutions, which may require an excessive amount of memory.

In order to avoid this drawback, one may think about having only one simu-

lation environment which could be used each time a point in the population

has to be evaluated as follows. In order to evaluate one population, one first

consider the first individual. Then, the simulation environment is initiated

and the simulation associated to the first individual is run. The associated

performance is then transferred to the optimization algorithm. After that, the

second individual is evaluated, but the simulation environment must be first

cleared from the events of the first simulation. The simulation is then run for

the second individual, and so on until the last individual of the population is

evaluated. In this case the memory space is not an issue anymore, but the

evaluation time may be excessive and the overall process too slow, due to

the fact that the simulation environment is reset at each evaluation.

In the standard simulated annealing algorithm, a copy of a state space

point is requested for each proposed transition. In fact, a point ~X j is gen-
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Figure 4: Optimization of the generation process. In this figure, the state space is

built with a vector of decision for which the generation process consist in changing

only one decision (di) in the current solution. If this generation, is not accepted,

this component of the solution recovers its former value. The only information to

be stored is the integer i and the real number di.

erated from the current point ~Xi through a copy in the memory of the com-

puter. In the case of state spaces of large dimension, the simple process of

implementing such a copy may be inefficient and may reduce drastically the

performance of simulated annealing. In such a case, it is much more efficient

to consider a come back operator, which cancels the effect of a generation.

Let G be the generation operator which transform a point from ~Xi to ~X j:

G
~Xi → ~X j

the comeback operator is the inverse, G−1
i , of the generation operator.

Usually, such a generation modifies only one component of the current

solution. In this case, the vector ~Xi can be modified without being duplicated.

According to the value obtained when evaluating this new point, two options

may be considered:

1. the new solution is accepted and, in this case, only the current objective-

function value is updated.

2. else, the come back operator G−1 is applied to the current position in

the state space in order to come back to the previous solution before

the generation, again without any duplication in the memory.

This process is summarized in Figure 4.
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The come back operator has to be used carefully because it can easely

generate undesired distorsions in the way the algorithm searches the sate

space. For example, if some secondary evaluation variables are used and

modified for computing the overall evaluation, such variables must also re-

cover their initial value, and the come back operator must therefore ensure

the coherence of the state space.
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5 Illustrative applications

In this section we will see how simulated annealing can be applied to two

classical NP-hard combinatorial optimization problems: the knapsack prob-

lem and the traveling salesman problem.

5.1 Knapsack problem

The knapsack problem can be defined as follows. Given a set of items, each

with a weight and a value, and given a capacity, determine the number of

each item to include in a collection so that the associated total weight is less

than or equal to the capacity, and so that the total value is as large as possible.

The knapsack problem derives its name from the problem faced by someone

who is constrained by a fixed-size knapsack and must fill it with the most

valuable items.

This problem often arises as a subproblem in resource allocation appli-

cations where there are financial constraints, such as:

• Cargo loading (truck, boat, cargo aircraft)

• Satellite channel assignment

• Portfolio optimization

Let us consider that we have n objects that have to be put in a bag with

a weight limit noted P. Each object i has a value vi and a weight wi. In

this section, we will consider the binary version of the knapsack problem

for which we must decide whether we choose an object or not (no possi-

bility to embark multiple copies of the same item). Before presenting the

application of simulated annealing to such a problem, one must first present

a mathematical model for this optimization problem.

5.1.1 Mathematical Model

As for any real optimization problem to be solved, the modeling step is

critical and has to be done carefully. It models the state space by defining the

decision variables, and it expresses the objective function and the constraint

functions in terms of the decision variables and the given data.

In the knapsack problem, the decision variables can be summarized by

a binary vector x of size n for which a zero component in position i means

that we leave object i, and a one means that we put object i in the bag.

For a given vector x it is quite easy to compute the associated objective

function value:
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f (x) =
n

∑
i=1

vixi

where xi is the ith component of the vector x. This represents the value of

the bag, which has to be maximized.

If there were not weight limit, there would be no optimization problem

in the sense that one has to put all the object in the bag in order to maximize

its associated value (x = [1,1,1,1, ...,1]T ).

The weight limitation renders the problem combinatorial. This weight

limit gives the main constraint of this problem. It is modeled by the formula:

n

∑
i=1

wi.xi.≤ P.

Then, one must add the binary constraints:

xi ∈ {0,1}, for i = 1,2, . . . ,n

The overall model is then

max f (x) =
n

∑
i=1

vixi

s.t.
n

∑
i=1

pixi ≤ P

xi ∈ {0,1}, i = 1,2, . . . ,n

This problem is easy to formulate but hard to solve due to the associated

combinatorics. For n objects, the number of potential solutions to consider

is 2n which grows very rapidly with n:

n 2n

10 1.024 103

20 1.048 106

30 1.073 109

40 1.099 1012

50 1.125 1015

60 1.152 1018

70 1.180 1021

80 1.208 1024

90 1.237 1027

100 1.267 1030
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For large instances of the knapsack problem, one can consider applying

metaheuristics like simulated annealing.

5.1.2 Simulated Annealing Implementation

For the knapsack problem, each solution is encoded as a binary vector, X .

From a point Xi we generate a neighbor X j by randomly flipping one

component of Xi, as shown on Figure 5 where the kth component is chosen.

X i1 1 1 0 0 0 01 1 1

1 1 1 0 0 01 1 11

k

X j

Figure 5: In this example, with n = 10, the sixth position has been randomly

selected in order to include the sixth object in the bag.

In the unconstrained optimization context of SA, a classical relaxation

can be considered to take into account the capacity constraint. Basically,

a term is added in the objective function to penalize the violation of this

constraint. Here, we compute the weight excess ∆ when the weight of the

items in the knapsack exceeds its capacity:

∆ = min(0,(
n

∑
i=1

wixi)−P)

and the objective function value is then penalized by subtracting from it µ ∆
P

,

where µ is a penalty parameter to be set by the user.

In order to test the simulated annealing algorithm on this problem, we

first build an instance of the problem by randomly generating 100 objects

for which the weights have also been selected randomly between 1 and 100

with a uniform probability density function. For this instance, the capacity

of the bag is set to P = 2000. We choose µ = 1 for the penalty parameter and

we apply the basic SA algorithm with the initial temperature set to a value

of c0 such that χ(c) = 0.8, a geometric cooling schedule with α = 0.995,

and Lk = 1,000 for every iteration k. The algorithm is stopped when the

temperature reaches co

1,000
.
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We propose as initial solution a uniformly-distributed random binary

vector. The evolution of the penalized objective function with the number

of iterations is shown in Figure 6, and the associated evolution of the total

weight and the value of the knapsack is shown in Figure 7. At the beginning

of the optimization process, the SA explores the solution space by accept-

ing solutions that yield low value of the penalized objective function. This

leads to high excess weight and high total value. The value of the penal-

ized objective function increases as the algorithm converges to the optimal

solution. Since the excess weight is high at the beginning, the solution is

improved mainly by removing weight from the knapsack, therefore the total

weight and total value decrease. As the excess weight reaches zero, the so-

lution must be improved by decreasing weight (therefore more item can be

taken) and also increase the value of each taken item. Therefore, the total

value increases until it reaches the maximum value.
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Figure 6: Evolution of the penalized objective function with iterations

5.2 Traveling Salesman Problem

The traveling salesman problem (TSP) asks the following question: “Given

a list of n cities, among which an origin city, and the distances between

each pair of cities, what is the shortest possible route that visits each city

exactly once and returns to the origin city?” This is again an important

NP-hard combinatorial optimization problem, particularly in the fields of
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operations research and theoretical computer science. The problem was first

formulated in 1930 and is one of the most intensively-studied problems in

discrete optimization.

Let us consider a set of n cities where each city i has coordinates (xi,yi), i=
1,2, . . . ,n.

As for the knapsack problem, a mathematical model is first presented.

5.2.1 Mathematical Model

In this case, each point X of the state space, has to represent a potential

permutation in the order we visit the n cities. For simplicity, we consider the

following initial solution using the lexicographic order:

X0 = 1 2 3 4 ... n

The objective function evaluation consists in computing the length f of

the tour corresponding to any vector X :

f (X) =
n−1

∑
i=1

d(Xi,Xi+1)+d(XN ,X1)

where, Xi is the ith element of X . If Xi = k and Xi+1 = l, the inter-city distance

is:

d(Xi,Xi+1) =
√

(xl − xk)2 +(yl − yk)2
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Note that the last term, d(XN ,X1), in the above definition of f represents the

last segment of the tour to come back to the origin city.

The complexity associated with the traveling salesman problem is known

to be much higher than that of the knapsack problem. For a problem with

n cities, the number of potential tours to be considered is n!, which grows

with n much faster than 2n:

n 2n n!

10 1.024 103 3.628 106

20 1.048 106 2.432 1018

30 1.073 109 2.652 1032

40 1.099 1012 8.159 1047

50 1.125 1015 3.041 1064

60 1.152 1018 8.320 1081

70 1.180 1021 1.197 10100

80 1.208 1024 7.156 10118

90 1.237 1027 1.485 10138

100 1.267 1030 9.332 10157

Just to give an idea of the complexity of the problem, if one evaluation

of the objective function requests 10−9 seconds, then a naive enumeration

algorithm evaluating every possible solution would require the following

CPU time:

n 2n n! ratio n!
2n

10 1 micro second 3.6 mili seconds 3.6 103

20 1 mili second 77 years 2.3 1012

30 1 second 8.4 1015 years 2.47 1023

40 18 minutes 2.5 1031 years 7.4 1035

50 13 days 9.6 1047 years 2.7 1049

60 36 years 2.6 1047 years 7.2 1063

70 37 103 years 3.8 1083 years 1 1079

80 38 106 years 2.2 10102 years 5.9 1094

90 39 109 years 4.7 10121 years 1.2 10111

100 40 1012 years 2.9 10141 years 7.3 10127

Even if the computer power is likely to double in the next 18 months, no

need to say that it would not make such a naive algorithm practical.

5.2.2 Simulated Annealing Implementation

One of the simplest neighborhood operator for this problem consists of ran-

domly exchanging two positions in the current solution vector X (see Fig-
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ure 8). This way of manipulating points of the state space ensures that

the produced neighbor remains a permutation i.e. a tour of the n cities.

Implementing such an operator within the SA algorithm yields acceptable

X i1

X j

2 3 4 5 6 7 8 109

1 2 4 5 6 8 9 10

m n

7 3

Figure 8: A first neighborhood operator: randomly swapping two positions.

results, but the performance of the SA can really be improved by using a

neighborhood operator that exchanges all the positions between two ran-

domly chosen indices (m,n), as shown in Figure 9.

X i1

X j

2 3 4 5 6 7 8 109

1 2 5 8 9 10

m n

7 346

Figure 9: A second neighborhood operator: swapping all positions between two

randomly chosen positions (m,n).

Let us consider an instance with n = 1000 cities randomly generated in

a square subset of the plane. The straightforward SA algorithm is imple-

mented, again, with initial temperature c0 such that χ(X) = 0.8, a geometric

cooling schedule with α = 0.995, and Lk = 1,000 for every iteration. The

algorithm is stopped when the temperature reaches co

1,000
, and based on the

second neighborhood operator (Figure 9). The initial solution considered is

the tour of total distance 1.16857164.108 shown in Figure 10.

After application of the simulated annealing algorithm on this problem,

one obtains the tour displayed in Figure 11. One minute of computation on

a Unix platform with a 2.4 GHz processor and 8 GB of RAM was needed to

get the final tour of total distance 360,482.
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Figure 10: Initial tour of the TSP with n = 1,000 cities.

This is clearly not an optimal solution for this instance (there are some suboptimal

crossings) but this solution is very easily obtained via a direct application of SA.

Simulated annealing has also been applied to many combinatorial problems coming

from the industry and real-world operations. To mention just a few:

• Airline Crew Scheduling [8]

• Railway Crew Scheduling [9]

• Traveling Salesman Problem [4]

• Vehicle Routing Problem [14]

• Layout-Routing of Electronic Circuits [17]

• Large Scale Aircraft Trajectory Planing [5, 10]

• Complex portfolio problem [7]

• Graph coloring problem [6]

• High-dimensionality minimization problems [16]
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Figure 11: Final tour of the TSP with n = 1,000 cities.
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6 Large-scale aircraft trajectory planning

In this section, we present a methodology using SA to address a strategic planning of

aircraft trajectories at the European continental scale, which involves nearly 30,000 flights

per day. The goal is to separate the given set of 4D aircraft trajectories (three-dimension

space plus time) by allocating an alternative route in the three-dimension space and an

alternative departure time to each flight.

6.1 Mathematical model

Our strategic trajectory planning problem considers a set of flight plans (origin, desti-

nation, departure time) for a given day. We rely on route or departure-time allocation

to separate aircraft trajectories. In other words, for each flight, we can delay departure

and/or impose an alternative route instead of the initially-planned direct route between

the origin and the destination. This can be formulated as an optimization problem aimed

at minimizing the number of interactions between trajectories, where we count one inter-

action whenever two flights are in conflict i.e., separated at some point by less than 5 NM

(nautical miles) horizontally or 1,000 feet vertically.

Given data. A problem instance is given by:

• A set of N initial (nominal) discretized 4D (direct-route) trajectories;

• For each flight i, for i = 1,2, . . . ,N:

– The initial planned departure time: ti,0;

– The maximum allowed advance departure time shift: δ i
a < 0;

– The maximum allowed delay departure time shift: δ i
d > 0;

– The maximum allowed route length extension coefficient: 0 ≤
di ≤ 1.

– M: the number of allowed virtual waypoints to modify the route.

Decision Variables. In the time domain, one can use a departure-time shift, δi, as-

sociated with each flight i (i = 1,2, . . . ,N). Therefore, the resulting departure time of

flight i is given by ti = ti,0 + δi, In the 3D space, one can rely on a vector, wi, of virtual

waypoint locations through which flight i must go (using straight-line segments), wi :=
(w1

i ,w
2
i , . . . ,w

M
i ), i= 1, . . . ,N. Let us set the compact vector notation: δ :=(δ1,δ2, . . . ,δN),

and w := (w1,w2, . . . ,wN). Therefore, the decision variables of our route / departure-time

allocation problem can be represented by the vector: u := (δ ,w).
Constraints. The above optimization variables must satisfy the following constraints:

• Allowed departure time shift. Since it is not reasonable to delay or to

advance departure times for too long, the departure time shift, δi, is

limited to lie in the interval [δ i
a,δ

i
d ]. Common practice in airports led
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us to discretize this time interval. Given the (user-defined) time-shift

step size δs, this yields Ni
a := |δ i

a|
δs

possible advance slots, and Ni
d :=

δ i
d

δs

possible delay slots for flight i. Therefore, we define the discrete set,

∆i, of all possible departure time shifts for flight i by

∆i := {−Ni
a.δs,−(Ni

a −1).δs, . . . ,−δs,0,δs, . . . ,(N
i
d −1).δs,N

i
d .δs}.

(7)

• Maximal route length extension. The alternative trajectory to be cho-

sen increases the route length, which leads to an increase in fuel con-

sumption and flight time. Therefore, the alternative choice should be

limited for the new trajectory if it is to be accepted by the airline. Con-

sequently, the alternative trajectory for flight i must satisfy:

Li(wi)≤ (1+di), (8)

where Li(wi) denotes the normalized length (i.e., assuming that the

direct-flight path length is 1) of the alternative trajectory determined

by the waypoint vector wi.

• Allowed waypoint locations. To reduce the search space, prevent un-

desirable sharp turns, and restrain the route length extension, we bound

the possible location of each virtual waypoint. Let W m
ix and W m

iy be the

2D sets of all possible normalized longitudinal and lateral locations,

respectively, of the mth virtual waypoint for trajectory i. The (normal-

ized) longitudinal component, wm
ix, must lie in the interval:

W m
ix :=

[(

m

1+M
−bi

)

,

(

m

1+M
+bi

)]

,m = 1,2, . . . ,M (9)

where 0 ≤ bi ≤ 1 is a (user-defined) model parameter. The normalized

lateral component, wm
iy, is restricted to lie in the interval:

W m
iy := [−ai,ai], (10)

where 0 ≤ ai ≤ 1 is a (user-defined) model parameter chosen a priori

so as to satisfy (8). This yields a rectangular shape for the possible

locations of the virtual waypoint wm
i (see Figure 12).

Objective function The objective is to minimize the number of interactions between

trajectories, which correspond, roughly speaking, to situations that occur in the flight

planning phase, when more than one trajectory compete for the same space at the same

period of time. Consider for example the trajectories A, B and C in Figure 13. We define

an interaction at a trajectory point Pi,k(ui) to be the sum of all the conflicts associated
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Figure 12: Rectangular-shape sets of the possible locations of M = 2 virtual way-

points, for trajectory i.

PB,4	
  

trajectory	
  B	
  

trajectory	
  A	
  

trajectory	
  C	
  

ΦB,4	
  =	
  2	
  

protec4on	
  volume	
  

dh	
  <	
  Nh	
  

dh	
  <	
  Nh	
  

Nh
	
  

PB,1	
   PB,2	
   PB,3	
   PB,5	
   PB,6	
  
PB,7	
  

PA,1	
   PA,2	
   PA,3	
  
PA,5	
   PA,6	
   PA,7	
   PA,8	
  

PA,4	
  

PC,1	
   PC,2	
  
PC,3	
  

PC,5	
  
PC,6	
   PC,7	
  

PC,8	
  

PC,4	
  

Figure 13: Interactions, ΦB,4, at sampling point PB,4 of trajectory B.

with point Pi,k(ui), where ui the ith component of u. We further define the interaction, Φi,

associated with trajectory i, as: Φi(u) :=∑
Ki

k=1 Φi,k(u) where Ki is the number of trajectory

points obtained through some discretization of the trajectory of the ith flight. Figure 13

illustrates the case of trajectory i = B at the trajectory point PB,4. Finally, interaction

between trajectories, Φtot , for a whole traffic situation is simply defined as:

Φtot(u) :=
N

∑
i=1

Φi(u) =
N

∑
i=1

Ki

∑
k=1

Φi,k(u). (11)

The interaction minimization problem can be formulated as a mixed-integer optimiza-

tion problem, as follows:
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min
u=(δ ,w)

Φtot(u)

subject to

δi ∈ ∆i, for all i = 1,2, . . . ,N

wm
ix ∈W m

ix , for all i = 1,2, . . . ,N,m = 1,2, . . . ,M

wm
iy ∈W m

iy , for all i = 1,2, . . . ,N,m = 1,2, . . . ,M,

(P1)

where the set ∆i is defined in (7), and W m
ix and W m

iy are defined in (9) and (10), respectively.

In order to evaluate the objective function of a candidate solution, (w,δ ), one needs

to compute the interaction, Φtot , between the N aircraft trajectories. To avoid the
N(N−1)

2

time-consuming pair-wise comparisons, which is prohibitive in our large-scale application

context, we propose a 4D grid-based conflict detection scheme as illustrated in Figure 14

(see [5, 10] for further details). First, we define a four-dimensional (3D space + time)

grid (see Figure 14). The size of each cell in the x,y, and z directions is defined by the

minimum separation requirements, Nh = 5 NM and Nv = 1,000 feet. The size of the cell

in the time domain is set according to some given discretization step size, ts. To detect

conflicts, the idea is to successively put each trajectory in this grid, and then check for

conflicts only in the cells surrounding the current trajectory.
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Figure 14: Four dimension (space - time) grid.

In the SA optimization process, the computation of the objective function, Φtot(u), is

repeated many times. Therefore it must be computed as efficiently as possible. To avoid

checking interactions over all the N trajectories even when only a subset of trajectories

are modified in a new proposed solution, the interaction count is updated in a differential

manner. More precisely, we proceed as follows. First, the 4D grid is initialized with

every cell empty. Then, the initial N trajectories, corresponding to the initial value of the

decision vector, u (with all its components at zero, i.e., direct flight), are placed in the 4D

grid and the current interaction, ΦiC , associated with each trajectory, i, and the current

total interaction between trajectories, ΦtotC , are computed.
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We assume now that during the optimization process, the decision variables of l flights

are to be modified. Let Imodi f be a list of length l containing the flight indices of the l

flights. To update the value of total interaction, we first remove all the l corresponding

trajectories from the 4D grid. Therefore, the interaction associated with each trajectory

in Imodi f is set to an intermediate value Φi,inter(u) = 0, ∀i ∈ Imodi f . It should be noted

that the interaction measurement is symmetrical: if Φi j(u) denotes the contribution of

trajectory i to the interaction associated with trajectory j, then Φi j(u) = Φ ji(u). Let

Ni be a set of trajectories currently interacting with trajectory i. The interaction asso-

ciated with trajectory j ∈ Ni over all trajectories i ∈ Imodi f , is set to an intermediate value

Φ j,inter(u) = Φ j(u)−∑i∈Imodi f
Φi j(u). Thereafter, the modified trajectories corresponding

to the new decision variable values, ui, i ∈ Imodi f , are placed in the 4D grid and the interac-

tion detection procedure is performed over all trajectories i ∈ Imodi f . Then, the interaction,

Φi, associated with each trajectory i ∈ Imodi f , is computed. Again, the interaction associ-

ated with each trajectory, j, interacting with the set of modified trajectories is updated as

follows: Φ j(u)=Φ j,inter(u)+∑i∈Imodi f
Φi j(u). Finally, the total interaction between trajec-

tories is simply computed as Φtot(u) = ∑
N
i=1 Φi(u). This interaction computation method

allows us to update the value of the objective function when some trajectories are modi-

fied within a very short computation time, since we do not need to compute the change of

interaction for decisions that are not modified at the current optimization iteration.

6.2 Computational experiments with SA

The proposed methodology is tested with a continent-size air traffic instance for a full

day of air-traffic over the European airspace, consisting of N = 29,852 en-route trajec-

tories. The trajectories are sampled with a discretization step of ts = 20 seconds. The

initial trajectory set involves Φtot = 142,144 total interactions between trajectories. Fig-

ure 15 illustrates the initial trajectory points (blue dots), and the locations where the initial

interactions occur (red dots).

The initial temperature is computed by first generating 100 deteriorating transforma-

tions at random and then by evaluating the average variations, ∆Φavg, of the objective

function values. The initial temperature, c0, is then deduced from the relation: c0 = e
∆Φavg

T0 ,
where τ0 is the initial acceptance rate of degrading solutions (which will be empirically

set). In order to reach an equilibrium, a sufficient number of iterations, denoted Lk, have

to be performed at each temperature step k. In our case, we assume for simplicity pur-

poses that the number of iterations, Lk, is constant and empirically set. The temperature

is decreased following the geometrical law, ck+1 = αck, where 0 ≤ α ≤ 1 is a pre-defined

constant value.

To generate a solution in the neighborhood, we set a user-defined threshold value

of interaction, denoted Φτ , such that the trajectory of a randomly chosen flight i will
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Figure 15: Initial (direct-route) trajectory set involving one-day en-route air traffic

over the European airspace (29,852 flights) sampled with ts = 20 seconds with

initial location of interactions displayed as red color dots.

be modified only if Φi(u) ≥ Φτ , where u is the current solution. Then, for a chosen

flight, i, we introduce another user-defined parameter, Pw ≤ 1, to control the probability

of modifying the value of the ith trajectory waypoint location decision vector, wi. The

probability to modify instead the departure time is thus 1−Pw. The algorithm terminates

when the final temperature, c f , is reached, or when an interaction-free solution is found.

The parameter values chosen to specify the instance considered, and the empirically set

parameters defining the overall SA problem-solving methodology are given in Table 1.

The SA adapted to solve the strategic trajectory planning problem is implemented in

Java. We address this problem instance with an AMD Opteron 2 GHz processor with 128

Gb RAM. Numerical results obtained from the simulation are reported in Table 2. This

SA implementation yields an interaction-free solution for this continent-scale problem

instance after around 76 minutes of computation time. This is compatible with strate-

gic (several days in advance) planning application requirements in the setting of regular

airline schedules.
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Parameters defining the Parameters defining the

Problem SA

parameter value parameter value

−δ i
a = δ i

d 60 minutes Lk 3,500

δs 20 seconds τ0 0.3

di 0.12 (12 %) β 0.99

M 2 Tf (1/500).T0

ai 0.126 Pw 0.5

bi 0.067 Φτ 0.5 Φavg

Table 1: Chosen (user-defined) parameter values defining the problem and the

empirically-set (user-defined) parameter values of the resolution methodology

Numerical results value

number of iterations 497,000

avg. computation time (minutes) 76.19

avg. proportion of delayed / advanced flights 71.29%

avg. proportion of extended flights 46.23%

avg. departure time shifts (minutes) 30.14

avg. route length extensions 1.95%

Table 2: Numerical results for continent-size problem instance solved by SA (av-

erages are computed over 10 runs).
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7 Conclusion

This chapter introduced the reader to simulated annealing (SA), a global optimization

metaheuristic. The main advantage of SA is its simplicity. SA is based on an analogy with

the physical annealing of materials that avoids the drawback of the Monte-Carlo approach

(which can be trapped in local minima), thanks to an efficient Metropolis acceptance crite-

rion. When the objective function evaluations require a lot of memory space, for example

when it results from complex simulation processes that manipulate large-dimension state

space involving much memory, population-based algorithms are not applicable and sim-

ulated annealing is the right answer to address such issues. An illustration was provided

in section 6 where a large-scale complex aircraft trajectory planning problem involving

nearly 30,000 flights over Europe was addressed by exploiting particular features of the

problem and, in particular, by integrating clever implementation techniques within the al-

gorithm, and by setting user-defined parameters empirically, along the lines of the basic

SA theory.
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