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S U M M A R Y
Simulated annealing was used to invert fundamental and higher-mode Rayleigh wave dis-
persion curves simultaneously for an S-wave velocity profile. The inversion was applied to
near-surface seismic data (with a maximum depth of investigation of around 10 m) obtained
over a thick lacustrine clay sequence. The geology was described either in terms of discrete
layers or by a superposition of Chebyshev polynomials in the inversion and the contrasting
results compared. Simulated annealing allows for considerable flexibility in model definition
and parametrization and seeks a global rather than a local minimum in a misfit function. It
has the added advantage in that it can be used to determine uncertainties in inversion pa-
rameters, thereby highlighting features in an inverted profile that should be interpreted with
caution. Results show that simulated annealing works well for the inversion of multimodal
near-surface Rayleigh wave dispersion curves relative to the same inversion that employs only
the fundamental mode.

Key words: near-surface geophysics, Rayleigh wave dispersion, simulated annealing.

1 I N T R O D U C T I O N

Rayleigh waves travel along the earth–air interface and are a result
of combined P waves and vertically polarized S waves interacting
with the free surface boundary. Rayleigh waves are dispersive over
layered geologies, a property that can be exploited in geophysical
investigations. Shorter wavelengths are sensitive to the velocities
of the near-surface materials, while longer wavelengths probe the
deeper subsurface. Generally, the Rayleigh wave peak sensitivity is
to a depth of between one-third and one-half of a wavelength and
are most sensitive to shear wave velocity but also depend weakly on
the P-wave and density profiles.

Earthquake seismologists have long made use of surface waves,
especially Rayleigh waves, to investigate the P- and S-wave ve-
locity structure of the crust and upper mantle (Lay & Wallace
1995). Surface wave dispersion, however, works equally well at
smaller scales and has become an important tool for probing the
shallow subsurface in environmental (Miller et al. 1999a,b,c; Long
et al. 1999) and geotechnical engineering applications (Stokoe &
Nazarian 1985; Nazarian & Stokoe 1986).

A dispersion curve shows the velocity of the wave at each wave-
length or frequency. In layered structures, Rayleigh wave dispersion
curves are, in general, multimodal. However, most studies assume
the surface wave packet to be composed of a fundamental only, de-
spite the fact that higher Rayleigh modes often contain significant
energy. Higher modes provide information to greater depths than
the fundamental mode and improving the accuracy of an inverted
S-wave velocity profile (Xia et al. 2000). Once reliable dispersion
curves have been obtained, they must be inverted to determine the

shear wave velocity profile with depth (Xia et al. 1999; Nazarian
& Stokoe 1986). However, the Rayleigh wave velocities are related
to the velocity structure in a complex way, making the inversion of
such curves problematic.

Simulated annealing is a directed Monte Carlo inversion method
that is well suited to finding the global minimum of a non-linear
error function. Simulated annealing has recently been used to in-
vert Rayleigh wave dispersion data for crustal and upper-mantle
shear wave velocity profile using only the fundamental mode
(Martinez et al. 2000). However, in near-surface investigations
higher-order Rayleigh wave modes often contain sizeable fractions
of the overall wave energy. Incorporation of the dispersion of higher
modes improves the accuracy of the inversion process (Tokimatsu
et al. 1992; Xia et al. 2000) and for this reason are included in
the present analysis. In this paper, the non-linear simulated an-
nealing technique is tested on a known synthetic set of dispersion
curves and then applied to multimodal dispersion curves observed
in a near-surface survey. A variety of polynomial and discrete layer
representations of the geological structure are employed in the in-
version. Finally, an uncertainty analysis is carried out to highlight
the sections of the inversion where the most care must be taken in
interpretation.

2 FO R W A R D M O D E L L I N G
A N D I N V E R S E T H E O R Y

With surface wave studies, as with most other geophysical surveys,
the main objective is to gain an understanding of the physical char-
acteristics of the earth materials present at the study site. Rayleigh
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wave dispersion in an elastic medium is dependent on density, the
P- and the S-wave velocities. The strongest dependence is on the
S-wave velocity (Ewing et al. 1957; Fowler 1990). This section will
first describe the forward modelling technique used to obtain the-
oretical dispersion curves in an elastic, layered medium and then
proceed to outline the inversion technique used to obtain velocity
profiles and uncertainties in the velocities from the measured dis-
persion curves.

2.1 Rayleigh waves in a layered medium

Rayleigh waves are characterized by retrograde elliptical particle
motion at the surface. The amplitude of the wave decays exponen-
tially with depth (Ewing et al. 1957). Only a very few simple cases,
such as the homogeneous half-space and a single layer overlying a
half-space, have analytic solutions that are easily obtained. In real-
ity, however, geological structure is rarely that simple and numerical
methods for determining Rayleigh wave dispersion curves for more
complex geological models must be explored. Matrix methods are
often used to determine the eigenvalues and eigenfunctions for the
case of a vertically varying medium consisting of a set of n homoge-
neous isotropic layers overlying a homogeneous half-space (Fig. 1).
For a layered media, Rayleigh waves arise from the interference of
P and SV waves (vertically polarized shear waves) with the free
surface.

Thomson (1950) developed the original matrix method for solv-
ing this boundary value problem, later corrected by Haskell (1953).
Subsequent researchers reformulated the problem using global ma-
trices in such a way that numerical stability was improved and so-
lutions could be obtained for much higher frequencies than previ-
ously possible (Knopoff 1964; Schwab & Knopoff 1972). Reduced
δ-matrix formulations have also been derived (Watson 1970), but
can be shown to be identical to Knopoff ’s method (Schwab 1970).

Abo-Zena (1979) developed further improvements over the
method described in Schwab & Knopoff (1972) in terms of the
ability of the method to handle high frequencies. Menke (1979)
noticed that the method of Abo-Zena (1979) could be simplified
by computing only the independent matrix elements, resulting in
improvements in both speed and accuracy.

Figure 1. Diagram showing layered structure with n layers. Layers and
interfaces are numbered. Each layer has P- and S-wave velocities (α and β),
and density (ρ) and thickness (d ).

Figure 2. White and grey bands represent positive and negative values
of the dispersion function, respectively, with roots representing the various
modes at the change in shade. The solid lines represent the first four roots
(zeros) of the dispersion function. The numbers on the image to the left of
each mode indicate the mode order.

A wide variety of other techniques have been used to calculate
Rayleigh wave dispersion curves in layered media. Numerical meth-
ods such as the Runge–Kutta or the Rayleigh–Ritz variational pro-
cedure have been used (Takeuchi & Saito 1972; Wiggins 1976).
The methods thus far have all been developed for global seismology
applications but they scale to any size problem. One other method,
similar to the propagator matrix methods mentioned above, has been
employed in some geotechnical studies (Ganji et al. 1998). The stiff-
ness matrix method approaches the problem from the perspective
of dynamic loading of the soils and their response to the load (Wolf
1985; Kausel & Roesset 1981; Kausel & Peek 1982).

Menke’s version was chosen for forward modelling for this study
because matrix propagator methods are relatively easy to implement,
are well studied and because in simulated annealing inversion choos-
ing a linear model is not a necessity. The model yields a dispersion
function D(ω, c), the roots of which correspond to Rayleigh wave
dispersion curves. The bisection method, a standard root-finding al-
gorithm, was used to delineate the dispersion curves for each mode
(Press et al. 1997). An example showing the dispersion function
and the first four dispersion curve modes is displayed in Fig. 2. The
parameters used in this calculation can be found in Table 1.

2.2 The inversion of Rayleigh wave dispersion curves

Simulated annealing, a directed Monte Carlo method (Kirkpatrick
et al. 1983; Chunduru et al. 1996), was here used to perform the
inversion of the Rayleigh wave dispersion curves for the veloc-
ity structure. Simulated annealing, like other geophysical inversion

Table 1. Parameters used in calculating the dispersion curves shown
in Fig. 2 where d is the thickness of the layer, α is the P-wave velocity
β is the S-wave velocity and ρ is the density.

Layer d (m) α (m s−1) β (m s−1) ρ (g cm−3)

1 0.8 185 80 1.18
2 3.7 480 140 1.78
3 2.5 1650 140 1.78
4 ∞ 1650 1040 2.18
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procedures, seeks to minimize a misfit function E(m), where m is
the model vector, which in our particular case involves the P- and
S-wave velocity–depth profiles and the density–depth profile. The
advantage of this technique is that it is not limited to linear problems
and seeks the global rather than a local minimum in the misfit func-
tion. The definitions of the error function and the forward model
are independent of the inversion algorithm so there is freedom to
define both in whatever way best suits the problem. Furthermore, the
method allows for some estimates of uncertainty to be obtained. The
disadvantage of simulated annealing is that it can be more expensive
computationally than linearized methods.

Simulated annealing has only recently been used to find crustal
and upper-mantle velocity profiles by inverting fundamental mode
dispersion curves (Martinez et al. 2000). Most researchers have
employed linearized methods (Ganji et al. 1998; Aki & Richards
1980) or else a combination of linear and non-linear methods (Xia
et al. 1999). Roth & Holliger (1999), however, used a genetic algo-
rithm, which is another example of a directed Monte Carlo inversion
technique. They obtained both P- and S-wave velocity profiles by
inverting both fundamental mode Rayleigh and guided-wave dis-
persion curves. Simulated annealing will be applied to fundamental
and higher-order Rayleigh wave dispersion curves in this study and
guided waves will not be examined.

To understand the concept of simulated annealing, an analogy can
be drawn between the model parameters of an optimization problem
and particles in a physical system. Physical annealing occurs when
a solid is heated up until all the particles are randomly distributed
in the liquid phase. If the material is cooled slowly then it will form
a crystalline solid, whereas if it is cooled too quickly it will freeze
into an amorphous glass (a local rather than a global minimum in
energy). The probability at each temperature T that the system will
be in state i with energy Ei is

P(Ei ) = exp (−Ei/kBT )∑
j∈S exp (−E j/kBT )

, (1)

where S contains all possible particle configurations and kB is
Boltzmann’s constant. For geophysical inversions, kB is set to 1
and instead of energy the probability distribution function becomes
a function of possible sets of model parameters mi . The ‘tempera-
ture’ T takes on the dimensions of the error and can be looked upon
as a control parameter (Sen & Stoffa 1995; Ingber 1989). By semi-
randomly accepting some models that actually increase the error, the
algorithm attempts to avoid becoming trapped in local minima. At
low temperatures this reduces to a greedy algorithm, meaning that it
only accepts models that decrease the error function. Convergence
is achieved when the error or energy remains the same for several
iterations.

The Metropolis algorithm (Metropolis et al. 1953) is perhaps the
best known simulated annealing method. An outline of the basic al-
gorithm (Fig. 3) is provided in Sen & Stoffa (1995). An initial model
m0 is selected and the corresponding misfit E(m0) is determined. A
new model is drawn at random from a uniform distribution and the
misfit is found for the new model. If the misfit has improved then the
new model is always accepted. If the misfit has become larger then
the new model is accepted with the temperature-dependent probabil-
ity P = exp(−	E/T ). This process is repeated as the temperature
is gradually decreased until the misfit remains the same for a number
of iterations. The necessary and sufficient condition for convergence
to the global minimum is given by the cooling schedule

T (i) = T0

ln i
, (2)
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Figure 3. Flow chart of the operations carried out at each temperature for
the Metropolis simulated annealing algorithm.

where i is the iteration number and T0 is a sufficiently high initial
temperature (Geman & Geman 1984).

Fast simulated annealing (FSA), a variant of the Metropolis al-
gorithm, was proposed by Szu & Hartley (1987). This algorithm is
identical to the Metropolis algorithm with the exception that model
parameters are drawn from a Cauchy-like distribution instead of a
uniform distribution. A Cauchy-like distribution is given by

P(	m) ∝ T√
	m2 + T 2

. (3)

At high temperature the distribution approaches uniformity while
at lower temperatures it favours smaller perturbations (Fig. 4). For
FSA the cooling schedule should not exceed

T (i) = T0

i
, (4)

which is much faster than for conventional simulated annealing.
The forward model for Rayleigh wave dispersion being used here

(see above) represents the earth in terms of a discrete set of layers
overlying a homogeneous half-space. Each layer has its own density,
P-wave velocity and S-wave velocity. Density and P-wave velocity
both have very little impact on the dispersion curves and are taken
as a fixed parameters on the basis of additional knowledge. This
still leaves n parameters that need to be inverted for, where n is the
number of layers.

In contrast, if a smooth velocity profile is expected then α(z) and
β(z) can be alternatively represented using a sum of Chebyshev
polynomials (Arfken & Weber 1995; Grechka et al. 1996). The in-
verse problem can then be structured to solve for the coefficients of
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Figure 4. Diagram showing the shape of a Cauchy-like probability distri-
bution for temperatures of 0.1, 1, 10 and 100.

this series instead of the velocities for each layer. Now instead of
inverting for a large number of velocity parameters to approximate
a continuous medium, β(z) can be represented by only four or five
coefficients. The forward model used in this study requires a set of
discrete layers, so when evaluating the misfit function the polyno-
mial representation of the velocity profile must be discretized. To
achieve this discretization, the velocity of a given layer z is taken
as the value of the polynomial series at the centre of that layer. At
each step of the inversion the polynomial coefficients are varied, the
velocity profile is discretized and the misfit evaluated. A particu-
lar set of polynomial coefficients is accepted or rejected based on
the temperature and the misfit value in the same manner as for the
discrete case.

2.3 Initial model and misfit function

A reasonable initial model can be determined using bulk density
measurements gathered from soil coring and velocities determined
from the vertical seismic profile. According to the results of Xia
et al. (1999, 2000), a 25 per cent error in both the P-wave veloc-
ity profile and the density profile will result in an error of only
7 per cent in the S-wave velocity profile. As such, good estimates of
P-wave velocity and density values that are then held constant should
be sufficient to obtain a reasonable S-wave velocity profile.

The inverse procedure will set out to find the global minimum
of the objective function. For each mode the objective function is
defined as

E = 1

N

∑
f

(
d f

obs − d f
pred

)2
, (5)

where d f
obs is the phase velocity value at frequency f determined from

the observed data, d f
pred is the phase velocity predicted by the forward

model at frequency f and the sum is over all N frequencies. Any
mode can be inverted for separately, or the overall misfit function
can be represented by a weighted sum of objective functions from
all modes present in the data.

For multimode inversions, the weighted sum of the error func-
tions for each mode was used, eq. (5). The fundamental mode was
arbitrarily assigned a weight of 0.5 and the two higher modes were
assigned weights of 0.25 each. The rationale behind this choice was

that the fundamental mode contained more energy and was easier
to pick out than the two higher modes. With real dispersion curves
there is some ambiguity as to the veracity of assigning the second
and third modes. For example, it is possible that the curves that have
been labelled as the second and third modes might actually be the
third and fourth. To account for this ambiguity the two higher modes
were compared with the second and third ones, and the third and
fourth calculated modes at each iteration and the minimum misfit
between these two cases were accepted.

For a good choice of initial temperature, the ratio of accepted
models to rejected models after a large number of iterations at a
constant temperature should be greater than 50 per cent but less than
100 per cent. If the ratio is less than 50 per cent then the temperature
may not be high enough to escape local minima and if the initial
temperature is too high then it will take a much larger number of
iterations than necessary for the algorithm to converge.

2.4 Uncertainty estimation

Metropolis simulated annealing has properties that make it suitable
for estimating the uncertainty in the results of an inversion (Sen
& Stoffa 1995). After a large number of iterations at a constant
temperature an equilibrium distribution will be attained independent
of the starting model given by the Gibbs probability density function

pGibbs(m) = exp [−E(m)/T ]∑
m exp [−E(m)/T ]

, (6)

where E(m) is the value of the error function for the model m and
the temperature T controls the width of the distribution. The sum in
the denominator is taken over all models.

An expression for the uncertainty in the inversion results can
be developed using Bayesian statistics (Sen & Stoffa 1995). If the
errors in the theory and the data are assumed to be Gaussian, then
the posterior probability density σ (m | dobs) of model m given the
observed data dobs can be expressed as

σ (m | dobs) ∝ exp[−E(m)]pprior(m), (7)

where pprior(m) is the prior probability distribution for the model
independent of the data. Note that in this equation, E(m) is meant
to have been normalized by the data uncertainty. Comparison of
this expression with eq. (6) shows that eq. (7) is essentially the
Gibbs probability density function at temperature T = 1 if the prior
distribution is uniform. Alternately, if the uncertainty in the data is
not well known, the final temperature can be used as an estimate and
Metropolis simulated annealing run for many iterations at T = T f

should provide a good estimate of the model uncertainty (Martinez
et al. 2000). For this study an estimate of uncertainty is available
(Fig. 5d) so a temperature of T = σ̄ 2 = 5.04 m2 s−2, based on the
square of the average uncertainty in the measured phase velocities,
was used.

Metropolis simulated annealing, when it is run for a large number
of iterations, is also referred to as a Gibbs sampler. If it is run at a
temperature T of T f it may be used as a Monte Carlo importance sam-
pling technique to evaluate quantities such as the marginal posterior
probability density function, mean and covariance. The marginal
posterior probability density function can be found directly from
the frequency distribution of the model parameters. The mean can
be approximated by the following equation:

〈m〉 ∼= 1

N M

N M∑
j=1

m j , (8)
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Figure 5. (a) Stacked traces recorded on 1999 September 9 (normalized).
(b) τ–p transform of the traces, (c) f–p map of the data and (d) Rayleigh
wave dispersion curves for three modes obtained from the f–p map shown
in (c).

where m1, m2, . . . , mN M are column vectors of model parameters
chosen by the Gibbs sampler and N M is the total number of models
used. The covariance will be given by

C M
∼= 1

N M

N M∑
j=1

(m j − 〈m〉) (m j − 〈m〉)T. (9)

The standard deviations in the individual model parameters are given
by the square root of the diagonal elements of the posterior covari-
ance matrix. The mean and standard deviation values for the model
parameters will give an estimate of the uncertainty in the inverted
profile (Sen & Stoffa 1995).

Even though a large number of iterations is necessary to obtain a
well-defined posterior probability density function, our tests show
that several thousand iterations may give a reasonable estimate of the
means and standard deviations of model parameters. Uncertainty es-
timates drawn from a low number of iterations should be interpreted
with caution (Beaty 2000).

3 I N V E R S I O N R E S U L T S

The inversion method described above was tested on a data set ob-
tained at the Edmonton Research Station in Edmonton, Alberta,
Canada on 1999 September 9. The geology of the study site, as
determined though the soil coring, is shown in Table 2. Ground-
penetrating radar profiles were acquired to verify the lateral uni-
formity of the site, an assumption that was made in the forward
modelling. The site characterization is described in detail in Beaty
(2000).

One series of raw, vertical component, seismic traces from Beaty
and Schmitt (in prep.) along with windowed Rayleigh waves are
shown in Fig. 5. Dispersion curves (Fig. 5d) were obtained from
Rayleigh wave data using a method involving first a Radon or
intercept–slowness (τ–p) transform (Fig. 5b) followed by a 1-D
Fourier transform along the τ direction (McMechan & Yedlin 1981).
The frequency–slowness or f–p map (Fig. 5c) shows three high-
amplitude regions corresponding to three Rayleigh wave modes.
Dispersion curves (Fig. 5d) for each mode are then derived by choos-
ing the peaks of the high-amplitude regions and taking the inverse
of the slowness to obtain the phase velocity. The error in the dis-
persion picks is estimated using a bootstrapping technique (Efron
& Tibishirani 1993).

Inversions were carried out first on a set of synthetic dispersion
curves (Fig. 6) using a simple layered profile that was based loosely
on the velocity and density information for the Edmonton Research
Station obtained from the vertical seismic profile (VSP) profile and
soil core measurements (see below). The object of this inversion
of synthetic dispersion curves was to determine the accuracy with
which the shear wave profile could be determined with depth and to
test out the discretization scheme. This resolution information can
later be related to the expected resolution of the inversion profiles
from the observed dispersion curves.

Inversions on the real data were carried out using several different
means of parametrizing the shear wave velocity model. Sums of
either five or seven Chebyshev polynomials represented the velocity
model as a smooth profile in the first test and a series of discrete
layers was used in the second test. Sources of error in the inversion

Table 2. Geology of the study site as determined from core samples.

Depth Range Thickness Geology

0–0.3 m 0.3 m Black top soil
0.3–1.5 m 1.2 m Grey, brown clay-like soil
1.5–6.7 m 5.2 m Lacustrine deposits
6.7–8.5 m 1.8 m Wet, sandy and silty clay
8.5–10+ m 1.5+ m Compacted glacial tills
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Figure 6. (a) Inversion results using 21 independent layers to represent
the theoretical shear wave velocity profile. White and grey bands represent
positive and negative values of the dispersion function, respectively. The solid
lines represent the roots (zeros) of the dispersion function. The data used in
the inversion are plotted as asterisks. These are test data generated using the
parameters in Table 1. (b) The shear wave velocity profile (solid line) shown
in the left-hand panel is the result of an inversion where 21 independent
layers were used to represent the profile. The shaded area represents the
velocity range within one standard deviation from the mean. The dashed
line delineates the shear wave profile used to generate the synthetic data.
The P-wave (middle) and density (right) profiles were held constant.

results include inaccuracies in receiver placement, in the P-wave and
density profiles assumed for the inversion, and in the assumption that
the geology is a set of homogeneous and isotropic layers.

Geotechnical engineering studies typically use 60–70 dispersion
points from a single mode to invert for 10–15 layers. The number
of points available for the fundamental mode dispersion curve falls
within this range but the total number of points used in the present
inversions is greater (167) as the additional phase velocities from
the second and third modes are also employed.

A maximum depth of resolution for a Rayleigh wave dispersion
survey is typically estimated as 0.5 to 1 λmax (Rix & Leipski 1991).
The September 9 data have a maximum wavelength of 40 m near
10 Hz. Preliminary results here show instability in resolving depths
greater than ∼12 m and this was chosen as the top of the infinite
half-space for this study. Clearly, there are limitations to this simple
generalization but it is a useful first approximation.

Conversely, the minimum thickness that can be resolved immedi-
ately at the surface is expected to be half of the minimum wavelength
recorded (Stokoe et al. 1994). This corresponds to a layer thickness
of ∼0.7 m for this survey. Thinner layers, however, will be used
in the discretization of the profile because these rules of thumb

were developed for surveys where only one mode was considered,
whereas in this study all three modes will be used in the inversions.
The discretization of the model parameters was chosen as follows:
thicknesses of 0.25 m down to 1.5 m, then 0.5 m thicknesses down
to 5 m and 1 m down to 12 m for a total of 21 layers. This last
layer is taken as an infinite half-space extending downwards from
12 m. This discretization scheme was adopted for the inversion of
the synthetic and the experimental data.

3.1 Synthetic test example

Inversions were carried out first on a simple test profile with a ve-
locity and density structure (Fig. 6) similar to that of the Edmonton
Research Station site as determined by the vertical borehole seismic
profile (Beaty & Schmitt, in prep.) and the soil bulk density mea-
surements. Hypothetical dispersion curves (Fig. 6) were calculated
from the profiles and the inversion was carried out by inverting for
the shear wave velocities for each of the 21 layers used in the dis-
cretization scheme. No noise was added to the hypothetical curves.

The theoretical dispersion curves found through the inversion
match very closely, but not exactly, with the synthetic dispersion
curves (Fig. 6). Certainly the theoretical curves are within the ex-
perimental error of the observed data at the Edmonton Research
Station. The dispersion curves are calculated to a specified toler-
ance that has been set to ±1 m s−1, also within the experimental
error of the surveys. The velocity profile found through inversion,
however, does not match very well with the true profile below a depth
of ∼7 m (Fig. 6). Uncertainty analysis, carried out using 2480 it-
erations of Metropolis SA at T = 1 (assumes the average σ of the
data is around 1 m s−1), reveals that the velocities of layers at 8 m
and below can only be resolved very coarsely. Standard deviations
in this region are of the order of 400–500 m s−1. The discrepancy
between the velocity of the layer between 7 and 8 m found through
inversion and that of the true profile is outside of the error region
found through the uncertainty analysis. This is an indication that at a
depth of 7 m given a similar velocity profile, the depth to a transition
can be resolved only to ±1 m.

Agreement of the inverted parameters to the true profile is much
better in the first 7 m. There are small fluctuations that are approxi-
mately 8 or 9 m s−1 (10–11 per cent) from the true S-wave velocity
in the topmost layer and from 1 to 53 m s−1 (1–38 per cent) in the
region from 0.75 to 7 m. The uncertainty analysis in this region has
underestimated the error in most of these velocities in this region,
a phenomenon that could be related to the small number of itera-
tions used in the importance sampling. The uncertainty in depth, the
lower resolution of the deeper layers, and the level of underestima-
tion in the uncertainty of the upper layers should all be taken into
consideration when interpreting the inversion profiles from the real
data.

3.2 Inversion of experimental data

Inversions were carried out on the data obtained on 1999 Sept-
ember 9. The starting model was chosen by fitting Chebyshev poly-
nomials to the P- and S-wave velocity profiles determined from the
VSP survey and to the bulk density measurements made on the soil
cores (Beaty 2000). The theoretical dispersion curves generated us-
ing these data provide a marginal fit to the fundamental mode (not
shown) but the phase velocities are too low in general and the shape
of the curve is not the same in the low-frequency region. The fit
of the model to the second and third modes is much worse. The
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second and third mode data tend towards the theoretical second and
third modes at low frequencies and towards the third and fourth
modes at higher frequencies. The layers were discretized according
to the 21-layer scheme mentioned earlier. Choosing an initial model
that is close to the best-fitting solution is much more important for
other inversion methods than for simulated annealing but starting
close to the solution may allow the simulated annealing inversion to
converge more quickly.

In the first attempt, five Chebyshev coefficients represented the
shear wave velocity profile. A very good match between the ob-
served data and the theoretical dispersion curves is obtained (Fig. 7).
Small discrepancies exist in the region between 30 and 60 Hz for
the fundamental mode and at the low-frequency end of the third
mode (below 35 Hz). The reason for this latter discrepancy will be
revisited later in this discussion.

The shear wave velocity profile found through this inversion is
displayed in Fig. 7 along with the P-wave velocity and density pro-

Figure 7. Results of inversion on observed dispersion curves. (a) Inversion
results using five Chebyshev polynomials to represent the shear wave ve-
locity profile. White and grey bands represent positive and negative values,
respectively. The solid lines represent the roots of the dispersion function to
be compared against the observed dispersive velocities from Fig. 5 plotted
as asterisks. (b) The shear wave velocity profile shown in the left-hand panel
is the result of an inversion where five Chebyshev polynomials were used to
represent the profile (solid line). The shaded area shows one standard devi-
ation about the mean (solid line) found through importance sampling. The
dashed line is the S-wave profile obtained from the VSP survey. The P-wave
(middle) and density (right) profiles were held constant. Both are plotted as
smooth Chebyshev profiles. In practice these profiles are discretized in the
same manner as the S-wave profile—the polynomial representation is eval-
uated at the centre of each of the layers and that value is used to represent
the parameter value for that layer.

files that were held constant. The resultant S-wave velocity profile
shows slightly higher velocities at the surface followed by a slight
decrease and then a gradual increase in velocity to a maximum of
∼650 m s−1.

Uncertainty runs on the Chebyshev profile yielded almost no
variation in the polynomial coefficients and was thus not a good
estimator of uncertainty in the S-wave velocity profile. Instead, the
Chebyshev profiles obtained through inversion were discretized. The
uncertainty analysis was carried out on the discretized profiles to
gather information on the mean and standard deviation of the S-
wave velocities of each layer rather than the Chebyshev parameters.

The uncertainty analysis shows that the upper part of the pro-
file has little uncertainty associated with it, except for the topmost
layer. The mean values and higher standard deviations in the section
from 7 to 10 m suggest that a faster transition occurs with depth to
higher velocities than allowed by the polynomial parametrization in
agreement with the known transition from clay to compacted till.
Below 10 m the uncertainty increases drastically, indicating a lack
of sensitivity of the data for these deeper layers. The sensitivity to
deeper layers could be improved by placing more weight on the mis-
fit of the lower-frequency information but the most reliable way to
deal with this problem in practice would be to use detectors capable
of detecting lower frequencies. The geophones used in this survey
provide adequate sensitivity only down to ∼10 Hz.

A similar inversion was attempted using seven Chebyshev coef-
ficients to represent the S-wave velocity profile. For this inversion
an additional parameter, the P- to S-wave velocity ratio, α/β, was
allowed to vary in order to allow variations in the P-wave veloc-
ity profile without the addition of too many parameters. The use of
additional polynomials in the inversion makes it possible to image
more rapid geological variations. The misfit curve for this inversion
is shown in Fig. 8. The match between the observed and theoretical
dispersion curves (Fig. 8) is better than in the five-polynomial case
at the low-frequency end, especially for the third mode. At the high-
frequency end, however, it is slightly worse for the fundamental and
second modes. This may indicate that representation of the P-wave
velocity profile by a single factor coupling it to the S-wave velocities
may not be a good representation. The uncertainty estimates show
that the resolution down to ∼5 m is very good and then it abruptly
deteriorates. The uncertainty in the P-wave profile shows that only
a very narrow range of P- to S-wave velocity ratios will fit the data
well for the inverted S-wave velocity profile. The value of the α/β

parameter was found to be 1.68 ± 0.03.
The inversion of the September 9 data set was also carried out

by inverting directly for the shear wave velocities for 21 layers.
The match of the theoretical curve to the observed dispersion curve
(Fig. 9) is better than for either of the Chebyshev polynomial inver-
sions. This shear wave velocity profile does not show the increased
velocity in the topmost layer as the Chebyshev profiles suggested
(Figs 7 and 8). The profile is almost constant down to 4.5 m when
there is a slight increase in velocity followed by a much larger jump
at 8 m. The uncertainties in the velocities down to 7 m are quite small
(<25 m s−1). Note that in the top layer the velocity uncertainty is
higher (±57 m s−1). Below 7 m uncertainties increase substantially,
suggesting that care should be taken in interpreting S-wave veloci-
ties in this region.

Manipulation of the S-wave velocity profile showed that if the
velocity was increased in the layer between 7 and 8 m then the match
between the theoretical and observed dispersion curves for the third
mode deteriorates at frequencies below 35 Hz relative to the five
Chebyshev coefficients case. This suggests that there is a sharper
increase in velocity at this point than the polynomials are capable
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Figure 8. (a) Inversion results using seven Chebyshev polynomials to rep-
resent the shear wave velocity profile and a multiplicative factor to represent
the P-wave profile. White and grey bands represent positive and negative
values, respectively. The solid lines represent the roots of the dispersion
function and the data are plotted as asterisks. (b) The shear wave velocity
profile shown in the left-hand panel is the result of an inversion where seven
Chebyshev polynomials were used to represent the profile. The shaded re-
gion represents the range found through the importance sampling technique.
The dashed line is the S-wave profile obtained from the VSP survey. The P-
wave profile (middle) was calculated by multiplying the shear wave velocity
profile by a constant and the density profile (right) was held constant.

of representing. The velocity profile shown in Fig. 9 is probably the
closest to the true profile but the exact value of the S-wave velocity
below 8 m has a large error associated with it. The error in the depth
to the top of this higher-velocity layer could be as much as ±1 m,
as indicated by the synthetic example.

This profile corresponds well with the geological profile deter-
mined from soil core analysis (Table 2). The thin layer of top soil
(0.3 m thick) is probably too thin to be resolved. The velocity profile
down to ∼4.5 m is close to a constant velocity. This region contains
soils mixed with clay followed by pure clay. The slightly higher ve-
locities from 4.5 to 7 m might be because of the increasing pressure
on the clays or the presence of water, but the change is very small
and may not be significant. Between 7 and 8 m there is again a
slight increase in velocity where the layer of wet sand was found
in the soil core. Below 8 m (±1 m) there is strong evidence for a
sharp velocity change corresponding to the top of the glacial tills,
which is at a depth of 8.5 m according to an analysis of the soil core
samples.

All of the inversions presented thus far have employed all three
modes. For comparison, the 21-layer inversion procedure was re-

Figure 9. (a) Inversion results using 21 independent layers to represent
the shear wave velocity profile. White and grey bands represent positive
and negative values, respectively. The solid lines represent the roots of the
dispersion function and the data are plotted as asterisks. (b) The shear wave
velocity profile shown in the left-hand panel is the result of an inversion
where 21 independent layers were used to represent the profile. The shaded
area shows one standard deviation about the mean (solid line) found through
importance sampling. The dashed line is the S-wave profile obtained from
the VSP survey. The P-wave (middle) and density (right) profiles were held
constant.

run based on the fundamental mode data only. The results (Fig. 10)
show excellent agreement between the fundamental mode theoreti-
cal dispersion curve and the data, but it is clear that the result shown
does not match either of the higher-order modes and the S-wave
velocity–depth profile does not match the geology or the VSP re-
sults and the three-mode inversion (Fig. 9). An uncertainty analysis
was not performed on these inversion results.

4 C O N C L U S I O N S

In this study, simulated annealing has been used to invert multimode
Rayleigh wave dispersion data for S-wave velocity–depth profiles.
The incorporation of multiple modes into the inversion process of-
fers significant improvement over inversions using only fundamental
modes in near-surface studies where significant energy is carried by
the higher modes. Profiles found using multiple modes are better
resolved, have smaller uncertainties and are much more reliable.

Inversion of the three Rayleigh mode dispersion curves using
a fast simulated annealing algorithm (Sen & Stoffa 1995) cou-
pled with a matrix propagator forward modelling technique (Menke
1979) yields S-wave velocity profiles that agree well with geological
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Figure 10. (a) Inversion results using 21 independent layers to represent
the shear wave velocity profile but using only the fundamental mode disper-
sion curve in the inversion process. White and grey bands represent positive
and negative values, respectively. The solid lines represent the roots of the
dispersion function and the data are plotted as asterisks. All of the disper-
sion curves are included for comparison even though only the fundamental
mode was used in the inversion. Note that although a reasonable fit to the
fundamental mode is obtained, the higher-order dispersion curves shown do
not fit the dispersion data at all. (b) The shear wave velocity profile (solid
line) shown in the left-hand panel is the result of an inversion where 21 inde-
pendent layers were used to represent the profile. Uncertainty analysis was
not carried out in this case. The dashed line is the S-wave profile obtained
from the VSP survey. The P-wave (middle) and density (right) profiles were
held constant.

information. Resolution of the inverted velocity profiles is excellent
(uncertainty <25 m s−1) down to a depth of ∼7 m, after which the
uncertainty increases to ∼500 m s−1 for a velocity of slightly less
than 1000 m s−1.

The inversions carried out using Chebyshev polynomials to rep-
resent the velocity profiles tend to run in shorter time and to be more
stable than profiles represented by a set of discrete independent lay-
ers. The inversion in which the velocity of each of the layers has
been allowed to vary independently, however, produces a smaller
misfit overall. This suggests that the true velocity transition near
8 m depth is more rapid than that allowed by the Chebyshev pro-
files. This sharp change is consistent with the lithological boundary
between the clay lacustrine deposits and the underlying stiff glacial
tills.

Simulated annealing has proven to be quite useful for determining
velocity profiles from dispersion curve data but is computationally
quite expensive. There are several other methods of inversion that
may be worthy of examination for future work in this area. The varia-

tional method (Takeuchi & Saito 1972; Aki & Richards 1980) offers
a linearization of the problem that is more accurate than finding par-
tial derivatives of the dispersion curve using numerical techniques
(Novotný 1976). Perhaps a hedgehog-type method, as suggested by
Kennett (1976) would provide the best compromise between linear
and non-linear inversion techniques.∗

Future areas of research that should be considered include de-
signing a survey better able to examine attenuative properties, in-
corporating attenuation into the forward modelling and inversion
algorithms, and expanding the knowledge base on near-surface
properties with complimentary laboratory studies dealing with the
effects of saturation state on materials. Also, the use of lower-
frequency geophones would increase the depth of investigation,
while a shear wave source could be used to improve the generation
of Love waves that could be employed in conjunction with Rayleigh
waves to improve the reliability of the inverted shear wave velocity
profiles.
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