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Abstract 

This paper deals with the economic optimization of reinforced concrete walls, 
portal and box frame structures typically used in road construction. It shows the 
efficiency of heuristic optimization by the simulated annealing algorithm. The 
evaluation of solutions follows the Spanish Code for structural concrete. Stress 
resultants and envelopes of framed structures are computed by an external finite 
element program. Design loads are in accordance with the national IAP Code for 
road bridges.  The algorithm is first applied to RC retaining walls with 26 
continuous design variables of geometry, materials and reinforcement. Results 
on this topic show the importance of limiting the deflection of walls.  No 
restriction leads to slender solutions with deflections of up to 1/40 the height of 
the wall. Such elements are unfeasible and, hence, a limitation of 1/150 of the 
height is adopted for the design of these structures. The second structure 
analysed is a 10 m horizontal span RC portal frame. This example has 28 
discrete variables, 5 geometrical, 3 types of concrete and 20 types of 
reinforcement bars of fixed length. The evaluation module includes the limit 
states that are commonly checked in design: flexure, shear, deflections, etc. 
Results of this research are again quite slender, i.e. a slab of 0.375 m (1/26.67 
slab/span ratio), not complying with the rarely checked fatigue of concrete. The 
last type of structure analysed is a 13 m horizontal span RC box road frame. This 
example has 44 discrete variables, 2 geometrical, 2 types of concrete and 40 
reinforcement bars and bar lengths. The evaluation module includes fatigue plus 
other limit states. Results are now reasonably slender, i.e. a slab of 0.65 m (1/20 
slab/span ratio).  Finally, run times indicate that heuristic optimization is a 
forthcoming option for the design of real RC structures. 
Keywords: economic optimization, heuristics, concrete structures, structural 
design. 
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1 Introduction 

Present design of economic concrete structures is much conditioned by the 
experience of structural engineers. Most procedures are based on the adoption of 
cross-section dimensions and material grades based on sanctioned common 
practice. Once the structure is defined, it follows the analysis of stress resultants 
and the computation of passive and active reinforcement that satisfy the limit 
states prescribed by concrete codes.  Should the dimensions or material grades be 
insufficient, the structure is redefined on a trial and error basis. Such process 
leads to safe designs, but the economy of the concrete structures is, therefore, 
very much linked to the experience of the structural designer. 
     The methods of structural optimization may be classified into two broad 
groups: exact methods and heuristic methods. The exact methods are the 
traditional approach. They are based on the calculation of optimal solutions 
following iterative techniques of linear programming [1,2]. The second main 
group are the heuristic methods, whose recent development is linked to the 
evolution of artificial intelligence procedures. This group includes a broad 
number of search algorithms [3-6], such as genetic algorithms, simulated 
annealing, threshold accepting, tabu search, ant colonies, etc. These methods 
have been successful in areas different to structural engineering [7]. They consist 
of simple algorithms, but require a great computational effort, since they include 
a large number of iterations in which the objective function is evaluated and the 
structural restrictions are checked. Among the first works of heuristic 
optimization applied to structures, the contributions of Jenkins [8-9] and of 
Rajeev and Krishnamoorthy [10] in 1991-1992 are to be mentioned. Both 
authors applied genetic algorithms to the optimization of the weight of steel 
structures. As regards RC structures, early applications in 1997 include the work 
of Coello et al [11], who applied genetic algorithms to the economic 
optimization of RC beams. Recently, there have been a number of RC 
applications [12-15], which optimize RC beams and building frames by genetic 
algorithms. 
     The structures which are the object of this work are walls, portal frames and 
box frames which are usually built of RC in road construction. RC earth 
retaining walls are generally designed with a thickness at the base of 1/10 of the 
height of the wall and a footing width of 0.50-0.70 of the height of the wall. Box 
and portal frames are used with spans between 3.00 and 20.00 m for solving the 
intersection of transverse hydraulic or traffic courses with the main upper road. 
Box frames are preferred when there is a low bearing strength terrain or when 
there is a risk of scour due to flooding. The depth of the top and bottom slab is 
typically designed between 1/10 to 1/15 of the horizontal free span; and the 
depth of the walls is typically designed between 1/12 of the vertical free span 
and the depth of the slabs. Frames are calculated to sustain the traffic and earth 
loads prescribed by the codes and have to satisfy all of the limit states required as 
an RC structure. The method followed in this work has consisted first in the 
development of evaluation computer modules where dimensions, materials and 
steel reinforcement have been taken as variables. These modules compute the 
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cost of a solution and check all the relevant limit states. Simulated annealing is 
then used to search the solution space. 

2 Simulated annealing optimization procedure 

The problem of structural concrete optimization that is put forward in the present  
work consists of an economic optimization. It deals with the minimization of the 
objective function F of expression (1), satisfying also the restrictions of 
expressions (2). 
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Note that the objective function in expression (1) is the sum of unit prizes 
multiplied by the measurements of construction units (concrete, steel, formwork, 
etc). And that the restrictions in expression (2) are all the service and ultimate 
limit states that the structure has to satisfy. Unit prizes considered are given in 
Table 1. 

Table 1:  Basic prizes of the cost function of the reported structures. 

Unit Cost (€) 
kg of steel (B-500S) 0.583  
m2 of lower slab formwork 18.030  
m2 of wall formwork 18.631  
m2 of upper slab formwork 30.652  
m3 of scaffolding 6.010 
m3 of lower slab concrete (labour) 5.409 
m3 of wall concrete (labour) 9.015 
m3 of upper slab concrete (labour) 7.212 
m3 of concrete pump rent 6.010 
m3 of concrete HA-25 48.244 
m3 of concrete HA-30 49.379 
m3 of concrete HA-35 53.899 
m3 of concrete HA-40 58.995 
m3 of concrete HA-45 63.803 
m3 of concrete HA-50 68.612 
m3 of earth removal  3.005 
m3 of earth fill-in 4.808 

 
     The search method used in this work is the simulated annealing (SA 
henceforth), that was originally proposed by Kirkpatrick et al. [16] for the design 
of electronic circuits. The SA algorithm is based on the analogy of crystal 
formation from masses melted at high temperature and let cool slowly. At high 
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temperatures, configurations of greater energy than previous ones may randomly 
form, but, as the mass cools, the probability of higher energy configurations 
forming decreases. The process is governed by Boltzmann expression           
exp(-∆E/T), where ∆E is the increment of energy of the new configuration and T 
is the temperature. The algorithm starts with a feasible solution randomly 
generated and a high initial temperature. The initial working solution is changed 
by a small random move of the values of the variables. The new current solution 
is evaluated in terms of cost. Greater cost solutions are accepted when a 0 to 1 
random number is smaller than the expression exp(-∆E/T), where ∆E is the cost 
increment and T is the current temperature. The current solution is then checked 
against structural restrictions and if it is feasible, it is adopted as the new 
working solution.  The initial temperature is decreased geometrically (T=kT) by 
means of a coefficient of cooling k. A number of iterations called Markov chains 
are allowed at each step of temperature. The algorithm stops when the 
temperature is a small percentage of the initial temperature (typically 1%). The 
SA method is capable of surpassing local optima at high-medium temperatures 
and gradually converges as the temperature reduces to zero. The SA method 
requires calibration of the initial temperature, the length of the Markov chains 
and the cooling coefficient. Adopted values for the three examples of this work 
will be given below. The initial temperature was adjusted following the method 
proposed by Medina [17], which consists in choosing an initial value and 
checking whether the percentage of acceptances of higher energy solutions is 
between 10-30 percent. If the percentage is greater than 30%, the initial 
temperature is halved; and if it is smaller than 10%, the initial temperature is 
doubled. Computer runs were performed 9 times so as to obtain minimum, mean 
and standard deviation of the random results. 

3 Case study 1: earth retaining RC walls 

The first example studied relates to earth retaining RC cantilever walls used in 
road construction [18,19]. Fig.1 shows the 26 variables considered in this 
analysis. They include 4 geometrical variables (the thickness of the stem and 3 
dimensions for the footing), 4 concrete and steel grades (stem and footing) and 
18 variables for the definition of steel reinforcement, which includes both areas 
of reinforcement and bar lengths. Variables are continuous except for material 
grades which are discrete. A total of 17 parameters are considered for the 
complete definition of the problem, the most relevant of which are the total 
height of the wall H (stem plus footing), the top slope of the fill and the acting 
top uniform distributed load, the internal friction angle of the fill φ, the 
permissible ground stress and the partial coefficients of safety. Structural 
restrictions considered followed a standard analysis by Calavera [20], that 
includes checks against sliding, overturning, ground stresses and service-ultimate 
limit states of flexural and shear of different cross-sections of the wall and the 
footing. A vertical inclination of φ degrees of the earth pressure was considered. 
Additionally, a restriction of deflection at the top of 1/150 of the height of the 
stem was also considered. 
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Figure 1: Variables of earth retaining walls for case study 1. 

 

 

Figure 2: Typical cost evolution of SA algorithm. 

     The simulated annealing algorithm was programmed in Visual Basic 6.3 with 
an Excel input/output interface. Typical runs were 21 minutes in a Pentium IV of 
2.41 GHz. The calibration of the SA recommended Markov chains of 1000 
iterations and a cooling coefficient of 0.80. As regards the type of moves, the 
most efficient move found consisted of random variation of 16 of the 26 
variables. Fig. 2 shows a typical cost evolution by the SA algorithm. Table 2 
details the results of the SA analysis for a wall of 7.00 m of total height and a 
0.30 MPa permissible stress of the ground (additional parameters are 5.80 m of 
top to bottom level difference; fill horizontal at the top with no surface load; 
specific weight of the fill 18 kN/m3; internal friction angle of the fill of 30 
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degrees; ground friction resistance 0.577; partial safety coefficients for sliding, 
overturning and structural of 1.50, 1.80 and 1.50 respectively; partial coefficients 
of 1.50 and 1.15 for concrete and steel as materials). Table 2 shows results for 
this wall with and without a check on deflections, and it also lists the reference 
values taken from the collection of walls by Calavera [20]. Results indicate that 
the inclusion of a limit on deflections of 1/150 of the height of the stem is 
crucial, since otherwise the slenderness of the stem goes up to 1/24.27 and 
deflections are as high as 163 mm (1/40 of the height of the stem). Should the 
top deflection be limited to 1/150, the slenderness goes down to 1/10.59, which 
is quite similar to the standard 1/10 adopted in practice by many practitioners. In 
terms of cost, the SA results improve by 6.06% the cost of the reference wall and 
it amounts a total cost of 750.42 euros/m. 

Table 2:  Summary of best wall for case study 1 (total height 7.00 m). 

Permissible stress = 0.3 N/mm2 
Variable Reference Deflections 

unrestricted  
Deflections 

limited 
b 0.25-0.70 m 0.265 m 0.607 m 
p 0.75 m 0.833 m 0.770 m 
t 1.70 m 1.248 m 0.900 m 
c 0.70 m 0.568 m 0.605 m 

fck,ste 25 35 30 
fck,foo 25 25 25 
fyk,ste 500 500 500 
fyk,foo 500 500 500 
A1 7.70 cm2 6.946 cm2 11.442 cm2 
A2 7.70 cm2 29.602 cm2 1.431 cm2 
A3 0 26.730 cm2 10.332 cm2 
A4 4.35 cm2 1.000 cm2 1.149 cm2 
A5 3.74 cm2 3.400 cm2 6.552 cm2 
A6 7.73 cm2 5.661 cm2 13.120 cm2 
A7 0 0 0 
A8 13.40 cm2 16.837 cm2 16.958 cm2 
A9 10.05 cm2 1.000 cm2 17.013 cm2 
A10 0 19.549 cm2 1.000 cm2 
A11 0 1.447 cm2 1.000 cm2 
A12 3.74-1.67 cm2 (low-up) 3.955 cm2 8.776 cm2 
A13 0 0 0 
L1 2.18 m 2.954  m 0.849  m 
L2 0 0.852 m 0.834 m 
L3 0 0 0 
L4 0 1.248 m 0.745 m 
L5 0 0.568 m 0.689 m 
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4 Case study 2: road portal RC frames 

The second example studied relates to portal RC frames used in road 
construction [21,22]. Fig. 3 shows the 28 variables considered in this analysis. 
Variables include 5 geometrical values: the depth of the walls, the depth of the 
top slab and the footing, plus 2 dimensions for the size of the base of the footing; 
3 different grades of concrete for the 3 types of elements; and 20 types of 
reinforcement bars following a standard setup. All variables are discrete in this 
analysis. The total number of parameters is 16, the most important of which are 
the horizontal free span, the vertical free span, the earth cover, the permissible 
bearing stress and the partial coefficients of safety. Structural restrictions 
considered followed standard provisions for Spanish design of this type of 
structure  [23,24], that include checks of the service and ultimate limit states of 
flexure and shear for the stress envelopes due to the traffic loads and the earth 
fill. Traffic loads considered are a uniform distributed load of 4 kN/m2 and a 
heavy vehicle of 600 kN. Stress resultants and reactions were calculated by an 
external finite element program using a 2-D mesh with 30 bars and 31 sections 
(out of plane bending moments had to be assumed as a practical one fifth  
proportion of in plane bending moments). Deflections were limited to 1/250 of 
the free span for the quasi-permanent combination. Fatigue of concrete and steel 
was not considered since this ultimate limit state is rarely checked in road 
structures. 
 

 

Figure 3: Variables of the RC portal frame for case study 2. 
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     The SA algorithm was programmed in Visual Basic 6.3. Typical runs were 
10.76 hours in an AMD Athlon processor of 1.49 GHz. In this case, the 
calibration recommended Markov chains of 375 iterations and a cooling 
coefficient of 0.70, the total amount of iterations being about 7500. The most 
efficient move found consisted of random variation of 4 of the 28 variables of 
the problem. Table 3 details the main results of the SA analysis for a portal 
frame of 10.00 m of horizontal free span, 6.00 m of vertical free span and 0.10 m 
of asphalt cover (additional parameters are 0.25 MPa permissible bearing stress, 
specific weight of the fill of 20 kN/m3, 30 degrees internal friction angle of the 
fill and partial safety coefficients of 1.60 for loading and 1.50-1.15 for concrete-
steel as materials). The depth of the top slab is only 0.375 m for the 10.00 m 
span, which means a very slender span/depth ratio of 26.67.  The cost of this 
solution is 2619 euros/m. This best solution was then checked by hand 
calculations against fatigue of structural concrete. The loading considered was a 
468 kN heavy vehicle prescribed for fatigue by the Spanish loading code for 
bridges [24]. It was found that the solution did not comply with Eurocode 2 
limitations for fatigue [25]. Hence, it was concluded that this rarely checked 
ULS should be included in future works of optimization dealing with road 
structures. 

Table 3:  Summary of best portal frame for case study 2. 

Geometric variables 
h 0.375 m 
b 0.400 m 
c 0.400 m 
p 0.950 m 
t 0.750 m 

Concrete grades 
upper slab HA-25 
wall HA-25 
foundation HA-25 

Reinforcement 
A1 15ø12/m 
A2 10ø20/m 
A6 12.06 cm2/m 
A7 15ø12/m 
A8 8ø16/m 
A9 12ø8/m 
A15 10ø16/m 
A16 12ø10/m 
A20 9.05 cm2/m 

5 Case study 3: road box RC frames 
The last example studied relates to box RC frames used in road construction 
[26,27]. Fig. 4 shows the 44 variables considered in this analysis. Variables 
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include 2 geometrical values: the depth of the walls and slabs; 2 different grades 
of concrete for the 2 types of elements; and 40 types of reinforcement bars and 
bar lengths following a standard setup. All variables are again discrete in this 
analysis. The most important parameters are the horizontal free span, the vertical 
free span, the earth cover, the ballast coefficient of the bearing and the partial 
coefficients of safety. Structural restrictions considered followed standard 
provisions similar to those of portal frames. However, this time the ULS of 
fatigue was included following the conclusions for case study 2. Stress resultants 
and reactions were calculated by an external finite element program using a 2-D 
mesh with 40 bars and 40 sections. 
 

 

Figure 4: Variables of the RC box frame for case study 3. 

     The SA algorithm was programmed this time in Compaq Visual Fortran 
Professional 6.6.0. Typical runs reduced to 47 minutes in a Pentium IV of 2.4 
GHz. In this case, the calibration recommended Markov chains of 500 iterations 
and a cooling coefficient of 0.90. The most efficient move found was random 
variation of 9 variables of the 44 of the problem. Fig. 5 details the main results of 
the SA analysis for a box frame of 13.00 m of horizontal free span, 6.17 m of 
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vertical free span and 1.50 m of earth cover (additional parameters are 10 MN/m3 
ballast coefficient, specific weight of the fill of 20 kN/m3, 30 degrees internal 
friction angle of the fill and partial safety coefficients of 1.50 for loading and 
1.50-1.15 for concrete-steel as materials). The cost of this solution is 4478 
euros/m. The depth of the slabs is 0.65 m of C30 (30 MPa of characteristic 
strength), which represents a slender span/depth ratio of 20. And the depth of the 
wall is 0.50 m in C45, which represents a vertical span/depth ratio of 12.34. The 
overall ratio of reinforcement in the top slab is 160 kg/m3. It may, hence, be 
concluded that results of the optimization search tend to slender and highly 
reinforced structural box frames. As regards deflections and fatigue limit states, 
their inclusion has shown to be crucial. Neglecting both limit states leads to a 
7.9% more economical solution, but obviously unsafe. It is important to note that 
fatigue checks are usually considered in railways designs but, on the other hand, 
they are commonly neglected in road structures design and, as it has been shown, 
this may lead to unsafe designs. 
 

 

Figure 5: Optimized design of RC box frame for case study 3. 

6 Conclusions 

From the above work, the following conclusions may be derived: 
- The study of earth retaining walls optimization shows that the inclusion of a 
limit of 1/150 on the deflection of the top of the walls is needed. Otherwise, 
results of  the SA optimization are excessively deformable. 
- Results of the optimization of portal road frames indicated the need of 
including the rarely checked ULS of fatigue in the list of structural restrictions 
for the optimization of road structures. 
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- The study of road box frames shows the importance of the inclusion of the SLS 
of deflections and the ULS of fatigue. The SA optimization of the 13 m free 
horizontal span box frame results in a slender and highly reinforced  top slab. 
- As regards the SA procedure, it has proved an efficient search algorithm for the 
3 case studies of walls, portal and box frames used in road construction.  
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