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SIMULATED ANNEALING: SEARCHING FOR AN OPTIMAL
TEMPERATURE SCHEDULE∗

HARRY COHN† AND MARK FIELDING†

SIAM J. OPTIM. c© 1999 Society for Industrial and Applied Mathematics
Vol. 9, No. 3, pp. 779–802

Abstract. A sizable part of the theoretical literature on simulated annealing deals with a
property called convergence, which asserts that the simulated annealing chain is in the set of global
minimum states of the objective function with probability tending to 1. However, in practice, the
convergent algorithms are considered too slow, whereas a number of nonconvergent ones are usually
preferred. We attempt a detailed analysis of various temperature schedules. Examples will be given
of when it is both practically and theoretically justified to use boiling, fixed temperature, or even
fast cooling schedules which have a small probability of reaching global minima. Applications to
traveling salesman problems of various sizes are also given.

Key words. simulated annealing, temperature, cooling, Markov chain, convergence, inhomoge-
neous chain, fundamental matrix, time to absorption

AMS subject classifications. 60J05, 60K35

PII. S1052623497329683

1. Introduction and summary. Suppose that a function f is defined on a
finite (but large) set of states S. The aim of simulated annealing (SA) is to find a
state x such that f(x) = miny∈S f(y). Because, for some large S, such an aim is not
in general feasible in a reasonable time frame, we may confine ourselves to finding a
near optimal x, i.e., a state x for which f(x) is close to miny∈S f(y).

For each state x in S, define a set N(x), called the set of neighbors of x. Write
N for the family of neighborhoods {N(x), x ∈ S}.

A neighbor choosing matrix G with entries G(x, y) is defined for each x and y in
S such that G(x, y) > 0 if and only if y ∈ N(x). The matrix G is called a generation
matrix.

Define

PT (x, y) =

{
G(x, y) exp(−[f(y)− f(x)]+/T ) if y 6= x,
1−∑z 6=x PT (x, z) if y = x,

with a+ = max(a, 0).

The parameter T is called temperature. Write Pn for the transition probability
corresponding to T = Tn, where Tn is the temperature at time n. The sequence {Tn}
is called a temperature schedule. If limn→∞ Tn = 0 we say that {Tn} is a cooling
schedule; we say it is a fixed temperature schedule if Tn = T for all n.

An initial probability distribution and the sequence of one-step transition proba-
bilities {Pn} define an inhomogeneous Markov chain {Xn}. This chain will be called
an SA chain. The SA chain is the basis of the SA algorithm. It originates from an
idea that goes back to the paper by Metropolis et al. [24] and was followed up by
many other contributors (see, e.g., Aarts and van Laarhoven [2], Aarts and Korst [3],
Chiang and Chow [5], Connolly [9], Connors and Kumar [10], Gelfand and Mitter [11],
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Geman and Geman [12], Hajek [15], Hwang and Sheu [16], Romeo and Sangiovanni-
Vincentelli [28]). Recently, Niemiro and Pokarowski [26] and Niemiro [27] have clar-
ified the asymptotic behavior of the SA chain by relating it to the theory of the tail
events (see Cohn [6], [7], [8]).

Write P (m,n)(x, y) = P (Xn = y|Xm = x) for m < n. We shall say that y is
reachable from x if there exist an integer p and states x = x0, x1, x2, . . . , xp = y such
that xk+1 ∈ N(xk) for 0 ≤ k < p. It is easy to see that if y is reachable from x then
there must be a number p such that P (m,m+p)(x, y) > 0 for any m.

We assume that (S,N ) is irreducible, i.e., that any state x is reachable from any
state y.

We shall say that state y is reachable at height h from state x if h is the small-
est number such that x = y and f(x) ≤ h or if there is a sequence of states
x = x0, x1, . . . , xp = y for some p ≥ 1 such that xk+1 ∈ N(xk) for 0 ≤ k < p
and f(xk) ≤ h for 0 ≤ k ≤ p.

State x is said to be a local minimum if no state y with f(y) < f(x) is reachable
from x at height f(x). The depth of x, d(x), is defined to be ∞ if x is a global
minimum; otherwise it is the smallest number h, h > 0, such that some y with
f(y) < f(x) can be reached from x at height f(x) + h.

We assume that y is reachable from x at height h if and only if x is reachable
from y at height h. This assumption is called weak reversibility.

Write S∗ for the global minimum set of states, i.e., the set of states x with
f(x) = miny∈S f(y). We say that the SA chain (or algorithm) is convergent if

lim
n→∞P (Xn ∈ S∗) = 1.(1.1)

Hajek [15] identified the smallest value of c for which an SA chain with cooling
schedule of the form

Tn =
c

log(n+ n0)

is convergent. (Here n0 is a positive integer.) It was proved in [15] that the SA
algorithm is convergent if and only if c ≥ d∗, where d∗ is the largest depth of the local
minima, which are not global minima.

Thus Tn = d∗/ log(n + n0) gives the fastest logarithmic-type cooling schedule
leading to convergence. Such a cooling schedule is called canonical, and d∗ is said
to be the canonical constant. It is important to stress that it would be wrong to
assume that a canonical cooling schedule necessarily reaches global minimum faster
than other schedules.

A convergent chain obtains optimality in the long run even if we adopt a memo-
ryless algorithm, i.e., an algorithm that does not recall the past values of the chain.
An algorithm that stores the best solution of all iterations will be called a memory
algorithm.

The aim of this paper is to study the behavior of the SA algorithm in terms of
temperature schedules. It turns out that the key critical points for the limit behavior
of the SA chain occur in the range of logarithmic cooling schedules. We shall describe
a number of optimality criteria corresponding to various situations. Then we study
some theoretical properties of algorithms that are used in practice. It turns out that
there is no theoretical reason why some temperature schedules that are attached to
nonconvergent SA chains should be overruled. Examples are given to illustrate each
case.
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2. Which optimality? An algorithm needs to specify a stopping rule (time),
i.e., a time when the process is terminated and a decision is adopted. This stopping
rule, denoted by τ , may or may not depend on the values taken by the chain up to the
stopping time and may be random. It is also a function of the temperature schedule
and other parameters of the algorithm as well as the optimality criterion adopted for
the problem.

It is usually assumed that an optimal (near optimal) algorithm is one that
(i) with probability 1 reaches the global (near global) minimum in finite time,

and
(ii) is faster than other algorithms.
Both desiderata need to be qualified. It will turn out that (i) may have a different

meaning for memoryless algorithms than for those with memory. Besides, we shall
further see that (i) may be done away with if we consider multiple run algorithms.
As far as (ii) is concerned, there are a number of principles for optimality based on τ ,
the most common one being searching for the algorithm that attains the minimum of
E(τ). However, such a criterion would exclude algorithms with P (τ = ∞) > 0. The
choice of the algorithm and the corresponding optimality criterion may be problem
dependent. A discussion of various criteria of optimality follows.

2.1. Convergent algorithms. A convergent chain, defined by (1.1), ensures
that the global minimum is eventually reached if a sufficiently large number of iter-
ations is allowed. If convergence fails for a cooling schedule {Tn}, there is a positive
probability that the SA chain will never reach a global minimum state (see Hajek
[15]). Some authors seem to assume that convergence is a necessary property of a
successful algorithm. As previously mentioned, the canonical schedule, despite being
the fastest tending to 0, is not necessarily optimal, i.e., the fastest in reaching a global
minimum.

In fact, convergence is not a necessary attribute of a successful algorithm either.
It may be necessary in relation to a memoryless algorithm. For memory algorithms,
there is no a priori reason for a cooling schedule with property (1.1) to be preferred
to temperature schedules that do not satisfy (1.1).

By the same token, one should not a priori eliminate convergent algorithms from
the search of optimal schedules.

2.2. Regular algorithms. For memory algorithms, (2.1) is replaced by the less
restrictive requirement that S∗ be reached with probability 1. In such a case, a
criterion for optimality should depend only on how early S∗ is reached.

Suppose that, for any given temperature schedule {Tn}, we define the stopping
time τ to be the first n such that Xn hits S∗. An algorithm for which

P (τ <∞) = 1(2.1)

is said to be regular and defective otherwise.
For memory algorithms, τ is the variable that should be optimized. The relevant

sequence of random variables is {min(f(X1), . . . , f(Xn))}, and (2.1) is equivalent to

lim
n→∞P (min(f(X1), . . . , f(Xn)) = min

x∈S
f(x)) = 1.(2.2)

Obviously (2.2), or equivalently (2.1), is a convergence property, and it is easy to see
that it holds for a much larger class of temperature schedules than the ones satisfying
(1.1). For example, all the chains corresponding to fixed temperature schedules satisfy
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it, as they are ergodic Markov chains with stationary transition probabilities. It is well
known that for such chains all states are recurrent and (2.1) holds. On the other hand,
if {πx} is the stationary probability distribution, then limn→∞ P (Xn = x) = πx > 0
for all x and therefore

lim
n→∞P (Xn ∈ S∗) = 1−

∑
x/∈S∗

πx < 1,

so that (1.1) fails.
We shall see later an example where it may be optimal to boil, i.e., to let Tn tend

to∞. This case corresponds to a Markov chain with stationary transition probabilities
given by the generation matrix.

We shall show that there are problems where a fixed optimal temperature may
be identified.

For regular algorithms, a criterion for τ∗ to be optimal is

E(τ∗) = min
τ∈T

E(τ),

where T is the class of stopping times attached to all temperature schedules. This
criterion is often used in operations research.

A number of papers have pointed out the potential usefulness of memory algo-
rithms (see, e.g., Kirkpatrick [20], Gelfand and Mitter [11] for cooling schedules and
Connolly [9] for a fixed temperature algorithm).

We shall study the properties of τ for fixed temperature schedules in a later
section.

2.3. Defective algorithms. It may seem natural to consider optimality with
respect to the class of all temperature schedules defining a regular algorithm. However,
a closer examination does not justify such a criterion. We also need to consider
temperature schedules that may correspond to defective algorithms, even if P (τ <∞)
is not even close to 1. In fact, such algorithms are the ones mostly used in practice.

Suppose that we want to allow for a fixed number of iterations N and choose the
algorithm that performs the best within N iterations.

Consider the case when the numbers N and p are suitably chosen such that, for
a stopping time τ corresponding to some temperature schedule,

P (τ ≤ N) ≥ p.
Define T to be the class of all regular and defective τ , where τ is the first hitting time
of S∗ (or near optimal states). An optimality criterion for such a case will be satisfied
by a stopping time τ∗ in T such that

P (τ∗ ≤ N) = sup
τ∈T

P (τ ≤ N).

In fact, we may achieve a property close to (2.2) in terms of some number, say k,

of independent runs of size N. Indeed, if {X(i)
n , n = 1, . . . ,N} is the ith run with

i = 1, . . . , k, then

P

(
min

i∈{1,...,k}
min

(
f
(
X

(i)
1

)
, . . . , f

(
X

(i)
N

))
= min

x∈S
f(x)

)
≥ 1− (1− p)k.(2.3)

By suitably choosing k such that the right-hand side of (2.3) is as large as desired,
and adopting the stopping rule τN = min (τ,N), we may ensure both the quality of
the algorithm and a limitation on the number of iterations.
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2.4. Near optimality. If optimality requires too many iterations, near optimal-
ity may be a suitable alternative. The latter is in fact the case with most algorithms
used in practice. In fact, many feasible algorithms will only provide a near optimal
solution.

In some cases, getting a near minimum, say, within two percent of the global min-
imum, can be achieved with a drastic reduction in the number of iterations required
for finding a global minimum state. An improvement from two percent to, say, one
percent may result in a huge increase in the number of iterations, which is not always
practical.

3. Fixed temperature schedules. If a simulated annealing chain is run with a
fixed temperature, then, under minor conditions on the generation matrix, the “best
state so far” will, with probability 1, ultimately become a global minimum, and the
expected time and variance of the time until reaching a global minimum will be finite.
This follows from the classical theory of finite Markov chains.

We will see that for some small and medium-size problems, the fixed temperature
schedules seem to work better than the simulated algorithms based on a cooling
schedule.

Define a Markov chain {X∗n} with one absorbing state representing the states of
S∗ lumped together. The states outside S∗, as well as the transition probabilities
among themselves, remain unchanged. Clearly, the first time the chain {X∗n} reaches
S∗ is a stopping time, say, τ . Such a case is well known in the theory of Markov
chains (see, e.g., Kemeny and Snell [18, Theorem 3.5.3]). Denote by Q the transition
matrix corresponding to the states outside S∗. The matrix N = (I −Q)−1 is called
fundamental. The square matrix I, called identity matrix, has the diagonal entries
equal to 1 and is 0 elsewhere. Let A be an arbitrary finite matrix. The matrix Asq
is formed from A by squaring all entries. We denote by ξ a column matrix having all
components equal to 1.

The following result is extracted from Theorem 3.5.4 of [18].
Theorem 3.1. (i) The ith component of Nξ is the mean number of steps needed

to reach S∗ given that the chain starts in i.
(ii) The ith component of (2N − I)Nξ − (Nξ)sq is the variance of the same

function.

3.1. An optimal boiling schedule example. In Hajek [15], a small problem
instance, shown here as Figure 3.1, is given for SA consisting of 26 states. The chain is
used by Hajek to illustrate convergent schedules. Ironically, it turns out that boiling
to ∞ is the optimal temperature schedule.

Shown is the neighborhood structure as well as the cost associated with each state.
The states have been numbered arbitrarily to give the state space S = {1, 2, . . . , 26} .
The relationship y ∈ N(x) is represented by an arrow from x to y. So the set
of neighbors of state 9, for example, is N(9) = {8, 10, 13} , and for state 3, we get
N(3) = {2} .

There are six local minima, states 1, 2, 10, 12, 17, and 26, and the set of global
minima is S∗ = {1, 2, 26} . It is easy to check that this chain is weakly reversible.

We shall assume that the generation matrix is given by G(x, y) = 1/|N(x)| for
all x ∈ S and y ∈ N(y).

We note that this example is only trivial in size. It does, however, allow us to
examine the application of Markov chain theory to SA in a way not plausible for
practical problems. That is the explicit examination of the transition matrix. It may
also raise interesting questions about the behavior of SA in real-life problems.
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Fig. 3.1. A 26-state example given in Hajek [15].

Table 3.1
Performance of fixed temperature schedules for a 26-state SA chain. Mean and standard devi-

ation of time to hitting a global minimum are given.

T E(τ) SD(τ)
0 ∞ ∞
1 2964.04 2949.57
2 250.77 252.25
3 129.00 126.93
4 97.87 94.48
5 84.73 80.73

10 67.02 62.16
50 58.67 53.48

100 57.91 52.70
∞ 57.20 51.97

Table 3.2
Performance of logarithmic cooling schedules for a 26-state SA chain. Estimates of mean and

standard deviation of time until hitting a global minimum are given. The values at c = ∞ follow
from the calculations with fixed temperature.

c E(time) SD(time)
6 ∞ ∞
8 1026.74 3464.46

10 259.78 499.17
50 64.45 61.70
80 60.39 56.06

100 60.44 55.74
200 58.72 53.84
500 57.81 53.58

1000 57.78 52.50
∞ 57.20 51.97



SEARCHING FOR AN OPTIMAL TEMPERATURE SCHEDULE 785

To get from the local minimum state 12 to a state of lower cost, it is necessary to
climb at least five units, so the depth of state 12 is equal to 5. Similarly, the depth of
state 10 is 2, the depth of state 17 is 6, and the depth of the globally minimal states
is defined as being infinite. The cups associated with the local minima that are not
global minima are {10}, {11, 12}, and {14, 15, 16, 17, 18}.

The generation matrix for Hajek’s 26-state example is irreducible, and as a result,
the homogeneous SA Markov chain is also irreducible. Thus all states are recurrent.
For Hajek’s example, we investigate how the value of the temperature influences the
time it takes a homogeneous SA chain to reach a global minimum. To this end we
consider the Markov chain formed by making all global minima absorbing states. For
x = 1, 2, 26, we set G(x, y) = 1 for y = x and 0 otherwise. Given Q, we can go
on to calculate the fundamental matrix N = (I −Q)−1. This can then be used to
calculate the mean and variance of the time it takes a homogeneous SA Markov chain
to reach a global minimum given by Theorem 3.1.

Performing these calculations for Hajek’s example, we find, if we start the SA
chain in, say, state 13, that the mean time until absorption is equal to

(8 + 64 δ + 22 δ2 + 190 δ3 + 85 δ4 + 243 δ5 + 318 δ6 + 180 δ7

+ 600 δ8 + 107 δ9 + 632 δ10 + 101 δ11 + 391 δ12 + 127 δ13

+ 135 δ14 + 118 δ15 + 24 δ16 + 65 δ17 + 2 δ18 + 18 δ19 + 2 δ21 )/
( δ6 ( 4 + 16 δ2 + 21 δ4 + 13 δ6 + δ7 + 3 δ8 + δ9 + δ11 ) )

with δ = exp(−1/T ), and the variance is equal to

(64 + 896 δ + 4288 δ2 + 5888 δ3 + 26380 δ4 + 25352 δ5 + 82400 δ6

+ 90128 δ7 + 168711 δ8 + 236270 δ9 + 267229 δ10 + 444772 δ11

+ 387603 δ12 + 616478 δ13 + 557847 δ14 + 658450 δ15 + 747564 δ16

+ 582882 δ17 + 849119 δ18 + 481773 δ19 + 779677 δ20 + 418840 δ21

+ 571970 δ22 + 376007 δ23 + 340216 δ24 + 305693 δ25 + 174206 δ26

+ 202119 δ27 + 86565 δ28 + 102605 δ29 + 45346 δ30 + 38468 δ31

+ 23053 δ32 + 10177 δ33 + 9792 δ34 + 1782 δ35 + 3092 δ36

+ 184 δ37 + 654 δ38 + 8 δ39 + 80 δ40 + 4 δ42 )/
( δ12( 4 + 16 δ2 + 21 δ4 + 13 δ6 + δ7 + 3 δ8 + δ9 δ11 )2 ).

We see from Table 3.1 that, for Hajek’s example, SA with a fixed temperature
will find a global minimum more quickly, on average, for larger temperatures. The
optimum strategy based on E(τ) is to take T =∞, i.e., to adopt the “boiling” schedule
which corresponds to a Markov chain with transition matrix given by the generation
matrix. This strategy is the one that accepts all moves with probability 1.

Shown in Table 3.2 are the results from simulations performed for cooling sched-
ules of a logarithmic type, including the canonical cooling schedule. Ten thousand
runs were performed at each value of c. Again, it is apparent that the optimal strategy
is to adopt boiling.

4. A state classification and eventual traps. As in the homogeneous case,
the states of an inhomogeneous Markov chain may be classified as positive, null,
recurrent, or transient. However, some of the definitions used for the homogeneous
chains do not seem to carry over, whereas other definitions for inhomogenous chains
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which reduce to the classical ones are available. A state classification for finite and
countable inhomogeneous chains is given in [8]. We shall adapt it here to the particular
case of a SA chain. Also, the atomic sets of the tail σ-field (see [8]) admit in this case
a neat representation in terms of some sets, which we shall call eventual traps.

A state x will be said to be null if limn→∞ P (Xn = x) = 0 and positive if
limn→∞ P (Xn = x) > 0. Such a classification is not a dichotomy for inhomogeneous
chains, but in the case of an SA chain, it is (see [26]). Let {An} be a sequence
of events. Write {An i.o.} = ∩∞n=1 ∪∞m=n Am, where i.o. stands for infinitely often
and {An ult.} = ∪∞n=1 ∩∞m=n Am, where ult. stands for ultimately. We say that
limn→∞An = A almost surely (a.s.) if P ({An ult.}) = P ({An i.o.}) and A is an
event differing from {An ult.} only by a set of probability 0. We say that a state x is
recurrent if

P (Xn = x i.o.) > 0,

and transient otherwise. A positive state x is always recurrent and is called positive
recurrent. Null states may be transient or recurrent. A null state which is recurrent
will be called null recurrent. These definitions were given in [8].

We say that A is a recurrent class if it contains only recurrent states and for any
x ∈ A

{Xn = x i.o.} = {Xn ∈ A i.o.} a.s.

We say that the recurrent class A is an eventual trap if
(i) limn→∞ P (Xn ∈ A) > 0 and
(ii) P (Xn = x i.o.) = P (Xn ∈ A i.o.) = P (Xn ∈ A ult.) for any x ∈ A.
We use the term eventual trap as distinct from trap to emphasize that a Markov

chain reaching A may have a positive probability of escaping from A at all times, but
as n → ∞ such an escape becomes less and less likely and the chain must end up in
an eventual trap with probability 1.

Remark. For an SA chain, it turns out that if A is an eventual trap with
limn→∞ P (Xn ∈ A) < 1, then Ac, the complementary set to A, must contain at
least one eventual trap.

A result of one of the present authors (see [8] and the references therein) describing
the tail σ-field of a finite inhomogeneous Markov chain leads to the assertion that a
chain of SA type has a finite number of disjoint eventual traps A1, . . . , At such that

lim
n→∞P (Xn ∈ ∪ti=1Ai) = 1.

Obviously, the number of eventual traps does not exceed the cardinality of S.

5. Weak and strong ergodicity: Conditional convergence. Write P (m,n)(x, y) =
P (Xn = y|Xm = x) for m < n. We shall say that {Xn} is weakly ergodic if for any
m,x, y, and z,

lim
n→∞(P (m,n)(x, z)− P (m,n)(y, z)) = 0.

A sufficient condition for weak ergodicity is the existence of some constant u such
that

∞∑
k=1

min
x,y

P (k,k+u)(x, y) =∞.(5.1)
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However, it is easy to see that (5.1) requires that for all x

∞∑
n=1

P (Xn = x) =∞.

In general, the above property is not necessary for weak ergodicity.
We say that {Xn} is strongly ergodic if there is a probability distribution π =

(π1, . . . , πs) on S such that for any x, y, and m ≥ 1,

lim
n→∞P

(m,n)(x, y) = πy.(5.2)

It is easy to see that strong ergodicity implies weak ergodicity. For properties of
weakly and strongly ergodic chains, see Seneta [29].

We say that {Xn} is conditionally convergent if for some numbers π
(m)
x,y and any

m ≥ 1,

lim
n→∞P

(m,n)(x, y) = π(m)
x,y .(5.3)

In the literature of inhomogeneous Markov chains, such chains are known as convergent
(see Mukherjea [25] and Cohn [7]), but that term has been used before in relation to
property (1.1), so conditional convergence will be used for (5.3). For weakly ergodic
chains, conditional convergence is equivalent to strong convergence, as defined in (5.2).

6. Slow cooling schedules. Let us write f= min{x∈S} f(x) and denote by d̄
the number with the property

∞∑
k=1

exp(−d̄/Tk) =∞

and

∞∑
k=1

exp(−d/Tk) <∞

for any d > d̄.
If d̄ > 0 we shall say that {Tn} is a slow cooling schedule. If d̄ = 0 we say that

{Tn} is a fast cooling schedule.
The following result is extracted from Niemiro and Pokarowski [26] and Niemiro

[27].
Theorem 6.1. Suppose that {Xn} is an SA chain with d̄ > 0. Then
(i) there exist t recurrent classes A1, . . . , At which are eventual traps;
(ii) the chain is conditionally convergent;
(iii) if x ∈ Ai then y ∈ Ai if and only if y is reachable from x at height lower than

or equal to f(Ai) + d̄, where f(Ai) = minz∈Ai f(z);

(iv) if S̄ is the set consisting of deepest states of A1, . . . , At, then limn→∞ P (Xn ∈
S̄) = 1;

(v) if x ∈ S̄, then limn→∞ P (Xn = x) > 0.
Notice in particular that a convergent chain may admit either only one eventual

trap (the case of a weakly ergodic chain) or several eventual traps, each of them
containing some global minimum states on which the whole probability mass will
eventually concentrate.
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On the other hand, it is easy to see that by decreasing d̄1 to, say, d̄2, the number
of eventual traps does not decrease, because any eventual trap for d̄2 is either an
eventual trap for d̄1 or belongs to a partition of an eventual trap for d̄1. Thus, if d̄ is
smaller than d∗, the SA algorithm does not converge because the set of eventual traps
will necessarily include some that do not contain any global minima states. Such
eventual traps attract the chain to local minima. Since each of the limit probabilities
limn→∞ P (Xn ∈ Ai) is positive, property (2.1) also fails for chains of this kind.
Indeed, notice that limn→∞ P (Xn ∈ S∗) = 1 −∑i∈Λd̄

limn→∞ P (Xn ∈ Ai), where

{Ai : i ∈ Λd̄} is the collection of eventual traps corresponding to d̄ which do not
contain global minima states. Clearly, limn→∞ P (Xn ∈ S∗) becomes smaller as d̄
decreases and, as a result, the number of eventual traps increases. If d̄ is sufficiently
small, then any local minima states may form the bottom of some eventual trap. This
is the reason why some heuristics cooling faster than logarithmic are not convergent.
Such algorithms may end up in a local minimum. We shall describe a number of such
algorithms later in the paper.

Theorem 6.2. A convergent chain is weakly ergodic if and only if one of the
following two statements holds:

(i) There is only one global minimum state.
(ii) If x and y are two global minima states, then x is reachable from y at height

smaller than or equal to f + d̄.
Proof. It is easy to see that if (i) holds, the only global minima state, say x, is in

a recurrent class A which is an eventual trap. However, A is the only eventual trap
since limn→∞ P (Xn ∈ A) ≥ limn→∞ P (Xn = x) = 1. Thus {Xn} has a trivial tail
σ-field, which implies weak ergodicity (see [6]).

To prove (ii) notice that by Theorem 6.1 (iii) all the global minima states must
be in one recurrent class which is the unique eventual trap. This completes the proof.

Corollary 6.3. A convergent chain is not weakly ergodic if and only if there
exist two global minima states x and y such that y is reachable from x at height higher
than f + d̄.

Theorem 6.4. A weakly ergodic SA chain corresponding to a cooling schedule is
convergent and strongly ergodic.

Proof. Any weakly ergodic chain has a trivial tail σ-field and therefore could not
admit more than one eventual trap. However, the only cooling schedules that are not
convergent are the ones that admit several eventual traps, with at least one having
no global minimum states. This proves convergence. Strong ergodicity follows from
Theorem 6.1 and weak ergodicity.

Remark. If we do not confine ourselves to cooling schedules, then weak ergodicity
may not imply convergence, as we have seen in the case of fixed temperature schedules.

To summarize the above results on convergence, we conclude that
(i) the canonical cooling schedule may result in a chain that is not weakly ergodic;
(ii) the canonical constant d∗ is the cutoff point for d̄ below which the process

exhibits a phase transition, with its class of eventual traps increasing to include some
local minima traps.

Lemma 6.5. Suppose that
∑∞
n=1 Pn(x, y) = ∞, where lim infn→∞ P (Xn = x) >

0. Then P (Xn = x,Xn+1 = y i.o.) > 0.
Proof. Write An = {Xn = x,Xn+1 = y}. We shall show that a divergent part

of the Borel–Cantelli-type lemma holds for the events {An}. Write Fn for the σ-field
generated by X1, . . . , Xn. The Markov property of {Xn} yields

P (An|Fn) = Pn(x, y)1{Xn=x}.(6.1)
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According to the Borel–Cantelli–Levy lemma,

P (An i.o.) > 0 if and only if P

( ∞∑
n=1

P (An|Fn) =∞
)
> 0.(6.2)

Consider now the random variable

Yn =

∑n
k=1 Pk(x, y)1{Xk=x}∑n

k=1 Pk(x, y)
.(6.3)

Notice that the denominator in (6.3) tends to ∞ as n → ∞. Since 0 ≤ Yn ≤ 1, for
{Yn} to converge in probability to 0, it is necessary that E(Yn) → 0. However, this
is not the case as lim infn→∞E(Yn) ≥ lim infn→∞ P (Xn = x) > 0, which implies
P (
∑∞
k=1 Pk(x, y)1{Xk=x} = ∞) > 0; the proof is concluded on account of (6.1) and

(6.2).
This lemma provides a criterion of recurrence for a state y which is reachable in

one step from a positively recurrent state.
Theorem 6.6. If {Xn} is convergent, then
(i) {f(Xn)} converges in probability to f ;
(ii) {f(Xn)} converges a.s. to f if and only if

∞∑
n=1

exp

(
−d(x)

Tn

)
<∞(6.4)

for any state x with x /∈ S∗ and x ∈ N(y), where y is a global minimum state.
Proof. Since f is constant on S∗, (i) follows from the definition of convergence

(1.1).
To prove (ii), notice that (6.4) implies

∞∑
n=1

P ({Xn ∈ S∗} ∩ {Xn+1 /∈ S∗}) <∞.

By a Borel–Cantelli-type lemma given by Barndorff-Nielsen [4], the above implies that
P ({Xn ∈ S∗ ult.}) = 1. Thus all states outside S∗ are transient, which proves the
first implication of (ii).

Assume now that (6.4) fails. Thus there exists a state x with f(x) > f , x ∈ N(y),
where y is a global minimum state, and

∞∑
n=1

exp

(
−d(x)

Tn

)
=∞.

According to Theorem 6.1, all states of S∗ are positive. Thus we can use Lemma 6.5 to
conclude that x is recurrent. However, in this case, P ({f(Xn) ≥ f(x) > f i.o.}) > 0,
contradicting the almost sure convergence of {f(Xn)} to f . This completes the proof
of (ii).

7. Critical points for the SA chains. Next we shall identify a number of
critical points for the constant c of an SA chain with logarithmic temperature schedule.

Theorem 7.1. Suppose that the SA chain {Xn} admits a cooling schedule {Tn =
c/ log(n0 + n)} for some constant c.
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1. Define c0 to be the smallest h > 0 such that

∃x ∈M, y ∈ N(x) : d(x) < h and f(x) < f(y) ≤ f(x) + h,

where M is the set of all local minima, including global minima. Then c0 is the
smallest c such that null recurrent states exist. For c < c0, the SA chain assumes
only positive recurrent and transient states, and its collection of eventual traps is
maximal in number.

2. Define

c1 = min
x∈M,x/∈S∗

d(x),

where M is the set of all local minima states. c1 is the smallest c such that the number
of recurrent classes that are eventual traps decreases.

3. Define

c2 = d∗ = max
x∈M,x/∈S∗

d(x).

Then c2 is the smallest c such that the algorithm is convergent. It is also the smallest
c such that all local minima that are not global minima are null states, or the smallest
c such that the only positive recurrent states are global minima states.

4. Define c3 to be the smallest c such that a null recurrent local minimum exists.
c3 is the smallest h such that there exist a local or global minimum state x and a local
minimum state y with d(x) > h and y reachable at height f(x) + h from x.

5. Define

h∗ = max
x,y∈S∗

{h : y is reachable from x at height f + h}

and c4 = max{d∗, h∗}. Then c4 is the smallest c for which weak ergodicity occurs.

6. Define

c5 = max
x∈S

f(x)−min
y∈S

f(y).

Then c5 is the smallest c for which all states are recurrent.

7. Define c6 = +∞ in the case when the transition probabilities of the SA chain
do not depend on the temperature. Then c6 is the only c for which all states are
positive recurrent.

Proof. Notice first that by simple manipulations we deduce that for any ci with
i ∈ {1, . . . , c6} we have for α ≥ ci

∞∑
k=1

exp(−α/Tk) =∞

and

∞∑
k=1

exp(−α/Tk) <∞

for α < ci.
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Fig. 7.1. 0 ≤ c < 1. All local and global minima are positive states. It is a defective algorithm.
No null recurrent states exist. The chain may freeze in any (connected set of) local minima including
global minima. There are four eventual traps. This also is the case for all fast cooling schedules.
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Fig. 7.2. 1 ≤ c < 2. A null recurrent state first occurs. One local minimum is rendered
transient. If the SA chain becomes trapped in the eventual trap containing the null recurrent state,
then, strictly speaking, the chain will never freeze. That is, the null recurrent state will be visited
infinitely often. Such visits will, however, become less and less frequent and further apart. There
are three eventual traps.

To prove point 1 we take into account that for c = c0 the positive states will
remain the same as for c < c0 but, according to Lemma 6.5, the set of null recurrent
states will increase.

To prove point 2, notice that for c = c1, at least two eventual traps for c < c1
become merged in one eventual trap. This follows from Theorem 6.1(iii).

Point 3 is also a consequence of Theorem 6.1, because for c = c2 the eventual traps
containing global minima must contain all local minima as well. As the probability
mass concentrates in the bottom states of a recurrent eventual trap the chain must
be convergent.
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Fig. 7.3. 2 ≤ c < 3. The canonical cooling schedule is reached. The chain is convergent. There
are two eventual traps. All eventual traps contain global minima. Only global minima are positive
recurrent states.
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Fig. 7.4. 3 ≤ c < 4. More states become null recurrent, including a local minimum. The two
eventual traps have increased in size.

To prove point 4, notice that c3 is defined in such a way that we may choose x
to be a bottom state of an eventual trap which makes it positive recurrent, and the
condition of Theorem 6.1(iii) is satisfied, implying that y is recurrent. It is easy to
see that x and y belong to the same recurrent class for which x is a bottom state and
f(y) > f(x). This makes y a null state.

Point 5 follows from the observation that c = c4 does not allow two eventual
traps, and this is equivalent to weak ergodicity.

We leave the proofs of 6 and 7 to the reader.

Remark. It has turned out that the critical points identified above belong to
a logarithmic cooling schedule. For cooling schedules that go faster to 0 than a
logarithmic one, we can easily see that the SA chain behavior is the one described
for c < c0. For temperature schedules that are slower than logarithmic, the SA chain
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Fig. 7.5. 4 ≤ c < 5. The chain is weakly ergodic. All global minima are contained in the single
eventual trap.
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Fig. 7.6. c ≥ 5. There is one eventual trap, incorporating the entire state space. All states are
recurrent, but only global minima are positive recurrent.

behavior is as in the case c ≥ c5. For temperature schedules with a subsequence of
{Tn} bounded away from 0, we get a weakly ergodic {Xn} with all states positive
recurrent.

We shall consider now an example of an SA chain with 15 states to illustrate
the asymptotic behavior of slow cooling schedules described above. The example
is shown in Figures 7.1–7.7, where the properties of states are depicted at various
values of c. The dotted graphs delineate the eventual traps. Marked in black are the
positive recurrent, in gray the null recurrent, and in white the transient states. For
this example we get c0 = c1 = 1, c2 = 2, c3 = 3, c4 = 4, and c5 = 5.

8. Fast cooling schedules. Most of the algorithms applied to large problems
are of the fast cooling type and are therefore nonconvergent. This is the case for the
algorithms of Aarts and van Laarhoven [1], Kirkpatrick, Gellat, and Vecchi [19], and
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Fig. 7.7. c = +∞. The case where boiling is employed and all transitions are accepted. No
cooling takes place. All states are positive recurrent. This also is the case for any fixed positive
temperature.

Lundy and Mees [23], which satisfy the condition

∞∑
n=1

Pn(x, y) <∞(8.1)

for any x, y with f(y) > f(x).
Consider now the Markov chain {XA

n } with state space A and transition proba-
bility matrix R, with entries

R(x, y) =


G(x, y) if f(y) < f(x),
0 if f(y) > f(x),
1−∑z 6=xG(x, z) if f(y) = f(x)

for x, y ∈ A. We shall attach such Markov chains to any (local minima) recurrent
class A.

Theorem 8.1. If (8.1) holds, then
(i) {f(Xn)} converges a.s. to a random variable W whose probability mass is

concentrated on the set of local and global minima;
(ii) all the states except for global and local minima are transient;
(iii) {Xn} eventually freezes in a set of states of constant objective function f ;
(iv) if x belongs to a recurrent class A consisting of local or global minima states,

then limn→∞ P (Xn = x) = P (Λ)πx, where {πx, x ∈ A} is the stationary distribution
of {XA

n }, and Λ = limn→∞{Xn ∈ A} a.s.
Proof. We shall show that if A is a recurrent class consisting only of global or

local minima of constant f -value, then A is an eventual trap. We shall prove first
that for such A we get

P ({Xn ∈ A ult.}) > 0.(8.2)

This is equivalent to showing that

lim
n→∞P (∩∞m=n{Xm ∈ A}) > 0.
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Write

αn = max
x∈A,y/∈A

Pn(x, y).(8.3)

By conditioning, we get

P (∩rm=n{Xm ∈ A}) ≥ P (∩r−1
m=n{Xm ∈ A})(1− αr−1) ≥

. . . . . . . . . . . .

≥ P ({Xm ∈ A})(1− αm) · · · (1− αr−1).(8.4)

Letting r tend to ∞ in (8.4) and recalling that
∑
n αn < ∞ we get that P ({Xn ∈

A ult.}) > 0 and (8.2) is proved.

Notice now that

∞∑
n=1

P ({Xn ∈ A} ∩ {Xn+1 /∈ A}) <∞,(8.5)

which in conjunction with (8.2) and the Barndorff–Nielsen–Borel–Cantelli-type lemma
[4] imply that A is an eventual trap. The transient states do not have an a.s. con-
tribution in the limit. (Notice that f is constant on A but its value may differ for
various eventual traps being the value of the bottom states which are global or local
minima of f .) This completes the proof of (i).

Obviously, (ii) follows from (i).

It is easy to see that (iii) follows from (i) and (ii).

To prove (iv), notice that the assumption of irreducibility and accessibility of
states from each other makes any chain {XA

n } ergodic and irreducible. Thus

lim
n→∞P

(m,n)(y, x) = πx

for x, y ∈ A, and

lim
n→∞P

(m,n)(y, x) = 0

for x /∈ A. But

P (Xn = x) =
∑
y∈S

P (Xm = y)P (m,n)(y, x).

Thus, if x ∈ A,

lim
n→∞P (Xn = x) = lim

m→∞P (Xm ∈ A)πx = P (Λ)πx,

and the proof is finished.
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9. Some traveling salesman examples. We next investigate the relative per-
formance of a number of cooling schedules used in applications to which we add a fixed
temperature schedule. There is no claiming that the algorithms chosen are the most
appropriate for the problems. The aim of the exercise is to use statistical analysis to
ascertain the quality of various algorithms which appear to be problem dependent.
Clearly, for some problems there is a need for faster, nonconvergent cooling than
logarithmic cooling. We examine the performance of fast cooling schedules such as
Aarts and van Laarhoven [1] and Lundy and Mees [23] and a basic geometric schedule
as first introduced by Kirkpatrick, Gellat, and Vecchi [19]. The traveling salesman
problems (TSPs) considered vary in size from 48 to 442 cities.

We consider the relative performance of these algorithms allowing a fixed number
of iterations N, for an appropriately chosen N.

9.1. Application of SA to the TSP. For the TSP, we consider a path leading
through all of n cities, starting in an arbitrary city and finally returning to it. A
distance (or possibly time or cost) is given between each pair of cities. We consider
here the symmetric TSP, where the distance is the same in either direction. The
objective is to identify the path that has the smallest total distance. There are
(n− 1)!/2 possible paths.

The neighborhood structure we employ for the TSP is that generated by 2-opt
moves. Consider the cities and the path of the TSP as the vertices and edges of a
graph. A 2-opt move is simply the process of deleting and replacing two edges of the
graph to yield a new path for the TSP. There are n(n− 3)/2 different paths that can
be created by such a move. (Note that once one edge has been deleted, if either of
the neighboring edges is then deleted, it is possible only to reconstruct the original
path, leaving n− 3 edges to choose from.)

The TSP is often stated as a benchmark problem for testing optimization proce-
dures. SA is often outperformed by specially tailored algorithms. The merits of SA
lie in its ease of implementation and its applicability to a wide range of problems. It
is our aim to use the observations of SA on TSPs to gain valuable insight into what
criteria constitute an optimal temperature schedule for problems in general.

9.2. The problem instances. We have considered the six problem instances
of the TSP examined in Aarts and van Laarhoven [2]. Each problem is labeled by the
initials of the author(s) of the reference to it, followed by the number of cities. The
problem instances are gr48 and gr442 from [14], gr120 from [13], kt57 from [17],
kroA100 from [21], and lin318 from [22]. (We have taken lin318 in the form of a
TSP rather than a Hamiltonian circuit.)

9.3. The different schedules. Following are the rules for updating the tem-
perature in each of the schedules considered.

Aarts: Temperature is held fixed during each loop of R = maxx∈S |N(x)| itera-
tions. At the end of each loop the temperature is dropped according to the rule

Tk+1 = Tk

/(
1 +

Tk log(1 + δ)

3σk

)
,

where σk is the standard deviation of the observed values of the cost function during
the kth loop of the algorithm.

Geometric: The temperature is again held fixed during each loop. We have set
the length of each loop to be the same as for Aarts. At the end of each loop the
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temperature is dropped according to the rule

Tk+1 = αTk.

It is worth noting that we found that the number of iterations performed at each loop
had little if any effect on the algorithm’s performance, provided the value of α was
adjusted appropriately.

Lundy: With Lundy’s schedule the temperature is to be dropped after each iter-
ation according to the rule

Tn+1 =
Tn

1 + βTn
,

or equivalently,

Tn =
T0

1 + nβT0
.

To keep this algorithm in the same form as above, we update the temperature at the
end of each loop of the same number of iterations as above. Again, we did not find
this to alter the performance of the algorithm.

Logarithmic: Here again, the temperature is to be updated after each iteration,
the rule for which is

Tn =
c

log(n+ n0)
.

Again we update this temperature at the end of each loop of R iterations.
Fixed temperature: In a fixed temperature algorithm an appropriate temperature

must be found. We have done so experimentally, by running a fixed temperature
schedule for a range of temperatures and choosing the temperature which gives the
best performance, say, the best average solution in N iterations. Connolly [9] gives a
method for determining a fixed temperature by first running a fast cooling algorithm
and noting the temperature at which the best solution found first occurred.

9.4. Method used in comparing the schedules. In an attempt to make a
fair comparison of the different schedules, the following method is used.

Measure of performance: We measure the performance of each algorithm by the
average best solution found in the N iterations. Results of the algorithms with regards
to P (τ ≤ N) are also given, where τ is taken as the time until reaching a global
minimum, as well as within one and two percent of the global minimum.

To choose N: We wish to choose an N for each problem instance that is sufficiently
large, but not too large, for the algorithms to find good heuristic solutions. We
have chosen Aarts’s algorithm to roughly determine such an N, but Lundy’s or the
geometric algorithm also could have been used. First, 100 runs of Aarts’s algorithm
are performed with the parameter setting (δ = 0.1) recommended by its authors. In
choosing N, we consider the number of iterations taken until first visiting the best
solution found in each run. The maximum of these is taken, after removing outliers.
An outlier is taken as a value more than 1.5 times the interquartile range greater than
the third quartile. The initial temperature is determined experimentally to yield an
initial acceptance ratio of 0.95.

Determining the parameters of the schedules: Once N has been chosen for a
given problem, the parameters of Lundy’s algorithm and the geometric schedule are
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Table 9.1
The parameter settings experimentally found for five temperature schedules for various TSPs. N

is the number of iterations to be allowed for each algorithm and is set according to Aarts’s schedule.

Aarts Geom. Lundy Logar. Fixed
Problem N T0 δ α β c T

gr48 509760 2800 0.1 0.98700 2.546×10−7 250 20
kt57 857223 6000 0.1 0.98920 6.173×10−8 500 40

kroA100 4205532 11500 0.1 0.99220 1.196×10−8 650 45
gr120 7104240 2900 0.1 0.99300 3.704×10−8 150 11
lin318 102173400 11800 0.1 0.99615 1.498×10−9 450 25
gr442 242935584 2420 0.1 0.99670 5.669×10−9 45 2.3

determined experimentally to yield approximately the same N, when determined in
the same way. The initial temperature is set as above. For fixed temperature, the
optimum temperature is found experimentally by trying various temperatures and
finding the one that yields on average the best solution in the N iterations. The
logarithmic schedule is very slow and cooling from a high to a low temperature in the
given amount of time is not possible. We therefore set n0 = 2 in order to maximize
the overall change in temperature, and we determine the optimal value for c in the
same way as we determine the optimum fixed temperature.

Stopping the algorithms: Once parameters are chosen, the algorithms are rerun.
Upon reaching N iterations the temperature is set to zero, and the algorithms are
allowed to (quickly) settle in a local minimum. For the logarithmic schedule the
optimum value of c is found, with this final freezing included in the algorithm. This
final freezing is also included when searching for the optimal fixed temperature.

9.5. Results. Tables 9.1–9.5 show the results from running the five above-
mentioned temperature schemes on the six TSP instances. One hundred runs are
performed for each instance under each temperature schedule. Table 9.1 shows the
number of iterations allowed for each problem instance and the parameters experimen-
tally determined for each algorithm. Reported are the quality of final (best) solutions,
iterations taken to reach these solutions, and the proportion of runs reaching global
or near global minima solutions. Global minima solutions were found only for the
48, 57, and 100 cities instances.

9.6. Remarks regarding simulations. 1. From the simulations carried out,
we see that it is worthwhile having a handful of algorithms available in the application
of SA to a particular problem.

2. In the case of the TSP, we see that for smaller problems, the fixed and logarith-
mic schedules seem to perform as well as and better than the fast cooling schedules.
For larger problems the fast cooling schedules seem to perform better. It appears
that in such cases the schedule of Lundy and Mees outperforms the Aarts and van
Laarhoven and the geometric schedules.

3. The results are likely to differ for different applications of SA. Lundy and Mees’s
algorithm initially cools more rapidly than the other two fast cooling schedules, and
it spends more time at smaller temperatures. It may be the case, however, that the
slower initial cooling of the other schedules is crucial in other applications.

4. We see that for the 48-city and 120-city TSPs, fixed temperature and the
logarithmic schedule outperform the fast cooling schedules. The results suggest that
it is not simply the size of the problem that is important but the structure as well.
It may be the case that for applications other than the TSP, the structure of the
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Table 9.2
A comparison of different temperature schedules, in a fixed number of iterations, for various

TSPs. Mean and standard deviation given for 100 runs in each case. The solution in each run is
taken as the best solution visited.

Average best solution (% above global)
Problem Aarts Geom. Lundy Logar. Fixed

gr48 0.88 0.66 0.38 0.24 0.25
kt57 1.07 0.84 0.40 0.56 0.59

kroA100 0.96 0.75 0.49 0.49 0.54
gr120 1.83 1.40 1.07 0.69 0.85
lin318 1.73 1.45 1.34 2.16 2.37
gr442 1.66 1.34 1.05 2.00 2.10

Standard deviation (% above global)
gr48 0.69 0.54 0.40 0.28 0.28
kt57 0.85 0.77 0.54 0.69 0.69

kroA100 0.70 0.52 0.38 0.38 0.56
gr120 0.72 0.66 0.50 0.39 0.43
lin318 0.52 0.45 0.45 0.67 0.79
gr442 0.51 0.37 0.39 0.47 0.45

Table 9.3
Mean and standard deviation of iterations taken until finding the best solution of each run.

Average iterations until best in run
Problem Aarts Geom. Lundy Logar. Fixed

gr48 478375 440705 280476 280260 247698
kt57 809653 763375 540635 474612 494819

kroA100 4113819 3821121 2927120 2703681 2843458
gr120 6828916 6305855 4467879 4932393 4586938
lin318 100592216 95016256 72002496 99782344 96906464
gr442 237841104 226062032 160714880 222006640 206698016

Standard deviation of iterations until best
gr48 15981 27161 81559 138893 145977
kt57 20622 36932 117102 226153 240173

kroA100 64690 173474 720508 1257878 1339295
gr120 114856 318401 1194903 1658310 2017348
lin318 835365 2079017 11570513 9369117 16177562
gr442 1823134 6554549 31531302 34883836 52499600

Table 9.4
Estimates for P (τ ≤ N), where τ is the time to reaching a global minimum, for N as given in

Table 9.1. A global minimum was never reached in any of the runs for the larger problems.

Proportion reaching global minimum
Problem Aarts Geom. Lundy Logar. Fixed

gr48 0.05 0.17 0.35 0.30 0.34
kt57 0.04 0.06 0.28 0.31 0.30

kroA100 0.03 0.06 0.10 0.04 0.00

problem means that fixed and logarithmic schedules are suited to large problems too.

5. We do not know whether the logarithmic cooling schedule used is convergent,
as we have not identified the canonical constant. Indeed, d∗ is not readily available,
and to get it, when feasible, may require much more extensive work than finding an
optimal state. In fact, as we pointed out before, convergence is not relevant to the
success of the algorithm.
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Table 9.5
Estimates for P (τ ≤ N) when τ is taken, respectively, as the time to reaching solutions with

the objective function at most one percent and two percent larger than the global minimum.

Proportion reaching within 1% of global
Problem Aarts Geom. Lundy Logar. Fixed

gr48 0.68 0.81 0.97 1.00 1.00
kt57 0.58 0.71 0.86 0.67 0.65

kroA100 0.62 0.76 0.91 0.93 0.88
gr120 0.11 0.27 0.44 0.80 0.69
lin318 0.07 0.13 0.19 0.01 0.02
gr442 0.12 0.23 0.39 0.02 0.00

Proportion reaching within 2% of global
gr48 0.92 0.97 1.00 1.00 1.00
kt57 0.89 0.89 0.99 1.00 1.00

kroA100 0.93 0.98 0.99 1.00 0.96
gr120 0.57 0.81 0.95 0.99 0.99
lin318 0.70 0.88 0.92 0.52 0.34
gr442 0.77 0.98 1.00 0.49 0.43

6. We have seen that obtaining a global minimum is plausible for some small to
medium-size problems. For the 100-city TSP, using Lundy’s schedule, we get for the
time until reaching a global minimum,

P (τ < N) ≈ 0.10,

for N = 4205532. Using k = 50 reruns (2.3) becomes

P ( min
i∈{1,...,k}

min(f(X
(i)
1 ), . . . , f(X

(i)
N )) = min

x∈S
f(x)) ≈ 0.995,

and with k = 100 we get a probability of 0.99997 of reaching the global minimum.

10. Concluding remarks. 1. We have looked at the limit behavior of the SA
chain as a function of its temperature schedule. The quality of an algorithm depends
on its parameters, and the temperature schedule is only one ingredient of an algorithm.
However, the limit behavior of the SA chain is determined only by its temperature
schedule.

2. We have a three-type classification for an algorithm: convergent, regular,
and defective. Examples are provided to illustrate situations when boiling gives the
optimal algorithm, when logarithmic or fixed temperature outperform a number of
faster cooling schedules, or when defective algorithms are better for the problem.

3. We characterized the limit behavior of an algorithm in terms of recurrence,
transience, and eventual traps. It turns out that a convergent chain may have several
eventual traps or may consist of one eventual trap, as in the weakly ergodic case. A
regular algorithm is not necessarily convergent. It may be weakly ergodic but not
convergent. A convergent chain or a chain with a fixed temperature will exhibit a lot
of changes in its objective function values, as there are usually recurrent states that
are neither global nor local minima. Such changes will become less and less frequent
but will not disappear. In contrast, a defective chain does not have recurrent states
outside global or local minima states and will eventually have its objective function
value frozen in a local or global minimum.

4. The critical points for algorithms where the asymptotic behavior changes are
all in the range of logarithmic cooling schedules. There are two extreme types of
behavior: the first, when each local mimimum is an eventual trap, and the second,
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when all states are recurrent. It may seem that the first case does not lead to a good
algorithm. However, for large problems these type of schedules usually outperform the
convergent and regular ones. It may also seem that the latter compares unfavorably to
the canonical cooling schedule which prescribes a convergent chain with the minimal
number of recurrent states. However, such an impression is also deceptive.

5. When using a memoryless algorithm for a convergent chain or a memory
algorithm for a regular chain, we know that reaching global minima may be achieved
with probability as large as desired if we let the chain run a sufficiently long time.
However, that may not be feasible in practice, as it may require an excessively long
time. In contrast, for defective algorithms we know that the probability of reaching
optimality is limited, often by a small number. However, repeated independent runs
may ensure a high quality for such algorithms, which are often used in practice.
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