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Abstract

The annealing algorithm [1] is modified to allow for noisy or imprecise measure-

ments of the "energy" cost function. This is important when the energy cannot be

measured exactly or when it is computationally expensive to do so. Under suitable con-

ditions on the noise/imprecision, it is shown that the modified algorithm exhibits the

same convergence in probability to the globally minimum energy states as the annealing

algorithm [2]. Since the annealing algorithm will typically enter and exit the minimum

energy states infinitely often with probability one, the minimum energy state visited by

the annealing algorithm is usually tracked. The effect of using noisy or imprecise

energy measurements on tracking the minimum energy state visited by the modified

algorithms is examined.
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1. Introduction

Motivated by hard combinatorial optimization problems such as arise in computer
design and operations research, Kirkpatrick, Gelatt, and Vecchi [1] and independently
Cerny [3] have proposed a random optimization algorithm called simulated annealing.
The annealing algorithm stands in contrast to heuristic methods based on iterative
improvement in which only decreases in the cost function are allowed at each iteration.
In the annealing algorithm increases in the cost function are allowed with certain proba-
bility. This probability is slowly decreased to zero. Simulated annealing is based on an
analogy to a physical system which is first melted and then cooled or "annealed" into a
low energy state. In this analogy the cost of the optimization problem is identified with
the energy of an imaginary physical system; see [1]. The annealing algorithm has been
applied with mixed success to a variety of difficult problems [4]-[7]. In addition, the
annealing algorithm has sparked considerable theoretical interest, and investigations
into its convergence have generated fundamentally new results in the theory on nonsta-
tionary Markov chains; see [2], [8]-[10] and [11] for a review.

The annealing algorithm may be described as follows. Let E be a finite set and
U(.) a real-valued function on E, the cost or energy function. The goal is to find an ele-
ment of E which minimizes or nearly minimizes U('). Let {Tk} be a sequence of posi-
tive numbers, the temperature schedule. Tk will tend to zero at a suitably slow rate.
Let Q = [qij] be a ExE stochastic matrix. Typically Q is irreducible and may also
satisfy a reversibility condition such as qij = qji for all i, joE. The annealing algorithm
consists of simulating a random process {Xk} which takes values in E, and whose suc-
cessive values are determined in the following manner. Suppose Xk = i. Then select a
candidate state j with probability qij. If U(j)--U(i) < 0 set Xk+1 = j; if

U(j) - U(i) > 0 set Xk+1 = j with probability exp [- (U(j) - U(i))/Tk]; otherwise set
Xk+1 = i. It is seen that {Xk} is infact a nonstationary Markov chain with 1-step tran-
sition probabilities (

P{Xk+ 1 =jliXk = qi} exp L- if U(j) - U(i) > 

Iqij if U(j) - U(i) < 0 (1.1)

for all i, jES with j # i+ . We shall call {Xk} the annealing chain. Note that Tk > 0

implies that the annealing chain can with positive probability make transitions to
higher energy states and so escape from local minima of the energy function. Note also
that since Tk-*.O the probability of the annealing chain making a transition to a higher
energy state tends to zero. Intuitively, if Tk is decreased to zero at a suitably slow rate
then the annealing chain eventually spends most of its time amongest and hopefully
converges in an appropriate probabilistic sense to the minimum energy states.

+ This also specifies P{Xk+l = i IXk = i} when P{Xk = i} > 0; similar definitions will be
made in the sequel without further comment.
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Much of the theoretical interest in the annealing algorithm has focused on setting
conditions on the temperature schedule such that the annealing chain converges in pro-
bability to the set of minimum energy states, i.e., setting conditions on {Tk} such that
limk,,o P{XkES} = 1 where S = {iEr: U(i) _ U(j) V jEC). Under a reversibility

condition on Q Hajek [2] has given a characterization of monotone decreasing tempera-
ture schedules which obtain convergence in probability, and Tsitsiklis [10], [11] later
removed the reversibility condition (see Theorem 3.1).

In this paper we consider modifications of the annealing algorithm to allow for
noisy (i.e. with random error) or imprecise (i.e. with deterministic error) measurements
of the energy differences which are used in selecting successive states. This is important
when the energy differences cannot be computed exactly or when it is simply too costly
to do so. Grover [12] has applied such a modified algorithm to a circuit design problem
and achieved significant reductions in computational load with comparable quality solu-
tions. Here we shall rigorously describe and analyze these modified algorithms. Our
approach will involve formulating the modified algorithms in such a way as they also
involve simulating Markov chains. We then show that under suitable conditions on the
noise/imprecision and temperature schedule, the 1-step transition probabilities of the
modified chains and annealing chain are asymptotically equivalent, and using results
from [10], obtain that the modified chains converge in probability to the minimum
energy states if and only if the annealing chain does. Since in general the annealing
chain will only converge in probability to the minimum energy states, it will enter and
exit the minimum energy states infinitely often with probability one. Hence in applying
the annealing algorithm one usually keep track of the minimum energy state visited up
to the current time; this may be done recursively since the energy differences are com-
puted at each iteration. We examine the effect of using noisy or imprecise measure-
ments of the energy differences on tracking the minimum energy state visited by the
modified algorithms.

This paper is organized as follows. In Section 2 we describe the annealing algo-
rithm modified for noisy or imprecise energy measurements. In Section 3 after review-
ing a result from [10], we analyze the convergence in probability of the modified algo-
rithms. In Section 4 we examine the problem of tracking the minimum energy state
visited by the modified algorithms. In Section 5 we conclude with a brief discussion.

2. Modification of the Annealing Algorithm

We first describe the annealing algorithm modified for noisy measurements of the
energy differences used to select successive states (by noisy we mean with random error).
The annealing algorithm with noisy measurements consists of simulating a random pro-
cess {Yk} which takes values in E. The successive values of {Yk} are obtained in the

same fashion as the annealing chain {Xk) (see Section 1) except that at each time k the
energy difference U(j) - U(i) between the candidate state j and the current state i is
replaced by U(j) -- U(i) + Wk where Wk is a real-valued random variable. More
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precisely, we define {Yk} as follows. Given that Y1 is defined, let W 1 be a real-valued
random variable with

P{W1 X I Y 1 = F 1(X) V XEIR.

Given that Y1,...,Yk, Wl,...,Wk have been defined, let Yk+1 be a E-valued random vari-
able with

P{Yk+l =JilY1,--,Yk-1, Yk = i, Wl,,W k1, Wk = X}{qij exp { Uif U(j)- U(i) + x > o

lqij if U(j) - U(i) +X _ o (2.1)

for all i, jEZ with j # i and all ECIR, and let Wk+l be a real-valued random variable
with

P{Wk+l - X\Y1,..,Yk+1, W1...,Wk} =Fk+l(X) V XEIR (2.2)

Proceeding in this way we inductively define a sequence of random variables {Yk, Wk}.

It is easy to show that {Yk} defined as above is a Markov chain with 1-step transi-
tion probabilities given by

P{Yk+l = j Yk = i} = E{P{Yk+l = i IYk, Wk} I Yk = i}

= E {P{Yk+1i Yk = i, Wk}}
Wk

r tU(j) -U(i) + 
X >U(i)-U(j) i

+ qij Fk(U(i) - U(j)) V j # i . (2.3)

In the sequel we shall only consider the case where Wk is Gaussian with mean 0 and
variance ak > 0. Hence (2.3) can be written as

P{Yk+l =jlYk = i} qij exp () U (i) ) dN(O r2)(\)
U(i)-U(j) k

+ qij N(0,ork) (- o, U(i) - U(j)l V ji i(2.4)

where N(m,a)(-) denotes one-dimensional normal measure with mean m and variance a.
We shall refer to {Yk} as the annealing chain with noisy measurements.

We next describe the annealing algorithm modified for imprecise measurements of
the energy differences used to select successive states (by imprecise we mean with
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deterministic error). The annealing algorithm with imprecise measurements consists of
simulating a random process {Zk} which takes values in E. The successive values of
{Zk} are obtained in the same fashion as the annealing chain {Xk} (see Section 1) except
that at each time k the energy difference U(j) - U(i) between the candidate state j and
current state i is replaced by U(j) - U(i) + Pk where Pk is a number. It is seen that the
process {Zk) is a Markov chain ith -ste trnsition probabilities

P{Zk+l i= i Zk = i} = i exp Tk ] if U(j) - U(i) + k > 0

{qij if U(j) - U(i) + 0 (2.5)

for all i, jED with j 3/ i. We shall refer to {Zk} as the annealing chain with imprecise
measurements.

3. Convergence of the Modified Algorithms

In this section we shall give conditions such that the modified annealing chains con-

verge in probability to the set of globally minimum energy states. We first state a

result from [10] on the convergence of a class of nonstationary Markov chains.

Theorem 3.1 [10]: For each eC[0,1) let {N'} be a Markov chain with state space E
which satisfies

clOE(ij) P{N[+1 N = i} < c 2c ( i' j ) (3.1)

for all i, jCE with j 5# i, where ce(i,j) E [0,oo] and cl, c2 are positive constants. Suppose

that {N'} is irreducible for all e > 0 and the irreducible components of {N'} are

aperiodic. Let {Ek} be a sequence of numbers with kEG(0,1) and Ek10, and {Nk} be a

Markov chain with state space E which satisfies

P{Nk+l =jl Nk = i = P{N = I Nki} Vj i .

Let A CE. Then there exists a GE[O,oo] depending only on c(.-,-) and A such that
lim P{NkEA }=liff

k-+oo

00 

E Ek = .
k=l

Remarks:

1. The statement of Theorem 3.1 in [101 assumes that (3.1) holds for all i, jGE, but

it is enough that (3.1) hold only for j3i as stated above.

2. For each T _ 0 let {XT } be the constant temperature (Tk = T) annealing

chain. Suppose Q is irreducible. Then {Xk } is irreducible for all T > 0 and the irredu-
cible components of {Xo} must be aperiodic. Let = exp(- I/T), ek = exp(--/Tk),
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and

max{O, U(j)- U(i)} if qij > 0
if qij = 0

for all i, jCE with j yX i. Then Theorem 3.1 may be applied with Nk = XkT, Nk = Xk,
and A = S to obtain: there exists a 3*C[0,oo] such that limk_,, P{XkES}-+1 iff

E exp - = 0o. (3.2)

If Q satisfies a certain reversibility condition it may be shown that 6* < oo and has a
simple interpretation as the maximum "depth", suitably defined, of all local minima of
U(') which are not global minima; see [2].

We next apply Theorem 3.1 to the modified annealing chains {Yk} and {Zk}. We
shall treat {Yk} in detail and then state the corresponding results for {Zk} without
proof.

Proposition 3.1: Suppose that Tk-*O and

a k = o(Tk) as k-oo.

Then

P{Yk+l =jlYk = i} - P{Xk+l =jlXk = i} as ka-oo (3.3)

for all i, jEG with j # i.

Proof: Fix i, jEC with j y/ i and qij > 0. Let

00 U(j) -U(D + x
ak = qij exp - () U () dN(0, 7cr)(X)

U(i)-U(j) k

bk = qij N(O,ff2) (-oo, U(i) - U(j)] ,

so that (2.4) becomes

P{Yk+1 =jIYk = i} = ak +- bk . (3.4)

Since ak = o(I) we have

lim ak = 0 if U(j)- U(i) < 0, (3.5)
k--oo

lim bk = qij if U(j) - U(i) < 0. (3.6)
k--+oo

Also
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lim bk - qj if U(j) - U(i) = 0 (3.7)
k-.co 2

We make the following

Claim:

qij
ak if U(j) - U(i) = 0 (3.8)

2

ak " qij exp { -U()-U(i) if U(j) -U(i) > 0

bk = o exp U(j) U(i)]] if U(j) - U(i) > 0 (3.10)
Tk

as k-+oo.

Suppose the Claim is true. Then combining (3.4)-(3.10) gives (3.3) as required. It
remains to prove the Claim.

Proof of Claim:

We have

_U( j) U _(i) I- _

=Tk ](U(i)-U(j))/Tk Tak - qij exp )- e- dN(k, 2 )(') (3.11)

after a change of variable. Observe that ark = o(Tk) implies N(O, 2/T)(.) converges
weakly to the unit measure concentrated at the origin. If follows that

lim o 2 e1 d( if U(j) - U(i) = 000 2 2

k- (U(i)U(j e dN(0, )(X) = 1 if U(j) - U(i) > 0. (3.12)

Combining (3.11), (3.12) gives (3.8), (3.9). Finally, if U(j) -- U(i) > 0 then since
Uk = o(Tk)

bk = qij N(0, ok) (-oo, U(i) - U(j)]

ex (u(j) =(i))2 (ex( U(j) - U(i) as k-+oo

2 ck | k

where we have used the standard estimate N(0,1)(x,oo) ' exp(-x 2 /2) for x _ 0. This
proves (3.10) and hence the Claim and the Proposition. nE
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Corollary 3.1: Suppose that Q is irreducible, TklO, and

<k = o(Tk) as k--oo.

Then

lim P{YkES} = 1 iff lim P{XkES} = 1
k--+oo k-+oo

Proof: In the second remark following Theorem 3.1, we showed that Theorem 3.1 may

be applied to {Xk} to obtain that limko, P{XkGS} = 1 iff (3.2) holds. In view of Pro-
position 3.1, Theorem 3.1 may also be applied to {Yk} to obtain that

limk_+~ P{YkES} = 1 iff (3.2) holds with the same value of 8*. "1

Remark: It is not possible to assert in general that

P{Yk+l = ilYk = i} - P{Xk+1 = i IXk = i}. For example, if qii = 0 and qij = 0 for
all jEC with U(j) - U(i) > 0, then P{Xk+l = iIXk = i} is zero but P{Yk+1 = ilYk = i}

is strictly positive, corresponding to the positive probability of not making a transition

to a state with the same or lower energy. This is why we must only require (3.1) holds

for j # i in Theorem 3.1 to obtain Proposition 3.1 and hence Corollary 3.1.

The corresponding results for {Zk} are as follows.

Proposition 3.2: Suppose that Tk-;O and

k = o(Tk) as k-+oo

Then

P{Zk+l = Zk =i}' P{Xk+l =j IXk = i} as k-+oo

for all i, jEC with j $ i.

Corollary 3.2: Suppose that Q is irreducible, TktO and

k = o(Tk) as k-* o.

Then

lim P{ZkGS} = 1 iff lim P{XkGS} = 1.
k-*oo k--oo

4. Tracking the Minimum Energy State

As pointed out above, when implementing the annealing algorithm one normally
keeps track of the minimum energy state visited by the annealing chain up to the

current time. The reason for this is that only convergence in probability of the anneal-

ing chain to the set S of minimum energy states can be guaranteed, and typically the

annealing chain will enter and leave S infinitely often (with probability one). The
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energy differences which are used to select the successive states of the annealing chain
may also be used to recursively compute the minimum energy state visited by the
annealing chain. For the modified algorithms, noisy or imprecise measurements of the
energy differences are used to select the successive states of the modified chains. In this
Section we examine the effect of using these same noisy or imprecise measurements on
computing the minimum energy state visited by the modified chains.

We introduce the following notation. For every m _ n let

i(n,m) = arg min [U(Xk) - U(Xn)]

k-1
j(n,m) = arg min [U(Yk) - U(Yn) + y Wel{Y,,+ly,}] (4.1)

n k m e=n

k-1
k(n,m) = arg min [U(Zk) - U(Zn) + E die l{z,+1 z,}] ,

and

Xn,m = Xi(n,m), Yn,m = Yj(n,m) Zn, m = Zk(n,m) ,

and

Xm = Xl,m Ym = Yl,m, Zm = Zi,m

In words, Xn, m is the minimum energy state visited by Xk between times m and n, while

Yn, m and Zn, m are estimates of the minimum energy states visited by Yk and Zk, respec-
tively, between times m and n. Note that {Xn,m}m> n may be computed recursively
from the values of the energy differences U(Xk+l) - U(Xk) which are generated in simu-

lating {Xk}, and that {Yn,m}m> n and {n, m}m> n may be computed recursively from
the values of the noisy/imprecise energy differences U(Yk+l)--U(Yk) + Wk and
U(Zk+l) - U(Zk) + Ak which are generated in simulating {Yk} and {Zk}, respectively.
Note also that the noise/imprecision on self-transitions of {Yk} and {Zk} is ignored since
it is known when a self-transition is made.

If limko o P{XkCS} = 1 then limn,,, P{xkCS V k _ n} = I , or equivalently,
xkES for large enough k with probability one. It is also clear that this implication does
not hold in general with Xk,xk replaced by Yk,yk or Zk,zk. The problem is that large
initial noise/imprecision can result in Yk4 S or Zk¢ S for all k with positive probability.
A less useful but still relevant result is that if limkoo P{XkES} = 1 then

limn-oo P{xn,kES V k >- n} = 1. We shall show that under suitable conditions this
implication holds with Xk,xk replaced by Yk,Yk or Zk, Zk. As in Section 3 we treat {Yk}
in detail and then give the corresponding results for {Zk} which require little proof.

Let

k-1

Mn,k = z W e 1{y,,+ly} V k _ n . (4.2)
e=n

Intuitively, if P{YnES} is large and mink>n M, k _ 0 with large probability, then
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P{Yn,kES V k _ n} should be large. If the indicator functions in (4.2) were absent
then since the {Wk} are independent, {Mn,k}k> n would be a martingale. However, it is
not hard to see that the presence of the indicator functions biases Mn,k towards nega-
tive values (see (2.1)). Let 9n,k be the r field generated by {Yn,...,Yk, Wn,...,Wk-l} for
k _ n. Also let Pn{'}=P{'IYn1ES} and En{'}=E{-IYnGS} (assume that
P{YnES} > 0).

Lemma 4.1: {Mn,k}k= n is an ({9n,k}k= n, Pn) supermartingale.

Proof: First observe that if {Mn, k}k> n is an ({gn,k}k> n, P) supermartingale then
clearly En{,In,k } < oo and for AGCn,k

E{Mnk+l lAn {(YES} } E{Mn,k lAn {YES} }

En{Mnk+11A} PP{Yn (S} < P{Yn S} = En {MnklA}

since {YnGS}G9n,k, and so {Mn,k}k> n is an ({gn,k}k> n PI) supermartingale.

We show that {Mn,k}k_ n iS an ({n, k}k_ n, P) supermartingale. Clearly Mn,k is
7n, k measurable and E{pIIn,k I} < oo. Furthermore

E{Mn,k+l -Mn,k I 9n,k}

= E{Wk l{Yk+¥Yk} I Yn, ... YkWn -,, Wk_ 1 }

=E{WkP {Yk+l# Y Yk yin, .- Y-,k, Wn ... ,Wk} IYn, .,Yk,Wn, . ,Wk-1}

=E{WkP{Yk+l Yk I Yk,Wk}Yn,**,Yk, Wn,¥k,Wk-l

=E {WkP{Yk+l Yk I Yk,Wk}}
Wk

Co= f X(P{Yk+1 / Yk IYk, Wk = \} -P{Yk+± #Yk IYk,Wk = -X}) dN(0, kr()
0

E{k ]} sup [P{Yk+l YYkWk Wk= X) -P{Yk+l i Yk Yk, Wk =--}]2 x> 0

-- 0 w.p. 1

Here the third equality follows from (2.1), the fourth equality from (2.2), and the final
inequality from (2.1). Hence {Mn,k}k> n is indeed an ({,n,k}k> n, P) supermartingale
and so an ({ n,k}k- n, Pn) supermartingale. EJ



Proposition 4.1: Suppose that
00

k=l

Under this condition, if limkoo P{YkS} = 1 then
limnoo P{yn,kES V k > n} = 1.

Proof: Let

y = min U(j) - min U(i). (4.3)
jEk\S iEE

Then for m _ n

P{Yn, kES V n _ k _ m}

- P{YnES, min [U(Yk) - U(Yn) + Mn,k] > O}
n<k:•m

P{YnES, min Mn,k > -Y}

YkES\S

P {Y (ES, min Mn,k > -}
n<k-m

=P{YES} Pn{ min Mn, k > -- Y}. (4.4)
n<k=m

Now by Lemma 4.1 {Mn, k}k> n is a Pn-supermartingale. Hence by the supermartingale
inequality ([13, Thm. 35.2])

Pnh min Mn,k > -} 1-- En{iNn,mI}
n<k<m 

1 m-1
=1 -- E n { I Z Wk l{Yk+l#Yk} I}

' k=n

> 1 - -1 (4.2 {W5){

1 m-1
-> 1- Eak (4.5)

7 k=n

Combining (4.4), (4.5) and letting m-+oo gives

P{Yn, kES V k _ n} _ P{YnGS} (1 - - k)
Y k=n

and so
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lim inf P{y, kES V k _ n} _> liminf P{YnES}
n--+oo n --+ oo

and the Proposition follows. [

The corresponding result for {Zk} is as follows.

Proposition 4.2: Suppose that

00

P I < oo.
k=l

Under this condition, if limk_.O P{ZkES} = 1 then limn,,o P{zn,keS V k > n} = 1.

Proof: Let -y be given by (4.3). It is easy to see that

P{Zn,keS V k _ n} = P{ZnES} if E l[k I < '

k=n

and so

lim inf P{zn, kCS V k > n} = lim inf P{ZnCS}
n--+oo n -- oo

and the Proposition follows. CE

5. Conclusion

We have considered modifications of the annealing algorithm which allow for noise
or imprecision in the measurements of the energy differences which are used to select

successive states. These modified algorithms like the annealing algorithm involve the
simulation of nonstationary Markov chains. We showed that under suitable conditions

these modified chains exhibit the same convergence in probability to the minimum
energy states as the annealing chain. We also investigated the effect of using the noisy

or imprecise energy differences to track the minimum energy state visited by the
modified chains.

We believe that our results may be relevant to implementing the annealing algo-
rithm in a semi-parallel fashion. For example, consider the problem of updating the

state of a finite lattice, each site of which has a number associated with it (this situation
arises in the problem of image reconstruction from noisy observations where the sites

are pixels and the numbers correspond to grey levels; c.f. [4]). There are many ways to
update the state. It may be done asynchronously with the sites updated sequentially in
either a fixed or random order, or it may be done synchronously with the sites updated

in parallel. Our results suggest that if the state is updated synchronously but with

sufficiently many asynchronous updates (as time tends to infinity and temperature tends
to zero), then the same convergence to the global minima is obtained as with a purely
asynchronous implementation. It is known that in the zero-temperature algorithm the
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asymptotic behavior of asynchronous and synchronous implementations is different (in
the synchronous case there may not even be convergence to a local minimum; c.f. [14]).
Furthermore, it is not clear in the zero-temperature algorithm whether sparse asynchro-
nous updates are sufficient for convergence to a local minimum. It seems that the ran-
domness in the annealing algorithm is helpful in this way.
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