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Abstract

Sexual contact patterns, both in their temporal and network structure, can influence the spread of sexually transmitted
infections (STI). Most previous literature has focused on effects of network topology; few studies have addressed the role of
temporal structure. We simulate disease spread using SI and SIR models on an empirical temporal network of sexual
contacts in high-end prostitution. We compare these results with several other approaches, including randomization of the
data, classic mean-field approaches, and static network simulations. We observe that epidemic dynamics in this contact
structure have well-defined, rather high epidemic thresholds. Temporal effects create a broad distribution of outbreak sizes,
even if the per-contact transmission probability is taken to its hypothetical maximum of 100%. In general, we conclude that
the temporal correlations of our network accelerate outbreaks, especially in the early phase of the epidemics, while the
network topology (apart from the contact-rate distribution) slows them down. We find that the temporal correlations of
sexual contacts can significantly change simulated outbreaks in a large empirical sexual network. Thus, temporal structures
are needed alongside network topology to fully understand the spread of STIs. On a side note, our simulations further
suggest that the specific type of commercial sex we investigate is not a reservoir of major importance for HIV.
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Introduction

Spatiotemporal heterogeneities in sexual contact patterns are

thought to influence the spread of sexually transmitted infections

(STIs). Since epidemics can be a society-wide phenomenon, and

sexual contact patterns can have structure at all scales, we need

population-level sexual network data to understand STI epidem-

ics. Unfortunately, it is hard to collect sexual contact data on that

large a scale. Instead, people have focused on small-scale studies

using interviews [1–3] or contact tracing [4–8], or they have

studied larger sample sets using random sampling surveys [9–13].

Small surveys and contact tracing risk missing large-scale

structures [13] and emergent phenomena. Large-scale surveys,

on the other hand, have mainly collected the number of partners,

but not the connections between them. An alternative way of

gather information about sexual contact patterns, which covers a

large number of people and explicitly maps their connections, is to

use Internet data. In our study, we used a dataset of claimed sexual

contacts between Brazilian escorts (high-end prostitutes) and sex

buyers [14]. Contact patterns of commercial sex cannot be

generalized to a whole population, but they do contain relevant

information that can be used to study possible transmission

pathways within a social group. Our dataset has information about

the time and location of sexual contacts covering six years and

16,748 individuals.

Sexual contact patterns have temporal correlations both at an

individual and at a population level [14]. Much like the network

structure, temporal structures may influence epidemics in several

ways. For example, consider three individuals, A, B, and C,

where B and C are in contact first, and later A and B.

Considering the temporal order of the contacts, disease cannot

spread from A to C via B, but in a standard static network

representation this sequence of events is lost, so C appears

reachable from A via B [15–19]. A conspicuous temporal

structure in human behavior that we also observe in our data is

bursts of activity during which people are very active for a limited

period at a time [20]. Another example of a temporal structure is

the long-term behavioral change in which new individuals enter

the system and others leave. These temporal effects result in a

heterogeneous distribution of inter-event times [14]. To investi-

gate such temporal effects empirically requires time stamps on the

contacts. Internet data sets like ours, as opposed to most above-

mentioned data, contain just such information.

Extending epidemiological models to include space is a common

step towards inclusion of structure beyond the well-mixed

assumption [21,22]. Geography leaves several imprints on the

contact structure and thus on disease spread, making the contact

network larger than a random graph in terms of graph distances; it

also creates the network clusters corresponding to densely

populated areas [14]. These effects stress the importance of

network-data sets covering a wide geographic area. Our data set,

although just a small fraction of the global sexual networks,

probably represents a substantial fraction of the Internet-mediated

escort business of Brazil [14].
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In this paper, we address the question of how the dynamic

contact structure in the contact data of Rocha et al. [14] affects

epidemic spread in general. For most of our study, we look at

spread processes confined to our contact data. Because of the lack

of similar data on other types of sexual interaction, it is hard to

draw conclusions about the role of the escort business on the

spread of STIs in society as a whole. Rather, we investigate the

contribution of topological, temporal, and geographic structure on

transmission pathways within this specific type of commercial sex.

We do, as an example of how our study can be applied to more

specific cases, make a crude estimate of the role of our

commercial-sex network in the spread of HIV in a population-

wide context.

Materials and Methods

The empirical sexual network
The web community from which our dataset is obtained is a

public online forum openly visible online. The full dataset is

available as support information (Dataset S1). It is oriented to

heterosexual males (sex buyers), who evaluate and comment on

their sexual encounters with female prostitutes (sex sellers), both

using anonymous aliases. The posts on the forum are organized by

the city location of the encounter and by type of prostitution as

defined by price level and mode of acquiring customers (for

example, escorts, street sex-workers, brothels). We focus on the

escorts section, the most expensive form of prostitution [23] of the

forum, mostly because it is better organized than the other

sections—each escort is discussed in a unique thread. This forum

can straightforwardly be represented as a bipartite network—we

connect a sex buyer (one type of node) posting in a forum thread to

the escort (another type of node) discussed in the thread. An edge

in this network represents one sexual encounter between two

individuals. The edges are tagged with the dates of the posts,

which we take as an estimate of the time of the sexual encounters,

even though the sex buyers often post about several encounters at

the same session. Consequently, the order of the posts does not

have to be exactly the same as the order of the actual encounters.

The dataset covers the beginning of the community, spanning the

period September 2002 through October 2008. All in all, 50,185

contacts are recorded between 6,642 escorts and 10,106 sex

buyers. Even though the network is spread out over twelve

Brazilian cities, these contacts make up a network with a largest

connected cluster covering more than 97% of the individuals (see

Rocha et al. [14] for a thorough analysis of this sexual network). To

minimize finite-size effects, we discard the initial 1000 days

available in the original data set that correspond to a transient

period with fewer users and sparse encounters. One thousand days

is an adequate choice, since after that period, the average temporal

profile is approximately stationary (see Ref. [14] for details). For

better statistical significance, we sample several windows of 800

days. For example, one network sample (of the original network) is

obtained by taking all nodes and links that occurred in the period

between 1000 and 1800 days; another sample is from the period

between 1001 and 1801 days, and so on up to the interval 1200

and 2000 days. The average number of vertices of all windows is

N = 10,5266145, and the number of contacts (links) is

C = 27,97363,612, where 6 corresponds to the sample standard

deviation.

Apart from the anonymous aliases of sellers and buyers and time

stamps, posts also include the buyers’ grades of the escorts’

performance and information about the types of sexual activity

performed during an encounter, divided into three categories: oral

sex (with or without condom), mouth kissing, and anal sex. All

posts, however, are assumed to report vaginal intercourse (random

inspection supports this assumption). In our simulations, for the

sake of simplicity, unless otherwise stated, we use all available links

and disregard the fact that they possess different levels of risk. Most

contacts between a seller and buyer happen only once. By

inspection, several users report that next time they buy sex, they

prefer a different escort, even if the encounter was graded good.

We can expect that not all Brazilian escorts and customers of such

are present in the data. Furthermore, posting about an encounter

is a low-cost action by the sex-buyer that gives him status in the

community, which makes it likely that the reports from most users

are quite complete. For most of this paper, we ignore this and

study disease spread on a network defined by our data set as it is,

which limits our conclusions to effects of temporal structure

relative to various other scenarios.

The network models
A common method of studying correlations in empirical contact

data is to compare a network with ensembles, where some

properties (like the number of nodes and their degrees) are kept

constant and the rest is randomized. In the randomized network

versions used in this paper, we conserve the bi-partite structure of

the heterosexual network and the number of contacts of each

individual.

Diverse network structures can affect disease spread [24–26]—

one example being clustering (a high density of triangles). Our

network has a large number of 4-cycles (the shortest cycle in a

bipartite graph), and a pronounced community structure,

probably a result of the system being geographically embedded

[13], This effect can be studied by randomizing the contact pairs

in such a way that we choose two links randomly and swap the

respective sex-buyers (we call this new null model random topological,

RT). We do not alter the time stamps of the links; hence, the time

order of the escorts’ contacts is preserved. To remove temporal

correlations, we choose two links randomly and only swap their

time stamps such that the new encounter time is unrelated to the

original, but the network structure is conserved (this model is

named random dynamic, RD). Finally, we make a third randomi-

zation, where both the temporal and network structures are

removed by swapping the time stamps and contact pairs

simultaneously (we call this model random dynamic topological, RDT).

Author Summary

Human sexual contacts form a spatiotemporal network—
the underlying structure over which sexually transmitted
infections (STI) spread. By understanding the structure of
this system we can better understand the dynamics of STIs.
So far, there has been much focus on the static network
structure of sexual contacts. In this paper, we extend this
approach and also address temporal effects in a special
type of sexual network—that of Internet-mediated pros-
titution. We analyze reported sexual contacts, probably the
largest record of such, from a Brazilian Internet community
where sex buyers rate their encounters with escorts. First,
we thoroughly investigated disease spread in this dynamic
sexual network. We found that the temporal correlations in
this system would accelerate disease spread, especially at
shorter time scales, whereas geographical effects would
slow down an outbreak. More specifically, we found that
this contact structure could sustain more contagious
diseases, like human papillomavirus, but not HIV. These
results highlight the importance of prostitution in the
global dynamics of STIs.

Simulated Epidemics in Real Sexual Contact Network
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To put our results in the context of other levels of

epidemiological modeling, we also consider two other contact

models—a static network approach and the dynamic network

model by Volz and Meyers [18]. The static network (SN)

approach considers the network of pairs, with at least one contact

over a time interval of 800 days, and assumes that contacts can

happen with equal probability over all these links. This approach is

common to most network epidemiological studies (e.g., refs.

[2,3,10]). To compensate for the removal of the time stamps, we

assume that each link has a certain probability of being active.

This probability is derived from our original network and depends

on the number of contacts C = 27,973 and number of different

partners K = 21,813 in the window of T = 800 days. Thus, the

chance of having a contact active is, for our data, pactive = C/

KT = 1.603610–3. The idea of Volz and Meyers’s model is that

vertices change partners with a probability pchange while keeping

the number of partners fixed over time. This model assumes that a

vertex is always connected to someone else; however, in our

network, in the interval of 800 days, several vertices have only one

or few days during which a connection is active. This means that

most of the time they are not in a position to catch a disease. To

compensate for this effect, and to allow direct comparison to the

simulations on the empirical network, we modify the Volz–Meyers

(VM) model to capture the brevity of partnerships in the data. In

our formulation of the VM network, each vertex has a chance pk

(proportional to the original number of contacts of the vertex) of

being active per day. This assures that over the course of 800 days,

each vertex has the same number of contacts as in the original

empirical network. For each day, we connect pairs of active

vertices randomly (if the number is odd, the remaining active

vertex is connected the next day that another active vertex is

available). Thus, this network has no temporal correlations. We

generate VM graphs with 10,526 vertices—the same as the

average number of vertices in the sampled windows discussed

above. We obtain the degree distribution from these sampling

windows as well and use it to calculate pk.

Simulation of epidemics
One can model the spread of sexual infection in various ways to

capture the various characteristics of pathogens and contact

patterns, and also to serve different aims of explanation and

prediction. We explore the effects of temporal correlations on

different levels of epidemic modeling. The first disease-transmis-

sion model we consider is the Susceptible–Infected–Removed

(SIR) model. Where all individuals are initially susceptible; upon

contact with an infective, a susceptible becomes infective with

probability r (probabilities are, unless otherwise stated, per-contact

probabilities), and after a fixed time d, a susceptible changes to the

removed state. If d is larger than the vertex lifetime in the network,

we get the limit case known as the Susceptible–Infected (SI) model.

In a static network of finite size and non-zero transmission rate, all

vertices will eventually become infected in the SI model. This is

not necessarily the case in a temporal network, which makes the SI

model more realistic in temporal, compared to static, contact

networks.

To simulate these models in our empirical network, we first map

the sampled network onto a time-ordered list. Each entry in the list

is one pair of vertices and the time of the contact. Different

contacts between the same pair appear as different entries in the

list. Then we divide the list into intervals of 800 days each, as

mentioned above. The pairs are ordered according to their times

of contact. We select the sex-seller of the first contact of an interval

as a source of infection and go through the ordered list infecting a

susceptible vertex in contact with an infective vertex with

probability r. The state of the vertex is updated at each new

contact. A way of modeling the fact that the network is connected

to a background of sexual contacts would be to include multiple

sources of infection. To keep the simulations simple, however, we

leave this for future studies. Since our temporal information has a

resolution of one day, we do not know the order of contacts within

a day. To remove this potential bias, we randomize the order of

contacts within a single day 100 times. In line with other studies,

and to simplify the model, we assume that both infection and

removal (after time d) are immediate, and the transmission

probability is constant.

The SI model is adequate for modeling the early phase of an

outbreak over shorter time scales than the duration of the disease.

SIR, on the other hand, is appropriate for simulating diseases

having a well-defined infectious stage followed by immunity. As an

example, we will investigate HIV at a more detailed level than

simply SI or SIR. Hollingsworth, Anderson, and Fraser [27]

devised a model for HIV-1 infection with a susceptible stage

followed by four distinct infective stages of different infectivity—

one acute infection of high infectivity (over a time-scale of months)

followed by a chronic stage (lasting for years), and another high

infectivity stage (some weeks) followed by zero infectivity before

death. Since our dataset covers only 1000 days, we can omit the

last two stages and arrive at a model characterized by an acute

stage of transmission probability r1 lasting for a time T1, and a

chronic stage of transmission probability r2. We refer to this as

SI1I2 model. Strictly speaking, the transmissibility of HIV-1 also

depends on gender and other factors such as type of sex and the

fact that the viral load transmitted per-contact can spike during the

chronic phase because of comorbidities, among other things. A yet

more detailed model could also include an age-stratified

population, as young infectives tend to influence an outbreak

more. Because they are in the network for longer times, they have

higher chance to establish more contacts and contribute to

transmit the infection [28].

We follow a similar procedure as above to simulate disease

spread in the SN and VM networks. For the initial conditions,

however, since the probability of being infected should increase

with contact rate in case of the empirical networks, we now select

the source of infection randomly (for each realization) and

proportionally to the number of contacts of the vertex. This

procedure compensates for the fact that in the empirical network,

high degree nodes are necessarily selected more than once as a

source of infection. This is because, on average, the chance of an

individual’s being active at a certain moment is proportional to

that individual’s number of contacts. The state of the vertex is

updated after all vertices have been considered. We run the

algorithm 30,000 times to obtain averages for these models.

A key quantity is the fraction of infected vertices V (the outbreak

size). If the time evolution is not explicitly stated we refer to V at

the end of the sampling time window (800 days). We also run

simulations 50 times over different initial conditions to calculate

the average values.

Results

SI model simulation
A straightforward way of investigating the effects of the

temporal and topological structure of contact patterns is to

remove different types of correlations by randomization (see

Section The network models). In Figure 1, we investigate effects of

the time ordering of contacts by using the SI model with r= 1 and

compare the simulated epidemics in the original network with the

epidemics in the three different randomized versions of it. In

Simulated Epidemics in Real Sexual Contact Network
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Figure 1A, we see that an infection spreads much more slowly in

the RD network model, reaching fewer than 50% of the

individuals compared to more than 60% in the original network.

Thus, correlations in the order in which the contacts occur speed

up disease spread. More concretely, one such tendency is that

individuals tend to be intensely active over a period of time

followed by idle periods. When the time stamps are randomized

(RD model), this tendency disappears such that the presence of

individuals in the system is now, on average, longer and the

contacts less frequent. The average time, between an individual’s

first and last active period of, increases from 170.960.1 days in the

original network to 337.560.1 days after randomization. In

addition to correlations in the temporal order of contacts, the

topology of the sexual network can also influence epidemics [3,6–

9,18]. In Figure 1B, we compare the evolution of epidemics in the

empirical network with the RT network model. The evolution of

the fraction of infected individuals ÆV(t)æ seems to grow slowly, at

least during the initial 200 days; afterwards, the topologically

randomized network yields more rapid and pervasive outbreaks

(Figure 1B). The more rapid initial epidemic spread in the original

network results from the high clustering of contacts within cities.

Finally, considering both the temporal and topological information

randomized (RDT model), the curve (evolution of the epidemics,

Figure 1C) is in between those of Figure 1A and Figure 1B. The

fraction of infected vertices increases slowly during the initial 300

days, but not more slowly than in the RD scenario in Figure 1A.

Later it increases more rapidly and by the end of the sampling

period reaches about 70% of the individuals (a little less than in the

RT scenario in Figure 1B, but still, larger than in the original

network).

The limit of high transmission probability r= 1 does not reflect

actual STI contagion; more realistic values lie in the range

0.001#r#0.3 [27–28]. In Figure 2, we present ÆVærel = ÆVræ/
ÆVr= 1æ, the average number of infected vertices (for probabilities

r) relative to the number of infected vertices when the maximum

transmission probability is used (r= 1). The relative number of

Figure 1. Temporal and topological correlations effect on epidemics. In A–C, we plot the time evolution of the fraction of infected vertices
ÆVæ. The curves correspond to SI epidemics in the original network (full line) and in its randomized versions: panel A represents swapping time stamps
(RD); B shows rewiring of the edges and keeping the sellers’ time correlations (RT); and panel C depicts simultaneous randomization of time stamps
and edges (RDT).
doi:10.1371/journal.pcbi.1001109.g001

Figure 2. Evolution of the infection for low transmission probabilities in the SI model. The panel shows the evolution of ÆVærel, the
number of infected vertices for lower transmission probabilities (0.001#r#0.3) relative to the number of infected vertices when we use the
maximum transmission probability (r= 1). The ordinate is in log-scale.
doi:10.1371/journal.pcbi.1001109.g002

Simulated Epidemics in Real Sexual Contact Network
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infected vertices decreases within the initial 100 days and

afterwards reaches a minimum for higher transmission probabil-

ities while continuing to decrease slowly for lower rates. The

minimum, which corresponds to the time lag of secondary

infections, is more pronounced for lower r-values. The fact that

the curves are fairly constant for times longer than 200 days, that

is, that they converge to limiting values, is an indication that our

results for the r= 1 case hold for other transmission probabilities

as well, that is, the time-ordering effects are stronger than the

fluctuations from the stochasticity of the contagion process. For

lower r-values, the curves decrease monotonically, which indicates

the existence of an epidemic threshold somewhere between,

r= 0.01 and r= 0.001, which we investigate more cautiously

below.

We note that there is a large diversity of outbreaks even for

r= 1. In Figure 3, we measure the probability distribution P(V) of

outbreak sizes V. This, we hypothesize, is a general phenome-

non—temporal constraints increase the diversity of outbreaks

because they restrict the possible infection paths in the network.

There is, however, a local maximum where, for r= 1, a fraction of

about 0.75 of the vertices gets infected, setting a characteristic

outbreak size. This local maximum depends on the transmission

probability and decreases for lower values. Another observation is

that the outbreak-size distribution becomes less heterogeneous for

lower r-values. The peak on the very left of the graph indicates

that the disease is likely to die out. Note that the network also

contains some isolated connected components that, once infected,

do not spread the infection to the giant component.

To illustrate the effect of different sexual activities, we show the

outbreak size distribution for the original network considering only

the encounters that involve oral sex without condom, and mouth

kissing (Figure 3B). This specific network has roughly the same

outbreak-size distribution (similar shape and scale) as the original

network, despite being about half as dense.

Returning to our original network, we investigate the effect of

varying r, and see that the average outbreak size ÆVæ is an

approximately linear function of transmission probability (see

Figure 4A). From the figure, it is evident that the epidemic

outbreak is practically absent for transmission probabilities lower

than about 0.19—a de facto threshold effect. Looking in more

detail, one can see that this threshold effect is due to the fact that

the mean value of large outbreaks vanishes and that the number of

small outbreaks increases as rR0 (cf. Figure 3). To investigate

whether this threshold value r* is an artifact of the finite-size

sampling, we use different sampling windows from the complete

dataset and see whether the threshold values converge to a

common value for different starting points in the dataset. The

threshold values should converge to a limit value as the network

structure trends toward a steady state. Each window represents the

same duration of time (800 days), but simply starts at a different

time (T0) in the original data set. We take the crossing point

between the fit of the fraction of infected vertices as a function of r
to a line and the line of zero secondary infections as an estimate of

the threshold value. We see in Figure 4B the apparent

convergence of the threshold estimates to values at about

r* = 0.1960.01 for increasing T0, which is our estimated threshold

value for this contact pattern. This threshold seems slightly smaller

for the RDT, but significantly smaller for the SN and VM models

(Figure 5A–C).

SIR simulation results
We plot the average outbreak size ÆVæ as a function of the

duration of the infective stage d in Figure 6A. Here, we assume

the maximum transmission probability r = 1. We proceed to

identify estimated threshold values by performing fits of second-

order polynomials to the fraction of infected individuals and

identify the crossing point with the zero secondary infection

line. Performing a similar analysis as for the SI model’s

transmission probability threshold, but now for the duration of

the infective state, we find that the d-threshold converges to

d* = 3161 days.

Now, fixing the infective stage to d= 91 days, which is roughly 3

months and well above our estimated threshold of d*, we perform

SIR simulations for different transmission probabilities and

compare the outbreak sizes by using the original network, the

randomized version (RDT), a static (SN), and a dynamic network

(VM) (Figure 5D–F). For all cases, the thresholds are above

r* = 0.2, and the final outbreak size is always larger for the

empirical network, suggesting that the temporal correlations, the

essential difference between the raw empirical contact patterns,

and the models accelerate transmission.

SI1I2 simulation results
Now we turn to the results of the SI1I2 simulation of HIV

spread. We fix the acute infective period at T1 = 91 days and study

Figure 3. Comparison of the outbreak size distributions for different contagion pathways. In panel A, we plot the probability distribution
P(V) of the outbreak sizes V for different transmission probabilities, in the SI model, for the original network, and in panel B for the network
considering only encounters with oral sex without condom, and mouth kissing (r= 1 and SI model).
doi:10.1371/journal.pcbi.1001109.g003

Simulated Epidemics in Real Sexual Contact Network
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some different combinations of estimated transmission probabil-

ities available in the literature for different societies by using lower

(r1 = 0.005 and r2 = 0.0005) and higher (r1 = 0.01 and r2 = 0.001)

bounds [27,29]. In Figure 4A, we see that the threshold

transmission probability of the SI model is higher than all these

values, so we already know that the SI1I2 model on the actual data

is below the epidemic threshold. In Figure 7, we plot the average

time evolution of the outbreak size for both our empirical temporal

network (Figure 7A) and the RDT contact model (Figure 7B). The

average outbreak sizes are, as expected, very low (a fraction of

Figure 4. Epidemic threshold for SI model. Panel A displays the average outbreak size ÆVæ as a function of the transmission probability. The line
is a linear trend least square fitted to the data in the interval 0.3#r#1. The abscissa is in log-scale. Panel B shows the threshold r-value (estimated by
the crossing of the linear fitting and the zero-size outbreak line) as a function of the beginning of the sampling window.
doi:10.1371/journal.pcbi.1001109.g004

Figure 5. Transmission probability and outbreak size for SI and SIR models. Outbreak size versus transmission probabilities for (A–C) SI and
(D–F) SIR epidemic models. Each panel shows the results for the empirical and for a random network. The abscissa is in log-scale.
doi:10.1371/journal.pcbi.1001109.g005

Simulated Epidemics in Real Sexual Contact Network
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about 10–5 of the population) for both these contact patterns. For

the RDT model and r1 = r2 = 0.01, the system is just above the

epidemic threshold, as can be seen by its convex curve in

Figure 7B. A conspicuous temporal feature is that, for the

empirical network, the effect of a larger transmission probability of

the chronic infection is very small—the r1 = r2 = 0.01 and

r1 = 0.01, r2 = 0.001 curves are almost congruent. For the RDT

contact structure, the more homogeneous temporal pattern allows

the chronic infection to play a greater role, so these two curves

diverge after about 200 days, which is about the average interval

between two consecutive contacts.

Discussion

We simulate the spread of infection in what is probably the

largest network of self-reported sexual contacts yet recorded. Our

data come from a web community of sex buyers who discuss their

encounters with escorts. Although the network is spread out over

twelve cities, it is to a large extent connected so that a disease could

spread from most parts of the system to most other parts. As with

any result based on a subset of a network, we should be cautious

about extrapolating our results to the entire society, especially

since it is hard to compensate for missing links with the

information we have. The escorts in our dataset make up about

one percent of all Brazilian sex sellers (of a total of about one

million [30]). On the other hand, the escorts are a small fraction of

all sex-sellers, and we can tell by the way the average degree

(number of partners) converges that the sampling time is longer

than an escort’s typical duration in the business [14]. Another

complication when it comes to generalizing the results of the paper

to a society as a whole is that our sexual network is not an isolated

system. It is possible that the infection leaves the community and

eventually returns through other individuals. In that case, our

model would underestimate the impact of the network in the

outbreak. Furthermore, commercial sex is not necessarily driven

by the same mechanisms as regular sexual interaction. So, since

our data is not comprehensive enough to infer the impact of

prostitution on disease spread, we focus on how temporal

correlations in the empirical data affect results from random and

well-mixed models. From studying the SI model with a 100%

Figure 6. Epidemic threshold for SIR model for r = 1. Panel A shows the average outbreak size ÆVæ as a function of the duration of the infective
stage d. The line is a second-order polynomial fit to the data in the interval 42 days #d#112 days. Panel B shows the time of such crossing point as a
function of the beginning of the sampling window, T0.
doi:10.1371/journal.pcbi.1001109.g006

Figure 7. Evolution of the outbreak size for SI1I2 model. The increase in the number of infected vertices, V, using the simulated SI1I2 model in
panel A original network and panel B in a randomized version (RDT network).
doi:10.1371/journal.pcbi.1001109.g007
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transmission probability in our sexual network, we conclude that

temporal correlations speed up the epidemics, especially in the

early phase of superlinear growth. This effect has important

implications both for disease modeling, implying that temporal

correlations in contact patterns should not be underestimated, and

for intervention methods (like targeted vaccination), where

temporal structures could potentially be used to detect important

individuals. Furthermore, the temporal effects seem to cause well-

defined and relatively high epidemic thresholds, unlike studies of

model networks with power-law degree distributions [10] where

outbreaks can occur of any non-zero transmission probability. For

purposes of comparison, in a finite-sized scale-free network and

Susceptible-Infected-Susceptible epidemics with recovery m= 1,

rcritical = Ækæ/Æk2æ (where k is the number of different partners of an

individual [31]), gives rcritical,0.043, using our network. The

network structure (apart from the contact-rate distribution), on the

other hand, slows down outbreaks. Our network has a high density

of short cycles and community structure, reflecting the fact that

most sex buyers buy sex in one region, presumably their

hometown. Both factors, many short clusters and distinct

communities are known to slow down diffusion in networks

[24–26].

Most of our analysis is at a general STI level and indicates that

our network is not dense enough to support STI outbreaks for

chronic diseases with transmission probabilities lower than

r= 0.19. The fact that endemic diseases with arguably lower

transmission probabilities exist points to the importance of the

background sexual contacts. Because of the incompleteness of our

data, this does not completely exclude the possibility of escort

prostitution as a reservoir of STIs, but it points to a more complex

picture. In the support information (Text S1), in a crude

assessment of our dataset contribution to the general STI spread,

we suggest that it would only affect the degree-correction of R0 of

STIs by a few percent. We also exemplify how temporal structures

can affect the spread of a specific pathogen, HIV-1, by simulations

of a refined compartmental model. The simulation results indicate

that our empirical network alone cannot sustain an outbreak of

HIV-1. In general agreement with empirical research [32,33], our

results suggest that pathways (like unsafe man-to-man sex, or

intravenous drug use) other than commercial sex are needed to

explain the endemic state of HIV epidemics in Brazil [34]. The

other studies are, however, from countries other than Brazil;

however, they are inconclusive if not controversial [35,36].

We believe that the study of temporal aspects of contact patterns

is, in general, a promising direction for the future. We intend to

investigate how far our conclusions can be generalized to other

types of cultures, other forms of commercial sex, and hopefully to

non-commercial sexual contact patterns.

Supporting Information

Dataset S1 We provide the full dataset in .csv format containing

the sexual network used in this paper. Specific information about

the format of the data is inside the file.

Found at: doi:10.1371/journal.pcbi.1001109.s001 (1.20 MB CSV)

Text S1 Augmenting well-mixed models. We make a short

analysis of the contribution of the studied commercial sexual

network to epidemics if this network is embedded in a larger

network of sexual contacts.

Found at: doi:10.1371/journal.pcbi.1001109.s002 (0.20 MB PDF)
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