
Hydrol. Earth Syst. Sci., 21, 4115–4130, 2017

https://doi.org/10.5194/hess-21-4115-2017

© Author(s) 2017. This work is distributed under

the Creative Commons Attribution 3.0 License.

Simulated hydrologic response to projected changes in precipitation

and temperature in the Congo River basin

Noel Aloysius1,a and James Saiers1

1School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
anow at: Department of Food, Agriculture & Biological Engineering and Aquatic Ecology Laboratory, Department of

Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, USA

Correspondence to: Noel Aloysius (aloysius.1@osu.edu)

Received: 31 March 2016 – Discussion started: 6 April 2016

Revised: 16 June 2017 – Accepted: 25 June 2017 – Published: 16 August 2017

Abstract. Despite their global significance, the impacts of

climate change on water resources and associated ecosystem

services in the Congo River basin (CRB) have been under-

studied. Of particular need for decision makers is the avail-

ability of spatial and temporal variability of runoff projec-

tions. Here, with the aid of a spatially explicit hydrolog-

ical model forced with precipitation and temperature pro-

jections from 25 global climate models (GCMs) under two

greenhouse gas emission scenarios, we explore the variabil-

ity in modeled runoff in the near future (2016–2035) and

mid-century (2046–2065). We find that total runoff from the

CRB is projected to increase by 5 % [−9 %; 20 %] (mean

– min and max – across model ensembles) over the next

two decades and by 7 % [−12 %; 24 %] by mid-century.

Projected changes in runoff from subwatersheds distributed

within the CRB vary in magnitude and sign. Over the equa-

torial region and in parts of northern and southwestern CRB,

most models project an overall increase in precipitation and,

subsequently, runoff. A simulated decrease in precipitation

leads to a decline in runoff from headwater regions located

in the northeastern and southeastern CRB. Climate model se-

lection plays an important role in future projections for both

magnitude and direction of change. The multimodel ensem-

ble approach reveals that precipitation and runoff changes

under business-as-usual and avoided greenhouse gas emis-

sion scenarios (RCP8.5 vs. RCP4.5) are relatively similar

in the near term but deviate in the midterm, which under-

scores the need for rapid action on climate change adapta-

tion. Our assessment demonstrates the need to include un-

certainties in climate model and emission scenario selection

during decision-making processes related to climate change

mitigation and adaptation.

1 Introduction

Sustainable management of water resources for food produc-

tion, supply of safe drinking water and provision of adequate

sanitation present immense challenges in many countries of

central Africa where the Congo River basin (CRB) is located

(IPCC, 2014; UNEP, 2011; World Food Program, 2014). The

economies of the nine countries that share the waters of the

CRB are agriculture based (World Bank Group, 2014) and

therefore are vulnerable to the impacts of climate change.

Despite the abundant water and land resources and favor-

able climates, the basin countries are net importers of sta-

ple food grains and are far behind in achieving Millennium

Development Goals (Bruinsma, 2003; Molden, 2007; UNEP,

2011). Appropriation of freshwater resources is expected to

grow in the future as the CRB countries develop and expand

their economies. At the same time, climate-change-related

risks associated with water resources will also increase sig-

nificantly (IPCC, 2014).

Historical, present and near-future greenhouse gas emis-

sions in the CRB countries constitute a small fraction of

global emissions; however, the impacts of climate change

on water resources are expected to be severe due to the re-

gion’s heavy reliance on natural resources (e.g., agriculture

and forestry) (Collier et al., 2008; DeFries and Rosenzweig,

2010; Niang et al., 2014). The limited adaptation capacity in

the CRB region is expected to cause water and food security
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challenges, which, in turn, can lead to ecosystem degradation

and increased greenhouse gas emissions (Gibbs et al., 2010;

IPCC, 2014; Malhi and Grace, 2000).

Strategies for addressing stresses on CRB water resources,

including revival of rural economies (largely agriculture

based), achieving millennium development goals and envi-

ronmental conservation, would benefit from detailed infor-

mation on the spatial and temporal variability of water bal-

ance components under different climate projection path-

ways. The effect of climate change on water resources can

be investigated by incorporating climate change projections

(e.g., precipitation and temperature) in simulation models

that reliably represent the spatial and temporal variability of

the CRB’s hydrology. Such a framework could be applied to

project changes in storage and runoff, and hence freshwater

availability, under different socioeconomic pathways that af-

fect climate trajectories.

A predictive framework of the CRB’s hydrology is hin-

dered by insufficient data and too few evaluations of mod-

els against available data (Beighley et al., 2011; Wohl et

al., 2012). Basin-scale water budgets estimated from land-

based and satellite-derived precipitation datasets reveal sig-

nificantly different results, and modeled runoff shows only

qualitative agreement with corresponding observations (Als-

dorf et al., 2016; Beighley et al., 2011; Lee et al., 2011;

Schuol et al., 2008). Tshimanga and Hughes (2012, 2014) re-

cently developed a semi-distributed hydrologic model capa-

ble of simulating runoff in CRB. This work crucially identi-

fied approaches suitable for approximating runoff generation

at the basin scale, although the spatial resolution of the model

predictions is rather coarse for supporting regional water

management and regional planning efforts. These regional

planning efforts must take into account variability and un-

certainties stemming from climate model selection and pro-

jected greenhouse gas emissions, but, with respect to fresh-

water runoff projections for the CRB, these issues have been

inadequately addressed.

The goals of this study are to (i) develop a spatially explicit

hydrology model that uses downscaled output from general

circulation models (GCMs) and is suitable for simulating

the spatiotemporal variability of runoff in the CRB; (ii) test

the ability of the hydrological model to reproduce histori-

cal data on CRB river discharges using both observed and

GCM-simulated climate fields; (iii) quantify the sensitivity

and uncertainty of modeled runoff projections to GCM se-

lection; (iv) use the hydrologic model with individual GCMs

and multi-GCM ensembles to project near-term (2016–2035)

and midterm (2046–2065) changes in runoff for two green-

house gas emission scenarios. We focus on the runoff pro-

jections because streams and rivers will serve as the primary

sources of freshwater targeted for human appropriation (Bur-

ney et al., 2013; Molden, 2007).

2 Materials and methods

2.1 The Congo River basin

The Congo River basin, with a drainage area of

3.7 million km2, is the second largest river basin in the

world by area and discharge (Fig. 1, average discharge of

∼ 41 000 m3 s−1) (Runge, 2007). The basin extends from

9◦ N to 14◦ S, while the longitudinal extent is 11 to 35◦ E. A

total of nine countries share the water resources of the basin.

Nearly a third of the basin area lies north of the Equator.

Due to its equatorial location, the basin experiences a range

of climate regimes. The northern and southern parts have

strong dry and wet seasons, while the equatorial region has a

bimodal rainy season (Bultot and Griffiths, 1972). Much of

the rain in the northern and southern CRB occurs in June–

July–August (JJA) and December–January–February (DJF),

respectively. The primary and secondary rainy seasons in the

equatorial region are September–October–November (SON)

and March–April–May (MAM; see Bultot and Griffiths,

1972 and Fig. S1 in the Supplement). The mean annual

precipitation is about 1500 mm. Rainforests occupy nearly

45 % of the basin and are minimally disturbed compared to

the Amazon and southeast Asian forests (Gibbs et al., 2010;

Nilsson et al., 2005). Grassland and savannah ecosystems,

characterized by the presence of tall grasses, closed-canopy

woodlands, low trees and shrubs, occupy another 45 %

(Adams et al., 1996; Bartholomé and Belward, 2005;

Hansen et al., 2008; Laporte et al., 1998). Water bodies

(lakes and wetlands) occupy nearly 2 % of the area and

are concentrated mostly in the southeastern and western

equatorial parts of the CRB (Fig. 1). Soils of the CRB vary

from highly weathered and leached Ultisols to Alfisols,

Inceptisols and Oxisols (FAO/IIASA, 2009; Matungulu,

1992). Most soils are deep and well-drained, but they are

very acidic, deficient in nutrients, have low capacity to

supply potassium and exhibit a low cation exchange capacity

(Matungulu, 1992).

In order to compare regional patterns in precipitation and

runoff, we divided the basin into four regions: (i) northern

Congo (NC), (ii) equatorial Congo (EQ), (iii) southwestern

Congo (SW) and (iv) southeastern Congo (SE). The EQ re-

gion covers most of the rainforest. The SE region consists

of numerous interconnected lakes and wetlands. Most of the

CRB’s population is concentrated in the NC, SE and SW

regions (Center for International Earth Science Information

Network (CIESIN) Columbia University et al., 2005).

2.2 Hydrologic model for the Congo River basin

We used the Soil Water Assessment Tool (SWAT), a physi-

cally based, semi-distributed watershed-scale model that op-

erates at a daily time step (Arnold et al., 1998; Neitsch

et al., 2011). The hydrological processes simulated include

evapotranspiration, infiltration, surface and subsurface flows,
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Figure 1. Congo River basin: the river basin boundary, the extent of the rainforest, locations of lakes and wetlands, and the locations

of streamflow gages are shown. The “all other vegetation” category includes grasslands and savanna ecosystems, and all managed areas.

Bartholomé and Belward (2005) provide further details on land cover in the Congo River basin.

streamflow routing and groundwater recharge. The model

has been successfully employed to simulate river basin hy-

drology under a wide variety of conditions and to investigate

climate change effects on water resources (Faramarzi et al.,

2013; Krysanova and White, 2015; Schuol et al., 2008; Tram-

bauer et al., 2013; van Griensven et al., 2012).

We delineated 1575 watersheds within the CRB based

on topography (Lehner et al., 2008). Watershed eleva-

tions varied between 15 and 2700 m with a mean value of

680 m a.m.s.l. (above mean sea level). Each watershed con-

sisted of one stream section, where near-surface groundwater

flow and overland flow accumulated before being transmit-

ted through the stream channel to the watershed outlet. Wa-

tersheds were further divided into hydrologic response units

(HRUs) based on land cover (16 classes; Bartholomé and

Belward, 2005), soils (150 types; FAO/IIASA, 2009) and to-

pography. The runoff generated within each watershed was

routed through the stream network using the variable storage

routing method. The average watershed size and the num-

ber of HRUs within each watershed were 2300 km2 and 5,

respectively. We also included wetlands and lakes as natu-

ral storage structures that regulated the hydrological fluxes at

different locations within CRB (Fig. 1). Detailed information

was not available for the all the lakes; therefore, we incorpo-

rated the largest 16 lakes (Table S1 in the Supplement).

Simulated runoff, estimated for each HRU and aggregated

at the watershed level, was generated via three pathways:

overland flow, lateral subsurface flow through the soil zone

and release from shallow groundwater storage. The curve

number and a kinematic storage routing method were used

to simulate overland and lateral subsurface flows, and a non-

linear storage–discharge relationship was used to simulate

groundwater contribution (see Arnold et al., 1998; Neitsch

et al., 2011 and the Supplement). A power-law relationship

was employed to simulate the lake area–volume discharge

(see the Supplement and Neitsch et al., 2011). The poten-

tial evapotranspiration was estimated using the temperature-

based Hargreaves method (Neitsch et al., 2011). The ac-

tual evapotranspiration was estimated based on available soil

moisture and the evaporative demand (i.e., potential evapo-

transpiration) for the day. Additional details on model devel-

opment and calibration are provided in the Supplement.

2.3 Model simulation of historical hydrology with

observed climate data

We ran the hydrology model for the period 1950–2008. Es-

timates of observed daily precipitation, and minimum and

maximum temperatures needed to calculate potential evapo-

transpiration were obtained from the Land Surface Hydrol-

ogy Group at Princeton University (Sheffield et al., 2006). In

addition, measured monthly streamflows were obtained at 30
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gage locations (Fig. 1) that had at least 10 years of records

(Global Runoff Data Center, 2011; Lempicka, 1971; Voros-

marty et al., 1998).

The model was calibrated using observed streamflows

for the period 1950–1957 at 20 locations. The locations of

streamflow gages and time period were chosen such that they

adequately captured climatic, land cover and topographic

variability within the CRB. The number of model parameters

estimated by calibration varied from 10 to 13, depending on

the location of flow gages (e.g., gages with lakes within their

catchment area have more parameters). The calibration in-

volved minimizing an objective function defined as the sum

of squared errors between observed and simulated monthly

average total discharge, baseflows (estimated by the base-

flow separation method of Nathan and McMahon, 1990) and

water yield. The Gauss–Marquardt–Levenberg algorithm, as

implemented in a model-independent parameter estimation

tool (Doherty, 2004), was used to adjust the fitted parame-

ters and minimize the objective function. Parameter estima-

tion was done in two stages. First, parameters for the water-

sheds in the upstream gages were estimated. Then, the pa-

rameters for the downstream gages were estimated. To test

the calibrated model, simulated streamflows were compared

to streamflows measured at the same 20 locations but during

a period outside of calibration (i.e., 1958–2008), as well as at

10 additional locations that were not used in the calibration.

2.4 Hydrologic simulations with simulated climate

Historical climate simulations for the period 1950–2005 and

climate projections to 2065 for two greenhouse gas emis-

sion scenarios (Representative Concentration Pathways –

RCPs), mid-range mitigation emission (RCP4.5) and high

emission (RCP8.5), were used to drive the hydrologic model.

The RCP4.5 scenario employs a range of technologies and

policies that reduce greenhouse gas emissions and stabilize

radiative forcing at 4.5 W m−2 by 2100, whereas the RCP8.5

is a business-as-usual scenario, where greenhouse gas emis-

sions continue to increase and radiative forcing rises above

8.5 W m−2 (Moss et al., 2010; Taylor et al., 2012). We used

monthly precipitation and temperature outputs provided by

25 GCMs (Table 1) for the Fifth Assessment (CMIP5) of the

Intergovernmental Panel on Climate Change (IPCC).

GCM outputs may exhibit biases in simulating regional

climate. These biases, which are attributable to inadequate

representation of physical processes by the models, prevent

the direct use of GCM output in climate change studies (Ran-

dall et al., 2007; Salathé Jr. et al., 2007; Wood et al., 2004).

Hydrological assessments that use GCM computations as in-

put inherit the biases (Salathé Jr. et al., 2007; Teutschbein and

Seibert, 2012). To mitigate this problem, we implemented a

statistical method (Li et al., 2010) to bias correct the monthly

historical precipitation and temperature data. In brief, the

method employs a quantile-based mapping of cumulative

probability density functions for monthly GCM outputs onto

Table 1. Global climate models whose outputs are used in this

study. Further details about comparison of model outputs and key

references for GCMs are given in Aloysius et al. (2016).

Model number Model name

M1 ACCESS1-3

M2 bcc-csm1-1

M3 BNU-ESM

M4 CanESM2

M5 CCSM4

M6 CESM1-CAM5

M7 CNRM-CM5

M8 CSIRO-Mk3-6-0

M9 EC-EARTH

M10 FIO-ESM

M(11–13)∗ GISS-E2-H∗

M(14–16)∗ GISS-E2-R∗

M17 HadGEM2-CC

M18 HadGEM2-ES

M19 INM-CM4

M20 IPSL-CM5A-LR

M21 MIROC5

M22 MIROC-ESM

M23 MPI-ESM-LR

M24 MRI-CGCM3

M25 NorESM1-M

∗ These climate models provide outputs from

three different physics ensembles. We treat each

as a separate model.

those of gridded observations in the historical period. The

bias correction is extended to future projections as well. The

observed data used in the modeling and bias correction have

some limitations. That is, the number of precipitation gages

decreased over the period from 1950 to 1990, and the density

of the gages is sparse compared to the size of the river basin

(see Sect. 3.4 and the Supplement). However, we assumed

that the available ground-based observations combined with

satellite-based and reanalysis data adequately captured the

spatiotemporal variability in precipitation. Studies by Munz-

imi et al. (2014) and Nicholson (2000) draw similar conclu-

sions.

The simulated monthly precipitation and temperature val-

ues were temporally downscaled to daily values for use in the

CRB hydrology model. We used the 3-hourly and monthly

observed historical data developed for the Global Land Data

Assimilation System (Rodell et al., 2004; Sheffield et al.,

2006) and the bias-corrected monthly simulations to gener-

ate 3-hourly precipitation and temperature data, which were

subsequently aggregated to obtain daily values (see the Sup-

plement). The hydrological model was forced with the bias-

corrected and downscaled daily climate for the period 1950–

2065. Due to the lack of information on the effect of CO2 on

the 16 land cover classes simulated, the ambient CO2 con-

centration was maintained at 330 ppm throughout the simu-
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lation period. A recent study suggests that, in tropical rain-

forest catchments, elevated CO2 has little impact on evapo-

transpiration but results in increased plant assimilation and

light use efficiency (Yang et al., 2016).

A total of 50 projections (25 RCP4.5 and 25 RCP8.5 pro-

jections; see Table 1) were compiled and analyzed. Results of

individual and multimodel means (unweighted average of all

models (MMs) and an average of select models – SMs) for

the near-term (2016–2035) and midterm (2046–2065) pro-

jections are presented.

Accessible flows (AFs), which exclude surface runoff as-

sociated the storm events, were estimated by applying a base-

flow separation method described in Nathan and McMa-

hon (1990).

3 Results and discussion

3.1 Historical simulations

Historical observations of average annual precipitation vary

from 1100 mm in the southeastern portion of the CRB to

1600 mm in the CRB’s equatorial region. We compared the

GCM-simulated annual precipitation and its interannual vari-

ability during the historical period with observations from

30 locations within the CRB (Fig. 2). The simulated interan-

nual variability among the climate models (vertical bars in

Fig. 2) lies within the range of the observed variability (hor-

izontal bars in Fig. 2). The linear regression slope of 1.16

(p < 0.001; Fig. 2) between the annual observed and the

multimodel means shows that bias-corrected precipitation is

slightly overestimated but not significantly. Observations of

seasonal precipitation are reproduced similarly well by the

GCM models (Fig. S2 and Table S2). The good agreement

between GCM-simulated and observed rainfall is expected

given our bias correction of the GCM output.

We compared the simulated monthly runoff at 30 locations

with observations (Fig. 3a and Table S3). The colored points

compare observed mean annual runoff at the 30 gage loca-

tions with historical simulations (hydrological model forced

with observed climate), while the vertical and horizontal bars

show the modeled and observed interannual variability, re-

spectively. The shades of colors (from light green to yellow

and red) reveal the model’s skill in simulating the monthly

flows in the historical period. The Nash–Sutcliffe coefficient

of efficiency (NSE), a measure of relative magnitude of resid-

ual variance compared to the monthly observed streamflow

variance (Legates and McCabe Jr., 1999; Nash and Sutcliffe,

1970), varies between 0.01 and 0.86 (color scale in Fig. 3a).

The NSE can range from negative infinity to 1, with val-

ues between 0.5 and 1 considered satisfactory (Moriasi et al.,

2007). A total of 17 of the 30 gages show NSE greater than

or equal to 0.5. Higher NSE values at locations on both sides

of the Equator, particularly at major tributaries (NSE ∼ 0.60,

gages 1 to 8 in Figs. 1 and S3) suggest that the model re-

Figure 2. Comparison of observed and bias-corrected GCM-

simulated average annual precipitation for 30 catchments with

streamflow gages (shown in Fig. 1) in the historical period (1950–

2005). The y-axis values are statistically downscaled GCM-

simulated precipitation. Black dots compare multimodel means

with observed precipitation, black horizontal bars show observed

interannual variability (±1 SD) and red (blue) vertical bars show

maximum (minimum) range of modeled interannual variability

(±1 SD) within the 25 climate model outputs. The black line is

the linear regression fit between observed and multimodel mean

of simulated precipitation (y = 1.16 ± 0.204x − 283.4, p < 0.001,

R2 = 0.825); parameter bounds indicate the 95 % confidence inter-

val. The gray dashed line is the 1 : 1 line.

liably simulates streamflows under different climatic condi-

tions. High NSE values also indicate that the seasonal and an-

nual runoff simulations, including the interannual variability

in the historical period, are in good agreement with obser-

vations. The catchment areas of the 30 gages vary between

5000 and 900 000 km2 (excluding the last two downstream

gages; Table S3) and encompass a range of land cover and

climatic regions on both sides of the Equator; thus, the hy-

drology model exhibits reasonable skill in simulating runoff

over a wide range of watershed conditions.

Comparison of modeled runoff forced with GCM-

simulated and observed climate (Fig. 3b) reveals generally

acceptable runoff simulations in the CRB. The black dots

and red (blue) vertical bars in Fig. 3b show multimodel mean

and maximum (minimum) range of interannual variability in

the 25 historical GCM simulations. The results suggest that

model–data agreement in precipitation translates to similarly

acceptable runoff simulations.

Runoff patterns reflect seasonal rainfall that varies asym-

metrically on either side of the Equator (see Fig. S1). For

example, the observed peak runoff at streamflow gages 2
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Figure 3. Comparison of observed and simulated annual runoff at the 30 streamflow gage locations (shown in Fig. 1). (a) Historical simu-

lations with observed climate: the positions of the colored dots compare annual values of observed and simulated historical runoff; the dots’

colors (see legend) show the Nash–Sutcliffe coefficient of efficiency (NSE) of observed vs. simulated monthly streamflows; and the black

horizontal and vertical bars show observed and modeled interannual variability (±1 SD), respectively. The black line indicates the linear re-

gression fit between annual simulated and observed runoff (y = 0.865 ± 0.158x + 36.63, p < 0.001, R2 = 0.82), parameter bounds indicate

the 95 % confidence interval. (b) Simulations in the historical period with GCM-simulated climate: black dots show the multimodel mean; red

(blue) vertical bars show the modeled (forced with GCM-simulated historical climate) maximum (minimum) interannual variability (±1 SD)

within the 25 simulations; and gray circles show the multiyear mean of individual GCM simulations. The gray dashed lines in (a) and (b) are

the 1 : 1 lines. The GCM-simulated outputs are statistically downscaled and bias corrected.

and 6 located north and south of the Equator (see Fig. 1)

occur near the end of the rainy seasons – during September–

October and March–April, respectively (Fig. 4). Augmented

by flows from northern and southern tributaries (e.g., gages 1,

2, 4 and 6) and by high precipitation in the tropical equatorial

watersheds during the two wet seasons (MAM and SON), the

main river flows (downstream of gage 3 in Fig. 1) show low

variability (Fig. 4). Differences in streamflow variability be-

tween the main river and its tributaries are illustrated through

comparison of the coefficient of variation, which equals only

0.23 at the basin outlet (gage 8), but is 0.77 and 0.40 along the

northern tributary (gage 2) and southern tributary (gage 4),

respectively.

Runoff in the northern (NC) and southern (SW and SE)

watersheds is strongly seasonal with long dry seasons, but

this is not the case in the equatorial region (Fig. 5). Aver-

age watershed runoff varies between 20 and 70 mm during

dry seasons to 100–140 mm during wet seasons in the NC,

SW and SE. In the equatorial region, seasonal runoff varies

between 100 and 150 mm with the highest values in SON.

Overall, the precipitation–runoff ratio is about 0.30 in the

CRB. The AF that can be appropriated for human use, and

hence excludes runoff associated with flood events, is about

70 % of the total runoff.

3.2 Future projections in precipitation and runoff

3.2.1 Precipitation

Aloysius et al. (2016) showed that GCM projections of tem-

perature generally increase under both emission scenarios,

in line with the historical upward trend for Africa (Hulme

et al., 2001); however, precipitation projections contain large

uncertainties. The modeled near-term (2016–2035) precip-

itation projections in the CRB vary between −4 and 6 %

with a multimodel mean (MM) change of 1 % under the two

emission scenarios relative to the reference period (1986–

2005). Regionally, the northern CRB shows the largest an-

nual increase in precipitation, followed by the southwestern

and equatorial regions. However, the intermodel variability

is larger than the MM in all regions, indicating greater pro-

jection uncertainties in both emission scenarios (Table 2).

The midterm (2046–2065) projections of annual precipita-

tion vary between −5 and 9 %, with the MM of 1.7 and 2.1 %

for RCP4.5 and RCP8.5, respectively. More than 70 % of the

ensembles in both RCPs project an increase in annual precip-

itation in the CRB over the midterm. The multimodel mean

of all ensembles that project an increase (decrease) in precip-

itation is 2.7 % (−2.4 %) for RCP4.5 and 4.0 % (−2.9 %) for

RCP8.5.

The GCMs project considerable spatial and seasonal varia-

tions in precipitation (Table 2 and Fig. 6). However, the stan-
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Table 2. MM of projected changes in precipitation (%) in the four regions within the Congo River basin (see Fig. 1) for the near term (2016–

2035) and the midterm (2046–2065) relative to the reference period of 1986–2005. The regions are identified in Fig. 1. The standard deviation

values across the 25 GCM simulations are provided in parenthesis. DJF: December–January–February, MAM: March–April–May, JJA: June–

July–August and SON: September–October–November.

Northern (NC) Equatorial (EQ) Southwestern (SW) Southeastern (SE)

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Near future (2016–2035)

Annual 1.6 (3.0) 1.3 (2.9) 1.3 (2.9) 1.1 (2.7) 1.3 (2.3) 1.5 (2.6) −0.4 (3.7) 0.1 (4.2)

DJF 3.3 (13.3) 5.4 (21) 2.0 (4.9) 1.4 (4.7) 1.6 (3.2) 1.8 (4.0) −0.3 (3.7) 0 .04 (4.8)

MAM 1.4 (4.5) 1.1 (3.7) 0.5 (2.9) 0.8 (2.8) 1.5 (4.2) 2.5 (5.2) −0.5 (7.8) 0.9 (8.3)

JJA 1.3 (3.3) 0.4 (4.2) 1.3 (4.2) 1.3 (4.7) −0.7 (14.6) −0.3 (15.7) 19.6 (32.0) 18.7 (31.6)

SON 2.3 (4.6) 2.3 (4.7) 1.7 (4.1) 1.1 (4.0) 0.9 (3.6) 0.2 (3.8) −0.6 (5.4) −1 (4.8)

Midterm (2046–2065)

Annual 1.6 (3.8) 1.2 (4.9) 1.7 (3.4) 2.4 (3.9) 2.9 (2.9) 3.3 (4.0) 0.2 (5.4) 0.3 (7.4)

DJF 1.1 (15.2) 3.9 (18.8) 3.5 (6.3) 5.3 (9.4) 4.8 (5.1) 5.4 (7.4) 1.5 (6.4) 1.4 (9.6)

MAM 0.9 (4.4) 0.6 (5.4) 1.5 (3.5) 2.4 (3.5) 4.1 (5.1) 6.9 (5.8) 0.4 (9.6) 2 (11.0)

JJA 0.6 (4.3) 0.1 (5.5) 0.7 (5.8) 2.2 (7.3) −6.1 (14.8) −5.9 (19) 6.7 (30.6) 9.7 (32.0)

SON 3.4 (6.2) 2.9 (7.3) 1.3 (4.0) 0.6 (4.1) −0.3 (4.2) −2.5 (4.6) −3.2 (5.2) −4.6 (5.8)

Figure 4. Mean monthly flows at selected tributaries in the CRB.

Flows are in m3 s−1 and gage numbers are identified in Fig. 1.

Monthly values are based on simulated flows (forced with observed

precipitation) for the period 1950–2005.

dard deviation of annual and seasonal projections within the

four regions exceed or are equal to the MM, indicating lit-

tle agreement on the direction of change. The spatial patterns

(Fig. 6), on the other hand, show regions where modeled pro-

jections strongly agree on increasing or decreasing precipi-

tation. For example, decreasing precipitation is projected in

most of the headwater catchments in the southern CRB and

parts of northern CRB.

In general, the GCMs project decreasing precipitation in

the driest parts of the southern CRB (mostly in the south-

eastern CRB but in portions of southwestern as well). Under

the RCP8.5 scenario, parts of northeastern CRB also expe-

rience a reduction in precipitation in the near term (regions

in Fig. 6 with fewer GCMs projecting an increase in precip-

itation). The areas of decreased precipitation shrink in the

southeast and southwest in the midterm; however, drying ex-

pands in parts of northern CRB under the two emission sce-

narios. Most GCMs (14–20) project a precipitation increase

outside of southeastern CRB.

Intermodel variability in precipitation projections are sen-

sitive to seasons and climate region (Fig. 7a–d). At monthly

scale, the northern and southern regions receive less than

50 mm of precipitation for at least 3 months, which persist

in the future under both emission scenarios. The dry season

is more prolonged in the southeast compared to the rest of the

CRB. The intermodel variability is larger in the rainy seasons

under RCP8.5 compared to RCP4.5. Larger variability under

RCP8.5 highlights that GCMs may have limited skill in sim-

ulating precipitation under high greenhouse gas emissions.

3.2.2 Runoff

In general, modeled runoff increases, and its interannual vari-

ability within GCMs is larger during high flow periods com-

pared to low flow periods, except in the equatorial region

(Fig. 7e–h; see Fig. 1 for regions). The model projection un-

certainty increases towards the middle of century, particu-

larly under the RCP8.5 emission scenario. The temporal pat-
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Figure 5. Seasonal variation in runoff in the (a) northern, (b) equa-

torial, (c) southwestern and (d) southeastern Congo River basin for

the historical period (1950–2005). The seasonal total runoff are

calculated for December–January–February (DJF), March–April–

May (MAM), June–July–August (JJA) and September–October–

November (SON). Black dots and vertical bars show the modeled

interannual variability forced with observed climate, red dots show

the MM forced with GCM-simulated climate, red vertical bars show

the maximum range of interannual variability within the 25 models

and the gray open circles show the means of individual models. The

y-axis scale is different for each plot.

terns of runoff in the near term and midterm are similar to the

precipitation patterns, but with a time lag. As with precipita-

tion, the monthly runoff shows prolonged periods of low val-

ues in the northern and southern CRB in both projection pe-

riods. Parts of northern, southeastern and southwestern CRB

also show reduced runoff projections relative to the reference

period under both RCPs; these reductions are predominantly

in the areas where fewer GCMs agree on the increase in mod-

eled precipitation (see Fig. 6 and Tables S4 and S5). The

area of decreasing runoff expands in the northern CRB under

both emission scenarios in the midterm (see Fig. 6, which

shows that more models agree on decreasing precipitation in

parts of northern CRB that subsequently results in decreas-

ing runoff). Although the northern and equatorial CRB show

an overall increase in precipitation, the decrease in runoff in

Figure 6. Number of climate model outputs projecting an in-

crease in precipitation in the (a) near term (2016–2035) in RCP4.5;

(b) near term in RCP8.5; (c) midterm (2046–2065) in RCP4.5; and

(d) midterm in RCP8.5. The number of modeled precipitation out-

puts considered is 25. Main rivers and lakes are shown.

certain parts in the northern and equatorial CRB is caused by

reduction in seasonal precipitation (e.g., JJA and SON; see

Table S4). A larger reduction – up to 15 % – in the south-

eastern CRB covering most of northern Zambia is due to an

overall decrease in precipitation simulated by more than half

of the GCMs (see Fig. 6).

The multimodel mean of total runoff from the CRB shows

an increase of 5 % (±6 %, 1 SD, n = 25) and 7 % (±8 %) in

the near term and midterm under both RCPs relative to the

reference period (1986–2005). Annual runoff in the equato-

rial region, which receives the highest precipitation, is pro-

jected to increase by up to 5 % (±7 %) in the near term to

6 % (±8 %) and 7 % (±9 %) in the midterm for RCP4.5 and

RCP8.5, respectively. The increases are greater in the sec-

ondary rainy season (MAM) than the primary (SON; Fig. 7b

and f). The majority of the ensembles project an increase in

monthly runoff within the equatorial CRB, with the RCP8.5

ensembles exhibiting larger variability (Fig. 7f).

Runoff that can be appropriated for human use is generated

mostly in the northern, southeastern and southwestern CRB,

which at present varies from 130 mm yr−1 in the southeastern

CRB to 250–400 mm yr−1 in the northeastern and southwest-

ern CRB. Runoff is projected to increase in all three of these

regions. However, the intermodel variability is greater than
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Figure 7. Monthly variation of precipitation (a–d) and runoff (e–h) in the four regions shown in Fig. 1. Box-and-whisker plots for each month

show the intermodel variability for the historical period (black), near-term RCP4.5 (light green), near-term RCP8.5 (dark green), midterm

RCP4.5 (red) and midterm RCP8.5 (brown). The upper and lower ends of the boxes show the 75th and 25th quartiles, the bar inside each

box shows the median and the whiskers cover approximately 90 % of the values. The multimodel mean values for the reference period are

shown as triangles for clarity. All values are in millimeters per month. NC – northern, EQ – equatorial, SE – southeast and SW – southwest;

see Fig. 1 for locations. “Mid” indicates the midterm and “near” indicates near term.
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Figure 8. Seasonal runoff projections (as percent relative to the reference period 1986–2005) for the near-term (2016–2035) and midterm

(2046-2065) projection periods for northern (a, b), equatorial (c, d), southwestern (e, f) and southeastern (g, h) regions. Boxes show the

25th and 75th percentiles, the horizontal line within the boxes show median value and the whiskers mark the 5th and 95th percentiles. The

multimodel mean (asterisks) and the select-model mean (green dots) are also shown. The y-axis range is limited to show the smaller boxes.

The y-axis values are in percentages. “Mid” indicates the midterm and “near” indicates near term.

twice the MM in nearly all the regions and during all four

seasons (Fig. 8 and Table 3). In most cases, the largest uncer-

tainties are in non-rainy seasons and under a high emission

RCP8.5 scenario (e.g., DJF in the northern CRB; Fig. 8b, and

JJA in the southeastern CRB; Fig. 8h).

3.3 Variability in accessible flows

Only part of the runoff may be appropriated for human use.

In the CRB, the accessible runoff (AF), excluding runoff as-

sociated with flood events, is about 70 %. The AF is largely

underutilized, but its appropriation is expected to increase in

the future, mostly in the populated areas of northern, south-

western and southeastern CRB. We present the uncertainty

associated with GCM and scenario selection by quantify-

ing seasonal and intermodel variability in AF at eight major

tributaries (identified in Fig. 1) that drain watersheds across

a range of climatic regions on both sides of the Equator

(Fig. 9). Modeled AF exhibits substantial intermodel spread

in the near term and widens in the midterm (Fig. S4). The in-

termodel variability is larger during high flow periods com-

pared to low flow periods.
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Table 3. MM of projected changes in runoff (%) in the four regions within the Congo River basin for the near term (2016–2035) and the

midterm (2046–2065) relative to the reference period of 1986–2005. The regions are identified in Fig. 1. The standard deviation values across

the 25 GCM simulations are provided in parenthesis. The asterisks (∗) show the degree of agreement that projected runoff is greater than

0 in more than 50 % of the ensembles. DJF: December–January–February, MAM: March–April–May, JJA: June–July–August and SON:

September–October–November.

Northern (NC) Equatorial (EQ) Southwestern (SW) Southeastern (SE)

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Near future (2016–2035)

Annual 3.6 (12.1) 2.5 (11.2) 5.0 (7.0)∗ 4.3 (6.7)∗ 5.6 (4.8)∗ 6.0 (5.4)∗ 1.4 (12.8) 4.2 (12.1)

DJF 5.7 (13.3) 6.0 (14.1) 6.2 (9.8)∗ 5.1 (9.5)∗ 4.2 (6.1)∗ 3.9 (6.4)∗ 1.3 (9.3) 2.8 (9.8)

MAM 9.4 (15.0)∗ 9.1 (11.1)∗ 5.5 (6.3)∗ 5.7 (4.9)∗ 6.3 (5.1)∗ 7.7 (6.3)∗ 0.4 (18.4) 4.4 (17.3)

JJA 2.6 (12.1) 1.9 (10.2) 3.4 (6.3)∗ 3.8 (6.9)∗ 6.7 (5.5)∗ 7.7 (7.1)∗ 2.8 (20.7) 8.3 (19.6)

SON 2.8 (13.5) 1.1 (13.3) 4.6 (9.1)∗ 3.1 (9.4) 6.0 (6.4)∗ 5.0 (6.4)∗ 4.3 (10.7) 5.0 (12.6)

Midterm (2046–2065)

Annual 1.2 (15.4) −2.0 (17.1) 6.3 (8.1)∗ 7.2 (8.5)∗ 9.9 (5.9)∗ 10.4 (8.2) 6.1 (18.8) 8.3 (20.6)

DJF 4.0 (18.0) 1.7 (21.9) 8.9 (11.2)∗ 10.7 (14.7)∗ 9.6 (7.9)∗ 9.0 (12.4) 4.7 (14.9) 6.2 (20.3)

MAM 10.1 (13.4)∗ 9.5 (17.1) 8.9 (7.1)∗ 10.3 (6.2)∗ 11.7 (6.1)∗ 13.7 (8.0)∗ 6.5 (26.2) 9.9 (26.6)

JJA −0.02 (14.5) −2.5 (15.8) 5.2 (9.8)∗ 7.5 (11)∗ 11.8 (7.1)∗ 13.7 (8.6)∗ 9.5 (25.9) 14.9 (25.7)

SON 0.04 (17.7) −4.1 (19.4) 2.5 (9.3)∗ 1.1 (8.5) 5.7 (7.2)∗ 3.3 (7.7) 5.6 (11.2)∗ 3.1 (12.6)

Figure 9. Accessible streamflow hydrographs in the near term at selected locations shown in Fig. 1a. Blue and red bars (RCP4.5 and

RCP8.5, respectively) show the intermodel variability. The dotted black line shows the hydrograph in the reference period (1986–2005). Plot

numbers 1–8 coincide with the gage numbers in Fig. 1.

Following the general pattern of increasing precipitation

and runoff in the northern and southwestern watersheds, we

find that AF increases with greater model agreement in trib-

utaries that drain these watersheds (e.g., gages 1, 2 and 6

in Fig. 9). A closer look at tributaries in the northern and

southwestern CRB reveals better agreement of increased AF

during low flow periods compared to high flow periods (com-

pare gages 1, 2, 6 and 7 in Fig. 9). In contrast, tributaries that

drain southeastern watersheds exhibit greater variability in

modeled AF with majority of the ensembles projecting a re-

duction (e.g., gages 4 and 5 in Fig. 7). Overall, the AF in the

main tributary (gages 3 and 8) is projected to increase, partly

due to the contributions from the northern and southwestern

tributaries. The decrease in modeled precipitation and AF in
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the southeastern CRB appears to have a marginal effect on

downstream flows in the main river.

The spatial and temporal variations in the projected AF

have consequences for water resources development and

management. For example, projections of increased AF near

the proposed Grand Inga Hydropower Project (near gage 8;

Showers, 2009) are robust compared to the large varia-

tions near the proposed transboundary water diversion in the

southeast (near gage 5, Lund et al., 2007). Reductions in high

and low flows in streams in the southeastern region will have

implications for aquatic life, channel maintenance and lake

and wetland flooding.

3.4 Sources of uncertainty

The sources of uncertainty encountered in this work can be

broadly categorized into (i) observational uncertainty, partic-

ularly the sparse and declining network of precipitation and

streamflow gages and (ii) model uncertainty, which in the

GCMs includes model structure, model initialization, param-

eterization and climate sensitivity (i.e., the response of global

temperature to a doubling of CO2 relative to pre-industrial

levels). We used only one hydrological model, which is also

a source of uncertainty. However, variation in climate signals

between GCMs and emissions scenarios, particularly precip-

itation projections, may be a larger source of uncertainty than

the choice of hydrology model (Thompson et al., 2014; Vet-

ter et al., 2016).

The climate data used for bias correction and for historical

hydrologic simulations have their own uncertainties. Gage-

based, satellite-derived data and reanalysis outputs are used

to develop the historical observations (Sheffield et al., 2006).

Precipitation gages were more numerous at the beginning of

the simulation period and declined in number toward the end

of the 20th century (Mitchell and Jones, 2005; Washington et

al., 2013). Available gage data varied both spatially and tem-

porally (Figs. S5 and S6). For example, the equatorial region

– nearly a third of CRB – had about 70 rain gages through

the early 1990s, but only 10% of these were functioning

by 2005 (Fig. S5). The southeastern and parts of northern

CRB also had good rainfall-gage coverage, which has simi-

larly decreased since the 1990s (Mitchell and Jones, 2005).

However, satellite-based and sparsely distributed gage data

have been used to demonstrate that spatiotemporal distribu-

tion of precipitation can be sufficiently described in the CRB

region (Munzimi et al., 2014; Nicholson, 2000; Samba et al.,

2008). We assume that, even with these limitations, the avail-

able historical data are adequate to model the hydrology of

the CRB.

In addition to climate data, observed runoff data are an-

other limitation that could restrict proper validation of hydro-

logical models. However, we utilized a time period (1950–

1959) when the CRB had maximum coverage of both pre-

cipitation and runoff data to calibrate and test the hydrology

model (for example, see evidence in L’vovich, 1979). Where

available, we used additional runoff data to further test model

outputs during the historical period. The runoff gage loca-

tions are distributed within the CRB (see Fig. 1) such that

they adequately capture climatic, land cover and topographic

variability.

For future projections, the largest sources of uncertainty

arise from the GCMs and emission scenarios. GCMs do not

consistently capture observed rainfall seasonality and heavy

rainfall in regions of the central CRB and in most cases do

not show key features such as seasonality and heavy rainfall

in regions of the central CRB (Aloysius et al., 2016; Wash-

ington et al., 2013). The biases in the GCM-simulated pre-

cipitation, particularly in the tropical regions, have been at-

tributed to multiple factors including poorly resolved physi-

cal processes such as the mesoscale convection systems, in-

adequately resolved topography due to the coarse horizon-

tal resolution and inadequate observations to constrain pa-

rameterization schemes. These limitations are unavoidable

in the current set of CMIP5 projections. We assume that the

combination of GCM outputs used in our work and the bias-

correction method, which maintains key statistical properties

in the original GCM outputs (see Aloysius et al., 2016; Li

et al., 2010), adequately captures the uncertainties in GCM

and emission scenarios. Based on monthly precipitation cli-

matology, Aloysius et al. (2016) found no significant shift in

seasonality in modeled future precipitation projections.

The range of projections presented here for the two emis-

sion scenarios also highlight the uncertainties planners would

encounter when making climate-related decisions. For ex-

ample, broader agreement on increase in runoff in parts of

the CRB would help make robust decisions, whereas weaker

agreement in the southern CRB calls for greater scrutiny of

regional climate. Generally, the MM approach reduces the

uncertainty because averaging tends to offset errors across

models. However, one could also ask whether this approach

would work with fewer models.

Washington et al. (2013) and Siam et al. (2013) presented

evidence that evaluating atmospheric moisture flux (which is

modulated by wind patterns and humidity) and soil water bal-

ance is a better way to diagnose GCM performance in data-

scarce regions like the CRB. Balas et al. (2007), Hirst and

Hastenrath (1983) and Nicholson and Dezfuli (2013) have

shown that sea surface temperature (SST) anomalies in the

Atlantic and Indian ocean sectors could partly explain pre-

cipitation in the CRB region. Along the same lines, Aloysius

et al. (2016) identified five models as suitable candidates. We

examined this subset of GCM projections (M6, M7, M18,

M23 and M24), which we refer to as the select model av-

erage, or SM (see Giorgetta et al., 2013; Good et al., 2012;

Jungclaus et al., 2013; Meehl et al., 2013; Siam et al., 2013;

Voldoire et al., 2012; Yukimoto et al., 2006 and Aloysius et

al., 2016 for further comparison of GCM performance). By

evaluating seasonal atmospheric moisture and soil water bal-

ance in 11 CMIP5 GCMs in the CRB and Nile River basin
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regions, Siam et al. (2013) identified M7, M18 and M24 as

good candidates for climate change assessment.

Focusing on the northern, southeastern and southwestern

CRB, where human appropriation of runoff is expected to

increase, we find that the projected increase of annual runoff

in SM is more than that of MM (20 to 50 % higher in the

SM compared to MM). In addition, the extent of reduction

in runoff in the south is concentrated in the southeastern up-

stream watersheds in both MM and SM, although the magni-

tude of decrease is smaller in SM (Tables S4 and S5).

From the viewpoint of water resources for human appro-

priation, the changes by seasons are also important. Future

changes and uncertainties in modeled seasonal runoff aver-

aged over the four regions are presented in Fig. 8. In com-

parison with the CRB projections, the uncertainties in subre-

gions are larger. Nearly all the MM and SM projections show

an increase in runoff in all the four seasons; however, there is

substantial intermodel variability. The uncertainties increase

under the high emission RCP8.5 scenario during the mid-

century. Considering the southeastern region as an example,

under the RCP8.5 emission scenario, uncertainties reported

as 1 intermodel standard deviation in the midterm are ±20,

±27, ±26 and ±13 %, respectively, for DJF, MAM, JJA and

SON seasons, and are greater than the MM and SM. Further,

the deviation of uncertainty within the subregions of CRB in-

creases under the high emission RCP8.5 scenario. For exam-

ple, the intermodel projection ranges are larger in the north-

ern and southeastern CRB (Fig. 8b and h) compared to the

equatorial and southwestern CRB (Fig. 8d and f). Finally,

the uncertainty assessment presented here represents climate

model uncertainty arising from emission scenarios, differ-

ent response to the same external forcing, different model

structures and parameterization schemes. While these uncer-

tainties in projections pose challenges for robust decision-

making, they also provide insights into where further re-

search might be most valuable.

4 Conclusions

From the point of view of climate change adaptation related

to water resources, agriculture and ecosystem management,

the challenge faced by CRB countries is recognizing the

value of making timely decisions in the absence of complete

knowledge. In some settings, climate change presents oppor-

tunities as well as threats in the CRB. The projected increases

in accessible runoff imply new opportunities to meet increas-

ing demands (e.g., drinking water, food production and san-

itation), while the enhanced flood runoff would pose new

challenges (e.g., flood protection and erosion control). On the

other hand, water managers could face different challenges in

the southeast where precipitation and runoff are projected to

decrease.

GCM-related variability in regional climate projections

could be constrained by a subset of models based on at-

tributes that modulate large-scale circulations (see Knutti and

Sedlacek, 2013; Masson and Knutti, 2011). This approach is

particularly useful because regions like the CRB lack com-

plete coverage of observational data but the mechanisms

that moderate the climate system, particularly precipitation,

are fairly well understood (Hastenrath, 1984; Nicholson and

Grist, 2003; Washington et al., 2013). Yet, the span in rainfall

predictions among the MM, SM and individual GCMs sug-

gests that, despite the advances in climate modeling, signif-

icant uncertainties in precipitation projections for CRB per-

sist.

Rather than providing a narrow pathway for decision-

making, our results, for the first time for CRB, provide a

framework to (i) assess implications under various climate

model assumptions and uncertainties, (ii) characterize and

expose vulnerabilities and (iii) provide ways to guide the

search for impact-oriented and actionable policy alternatives,

as emphasized by Weaver et al. (2013). Projections and asso-

ciated uncertainties vary widely by region within the CRB,

and therefore diverse but robust planning strategies might be

advisable within the river basin. We emphasize that projec-

tions provided here could be considered as part of the pro-

cess of incorporating multiple stressors into climate change

adaptation and engaging stakeholders in the decision-making

process.

Data availability. Historical observed climate data, described in

Sheffield et al. (2006), are available at http://hydrology.princeton.

edu/data/pgf/Readme.txt. Details of bias-corrected future climate

data are provided in Aloysius et al. (2016). References for observed

streamflow data are (i) Global Runoff Data Center, 2011 (http:

//www.bafg.de/GRDC/EN/Home/homepage_node.html), (ii) Lem-

picka, 1971 and (iii) Vorosmarty et al. (1998).
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