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ABSTRACT

The representation of tropical precipitation is evaluated across three generations of models participating in

phases 3, 5, and 6 of the Coupled Model Intercomparison Project (CMIP). Compared to state-of-the-art

observations, improvements in tropical precipitation in the CMIP6models are identified for somemetrics, but

we find no general improvement in tropical precipitation on different temporal and spatial scales. Our results

indicate overall little changes across the CMIP phases for the summer monsoons, the double-ITCZ bias, and

the diurnal cycle of tropical precipitation. We find a reduced amount of drizzle events in CMIP6, but tropical

precipitation occurs still too frequently. Continuous improvements across the CMIP phases are identified for

the number of consecutive dry days, for the representation of modes of variability, namely, the Madden–

Julian oscillation andEl Niño–SouthernOscillation, and for the trends in drymonths in the twentieth century.

The observed positive trend in extreme wet months is, however, not captured by any of the CMIP phases,

which simulate negative trends for extremely wet months in the twentieth century. The regional biases are

larger than a climate change signal one hopes to use the models to identify. Given the pace of climate change

as compared to the pace of model improvements to simulate tropical precipitation, we question the past

strategy of the development of the present class of global climate models as the mainstay of the scientific

response to climate change. We suggest the exploration of alternative approaches such as high-resolution

storm-resolving models that can offer better prospects to inform us about how tropical precipitation might

change with anthropogenic warming.

1. Introduction

The representation of tropical precipitation has never

been a strength of global climate models. Some reasons

are well known, but have proven difficult to improve

with classical climate modeling approaches. This in-

cludes the representation of moist convection, which

produces the majority of precipitation in the tropics, but
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is a process that coarse-resolution climate models must

parameterize with the help of resolved processes. It is

known that model differences in precipitation arising

from such an approach can be substantial (e.g., Dai 2006;

Stevens and Bony 2013). In reviewing progress over past

phases of the Coupled Model Intercomparison Project

(CMIP), Stouffer et al. (2017), identify six ‘‘particularly

important and long-standing biases’’ that the authors

hope will be reduced in CMIP’s sixth phase (CMIP6).

First among these is related to the misrepresentation of

tropical precipitation, in the form of tropical rainbands

being too hemispherically symmetric, something known

as the double intertropical convergence zone (ITCZ)

bias. Other studies have pointed to further deficiencies

[e.g., in the representation of the summer monsoon

(Zhang et al. 2015)], modes of internal variability (Ahn

et al. 2017), and the intensity distribution and extremes

of precipitation (Stephens et al. 2010).

A correct simulation of the tropical climate matters,

not only directly for the region, but also indirectly by

influencing the response of the general circulation to

forcing at global scales (Held 1983; Palmer and Owen

1986; Zhou and Xie 2015). Precipitation is important

due to its many impacts, ranging from ecosystems

(Cox et al. 2000) to air pollution (Rodhe and Grandell

1972; Baker and Charlson 1990; Bourgeois and Bey

2011). Hence the past decades have witnessed substan-

tial efforts to improve precipitation in climate models,

including the representation of the hydrological cycle

in the tropics. Despite these efforts, progress has proven

unsatisfactory in past CMIP phases (Hawkins and

Sutton 2011; Knutti and Sedlácek 2012; Flato et al.

2013), so much so that it has been suggested to pay the

computational price of resolving precipitating convec-

tion, and abandoning the traditional approach to climate

modeling with parameterized convection for studying

tropical precipitation (Schär et al. 2020; Palmer and

Stevens 2019; Satoh et al. 2019). In evaluating these ar-

guments it seems sensible to ask if progress in simulating

tropical precipitation is as unsatisfactory as past evalu-

ations of CMIP models suggest. This question motivates

the present study, revisiting the tropical precipitation

over the three major phases of CMIP: CMIP3, CMIP5,

and now CMIP6.

At a first glance, the hope that CMIP6 models would

substantially address the long-standing biases in pre-

cipitation appears unfulfilled. CMIP6 models continue

to show large differences in precipitation, compared to

observations (Fig. 1). Half of the global precipitation

occurs between 308S and 308N—a region we refer to

as the tropics. Regional model biases relative to data

from the Tropical Rainfall Measuring Mission (TRMM;

Huffman et al. 2007, 2010) range from23 to 4mmday21

(Fig. 1). These occur partly in regions where the absolute

amount is smaller than the tropicalmean of 3.85mmday21

(e.g., in the southeast Pacific and southern Atlantic).

Spatial disagreements are a southward displaced precipi-

tation maximum over the Atlantic Ocean, a double-ITCZ

pattern in precipitation over the Pacific Ocean, and an

east–west precipitation anomaly over the Indian Ocean.

The question remains whether biases in tropical pre-

cipitation in CMIP6 models have been reduced com-

pared to previous phases of CMIP. By combining the

expertise of many authors, we apply here different

previously used methods to broadly assess the repre-

sentation of tropical precipitation across models par-

ticipating in CMIP6. By applying the same methods to

model output from the third and fifth phases of CMIP,

we evaluate the extent to which model developments

have been successful in improving tropical precipitation.

Much of what we show effectively extends previous

studies on tropical precipitation in earlier CMIP models

to CMIP6. The novelty of the present study is thus not in

any specific analysis, but rather through our use of

existing techniques to develop and take stock of the big

picture. Specifically by looking systematically at the

representation of tropical precipitation by three gener-

ations of CMIP models, across different regions and

scales as measured by various metrics, we assess the

status and progress in climate modeling for tropical

precipitation.

For the purpose of our study, we collected observa-

tions and model output from historical simulations with

3-hourly to monthly resolution from 97 different data

sources and applied 14 different analysis approaches.

The analyses are based on known methods and chosen

for their merit for giving a broad view on different

characteristics. Our data and the analysis strategy are

introduced in the next section (section 2), followed by

the presentation of the results of this analysis, which are

distributed across four sections, focusing on the clima-

tology (section 3), natural cycles associated with solar

radiative effects (section 4) and modes of internal vari-

ability (section 5), and long-term trends in the twentieth

century (section 6). Opportunities for future research

are discussed in section 7. We end with our conclusions

in section 8.

2. Data and methods

a. Data sources

1) MODEL OUTPUT

We assess the historical simulations of global coupled

climate models produced for the last three major phases
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FIG. 1. Long-term multimodel means of CMIP6 precipitation. Shown are the spatial dis-

tributions of the present-day (2000–14) precipitation statistics of CMIP6 as (a) the multi-

model mean, (b) bias over land including small islands compared to gridded station

observations from CRU, and (c) the mean bias in the tropics against TRMM. The thick

contour indicates the isoline for the tropical mean precipitation of CMIP6 (3.58mmday21)

for an easier comparison of regional biases to the precipitation amount. Biases are calculated

from themonthly climatology for 2000–14.We use ensemble averages formodels with several

historical simulations.
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of the Coupled Model Intercomparison Project: CMIP3

(Meehl et al. 2007), CMIP5 (Taylor et al. 2012), and

CMIP6 (Eyring et al. 2016). In these simulations, the

boundary conditions (e.g., irradiation, aerosols, orbital

parameters, and greenhouse gas concentrations in the

atmosphere) represent those estimated for the historical

time period in the CMIP phase and therefore differ

slightly from one another. The historical simulations in

all phases of CMIP start in 1850 but end in 2000, 2005,

and 2014 for CMIP3, CMIP5, and CMIP6, respectively.

(Tables S1–S4 in the online supplemental material list

the model output used here.)

The availability of model output differs across the

CMIP phases and the participating models. We there-

fore chose the data considering the availability and

intended analyses as follows: 1991–2000 for subdaily (3-

hourly), 1961–2000 for daily, and 1900–2000 for monthly

and annual analyses. For CMIP6, we additionally use

data in the period 2000–14 for comparison against the

current state-of-the-art observational record for the

same time period (section 2b). Analyzed variables are

total surface precipitation for all output frequencies as

well as near-surface winds and top-of-the-atmosphere

outgoing longwave radiation for daily to annual time

scales. All CMIP data are averages over the given output

intervals. CMIP3 and CMIP5 simulation results are

summarized in the corresponding chapters of the fourth

and fifth IPCCAssessment Reports (Randall et al. 2007;

Flato et al. 2013).

Access to the CMIP data is facilitated by the Earth

System Grid Federation (ESGF; Williams et al. 2016).

For practical reasons, we use ESGF-published model

output, which was already replicated by the German

ClimateComputingCenter [DeutschesKlimarechenzentrum

(DKRZ)] until 1 October 2019. Additionally, we use the

not-yet-published model output from MPI-ESM-LR

produced by the Max-Planck-Institute for Meteorology

for CMIP6.

2) OBSERVATIONS

We use four observational datasets, listed in Table 1

and introduced here. The diversity in estimated precip-

itation among the datasets is taken as a measure of

observational uncertainty, which for some ocean and

mountainous regions with a sparse ground-based ob-

servation network can be considerable (e.g., for the

Asian monsoon region) (Ceglar et al. 2017). The rainfall

retrieval product of the Tropical Rainfall Measuring

Mission (TRMM) Multisatellite Precipitation Analysis

(TMPA;Huffman et al. 2007) version 7 provides 3-hourly

data for 1998–2019. This dataset, TRMM hereafter,

combines data from passive microwave sensors, cali-

brated by the TRMM precipitation radar, with infrared

sensors (Huffman et al. 2010), and is corrected to match

rain gauge data. We further use the 3-hourly precipi-

tation estimate from the Climate Prediction Center

morphing technique (CMORPH) version 1.0 for 1998–

2017 (Joyce et al. 2004). CMORPH uses data from

passive microwave measurements and cloud advection

vectors from correlated images of infrared sensors. For

climate change assessments, we use the gridded precip-

itation product of the Climatic Research Unit (CRU)

time series version 4.03 (Harris et al. 2014) for 1901–

2014 with 0.58 spatial resolution, based on gauge net-

works on land.

To test the observational uncertainty, we additionally use

the monthly satellite-gauge product (‘‘3IMERGM’’) of the

Integrated Multisatellite Retrievals for GPM (IMERG;

Huffman et al. 2019) from the Global Precipitation

Mission (Hou et al. 2014). IMERG extends the concept

of TRMM but instead uses a dual-frequency precipi-

tation radar paired with more passive microwave and

infrared sensors. Overall, the observed mean pre-

cipitation rate for 2000–14 ranges from 3mmday21

(CMORPH) to 3.5mmday21 (IMERG) across our four

observational datasets (Table 1). Individual regions

can show larger observational differences, with the larg-

est observational ranges exceeding 2mmday21 over

islands, in the lee of mountain ranges, and in coastal

areas (Fig. S1). The products mainly disagree over

central Africa (CMORPHwet bias), in the Pacific warm

pool (CMORPHdry bias), in the lee of mountain ranges

in West India and the Malay Peninsula (CMORPH

dry bias), on the Caribbean islands (CRU wet bias),

and Central America (CMORPH dry bias). More

details including seasonal differences are provided in

TABLE 1. Overview of used precipitation observations. Listed are the characteristics of the data and the means for the tropics (G),

tropical land (L), and tropical ocean (O), and the ratio of land and ocean precipitation rates (L/O).

Data Version Frequency Period Resolution

Mean (mmday21) Ratio

G L O L/O

TRMM 3B42 TMPA 7 3-hourly 1998–2019 0.258 3.23 3.05 3.29 0.93

CMORPH 1.0 3-hourly 1998–2019 0.258 2.98 2.97 2.98 0.99

CRU TS 4.03 Monthly 1901–2018 0.58 — 2.95 — —

GPM IMERG 6 Monthly 2000–19 0.18 3.49 3.10 3.62 0.86
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the supplemental information. CMORPH and TRMM

capture the observational range across the assessed

satellite products over land and ocean. We therefore

use differences in these two products to measure the

observational uncertainty in our analyses.

b. Data analysis strategy

All datasets have been screened, and standardized for

easy handling. This includes remapping the data to the

same horizontal grid between 308S and 308N. Typically

one would choose the coarsest resolution as common

grid to avoid generating information that the model did

not simulate, but this approach would have led to a

crude comparison since models in CMIP3 had substan-

tially coarser grids than in CMIP6. As a compromise, we

use the T63 grid, which is the native grid of MPI-M’s

low-resolution configuration of MPI-ESMs in CMIP5

and CMIP6. This grid has 196 points along the equator,

and hence a spatial resolution of approximately 200 km.

We unify the precipitation unit of all datasets by calcu-

lating mmday21.

In addition to performing an analysis over the entire

tropics, separate analyses are performed for tropical

land and ocean. For this purpose we use the land–sea

mask of MPI-ESM1.2. We count grid cells with more

than 50% ocean surface as ocean and otherwise as land.

This approach implies that small islands are assigned to

ocean regions. All tropical lakes are defined as land.

Results from the analyses for tropical land and ocean are

shown if relevant.

The output from models that provide more than one

simulation for the historical period are averaged before

computing the mean of a CMIP phase. By this proce-

dure, we avoid giving too much weight to an individual

model that produced particularly many simulations. The

model output includes both precipitation contributions

from the model’s subgrid parameterizations and the

fractions associated with atmospheric dynamics explic-

itly resolved on the model grids.

As discussed in the introduction, none of the analysis

techniques we employ are novel. Most are widely used

in the climate modeling community (e.g., statistics over

different time and length scales as well as analyses

under different meteorological regimes). Some tech-

niques are less familiar (e.g., the standardized precip-

itation index and the concept of Jennings scaling;

Jennings 1950). These are included to present a broader

view of how precipitation is represented in models.

We further analyze precipitation associated with a

range of different atmospheric features like cloud re-

gimes, monsoons, and intra- and interseasonal variabil-

ity. The details of these techniques are introduced in the

relevant sections.

A comparison of models and observations encom-

passing different time periods poses a number of chal-

lenges. One challenge is the definition of a common time

period for the comparison, as not only do the different

CMIP phases end on different years, they also overlap

differently with satellite datasets. Initially we compared

TRMM against CMIP6 for the overlapping time period

2000–14 as validation, and CMIP6 against CMIP5 and

CMIP3 for the overlapping period 1900–99 to deter-

mine the development across CMIP generations. We

found, however, only small differences in the statistics

of CMIP6 for 1900–99 and 2000–14 in all our results,

consistent with similar long-term mean statistics for

CMIP6 (Table 2) and the small past trend in tropical

mean precipitation (section 6). For instance, the spa-

tial correlation coefficient of the CMIP6 precipitation

climatologies for the twentieth and twenty-first cen-

turies over the tropics is 0.998, much larger than the

average correlations betweenCMIPmodels and TRMM

(Table 3). For simplicity, and because amore temporally

consistent comparison adds no new information, we

compare TRMM and CMORPH for 2000–14 directly

with the different CMIP phases for 1900–99. Another

challenge was to establish to what extent changes across

phases of CMIP were simply the result of a different mix

of models in each phase. To test this possibility we se-

lected the subset of models that participated in all pha-

ses of CMIP and tested to what extent this sample of

models influenced our conclusion for the climatological

mean. We found that using all the CMIP models, or just

the subset participating in all CMIP phases yielded

similar results (not shown). We further tested averaging

over related models to account for different processing

practices (Abramowitz et al. 2019). To this end, we

calculated the standardized precipitation index on av-

erages of related models in CMIP6, and identified only

small differences that did not change our conclusions

(not shown).

3. Climatology

a. Tropical mean

There has and continues to be a long-standing dis-

crepancy between energy-budget inferences of pre-

cipitation, and estimates of precipitation based on

observations, whereby the former tend to be larger

than the latter (Stephens et al. 2012; Stevens and Schwartz

2012; Wild et al. 2012). The tropical precipitation from

CMIP models assessed here are also larger than the

observational estimates. Compared to the tropical mean

from TRMM of 3.23mmday21, CMIP3 has an overes-

timation by 0.21mmday21, and CMIP5 and CMIP6 by
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0.34mmday21 (Table 2). The tropical means of CMIP5

and CMIP6 are outside of the spread in the satellite

observations (Table 1). The intermodel standard devi-

ation is larger than themean bias for CMIP3, but smaller

for CMIP5 and CMIP6. The overestimation is also seen

for precipitation averaged over oceans, with CMIP5

and CMIP6 being outside of the observational range

(Tables 1 and 2). For land, we find a slight underesti-

mation in CMIP3 and CMIP5, but CMIP6 is in the

observational range. The observed land to ocean ratios

in precipitation of 0.86–0.99 are consistently under-

estimated in all CMIP means. The land–ocean ratio

has, however, slightly increased across the CMIP pha-

ses with CMIP6 (0.82) being the closest to the lower

bound of the observational range of the land–ocean

ratio (Table 1).

The spatial pattern of tropical precipitation shows a

systematic improvement across the CMIP phases, al-

though the values do still not fall within the observa-

tional uncertainty. We measure this with the spatial

correlations, r, in the annual mean tropical precipitation

between CMIP and TRMM, with r5 0.75 in CMIP3, r5

0.79 in CMIP5, and r 5 0.84 in CMIP6 for the tropical

mean (Table 3). Improvements across CMIP in r are also

found for both tropical ocean and land separately, with r

being slightly larger over ocean than over land (Table 3).

The observed pattern differences, measured by r, are

larger over land than over ocean (Fig. 2), but none of the

CMIP means fall within the observational uncertainty

for r, measured as the spatial correlation between

CMORPH and TRMM. Only the two best CMIP6

models for this metric, CESM2 and CESM2-WACCM

with r . 0.9 over tropical land, come close to the ob-

servational range for r, reflecting a regional improve-

ment in the tropical precipitation pattern of this model

(Woelfle et al. 2019). Also the root-mean-square errors

(RMSE) for precipitation compared to TRMM have

decreased on average over the CMIP phases, from

1.85mmday21 in CMIP3 to 1.80mmday21 in CMIP5

and 1.55mmday21 in CMIP6, but again these are larger

than the observational uncertainty (Table 3). RMSEs

are slightly larger over ocean than over land in both

CMIP3 and CMIP5, but this behavior has reversed

in CMIP6.

Figure 2 shows the standard deviations of CMIP

models in comparison to TRMM for land and ocean.

While this measure of annual-mean variability in CMIP3

is too small, CMIP5 andCMIP6 are closer to observations

over tropical land, while the standard deviation has been

similar across the CMIP phases over tropical ocean. The

difference between the mean precipitation for June–

August andDecember–February is used as a measure for

the seasonal amplitude S. The spatial correlations of S

between the models and TRMM have improved across

the CMIP phases (Fig. 2 and Table 3), but all values fall

outside of the observational uncertainty.

We test the hypothesis that improvements in precip-

itation across the CMIP phases occur in tandem with

TABLE 2. Long-term mean statistics for tropical precipitation. (from left to right) Listed are the CMIP phase, the time period, the

number of models for calculating the long-term statistics, the means 6 1 standard deviation in precipitation for the tropics (G), tropical

land (L), and tropical ocean (O), and the ratio of land and ocean precipitation rates (L/O).

CMIP Time period No. of models

Mean precipitation (mmday21) Ratio

G L O L/O

3 1900–99 24 3.44 6 0.28 2.84 6 0.38 3.65 6 0.31 0.78

5 1900–99 47 3.57 6 0.19 2.96 6 0.35 3.77 6 0.21 0.79

6 1900–99 17 3.57 6 0.11 3.09 6 0.32 3.74 6 0.16 0.83

6 2000–14 17 3.58 6 0.11 3.07 6 0.33 3.75 6 0.17 0.82

TABLE 3. Long-term mean comparison of tropical precipitation. Listed are the root-mean-square error/difference (RMSE/D) and the

spatial correlation coefficients (r) for the tropics (G), tropical land (L), and tropical ocean (O) as well as the correlation coefficient of the

differences between June–August andDecember–February means as a measure of the seasonal amplitude (S). The top row shows CMIP6

for 1900–99 (20th) against CMIP6 2000–14 (21st), followed by TRMM against CMIP6 for 2000–14 and rows below TRMM (2000–14)

against CMIPs (1900–99). The statistics are computed on the multimodel mean precipitation in the three CMIP phases against TRMM.

Comparison

RMSE/D (mmday21) r r(S)

G L O G L O G

CMIP6 20th vs 21st 0.19 0.18 0.19 0.998 0.998 0.998 0.995

TRMM vs CMIP6 (21st) 1.57 1.60 1.56 0.84 0.81 0.85 0.78

TRMM vs CMIP3 1.85 1.75 1.88 0.75 0.75 0.76 0.69

TRMM vs CMIP5 1.80 1.69 1.83 0.79 0.79 0.80 0.72

TRMM vs CMIP6 1.55 1.58 1.54 0.84 0.82 0.85 0.78
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a reduction in large-scale SST biases. Climate models

typically underestimate SSTs by several degrees in large

parts of the tropical oceans, especially the cold tongue

region in the Pacific Ocean (e.g., Woelfle et al. 2019)

while they overestimate SSTs in the upwelling regions

at the eastern side of the basins (Li and Xie 2012).

We do, however, find no clear indication that the large-

scale precipitation difference over tropical oceans is

tightly linked with model differences in SSTs neither for

the entire tropical oceans nor for the cold tongue in

the Pacific, although some of the SST biases in CMIP6

are smaller than in CMIP3 and CMIP5 by up to 1K

(Figs. S2 and S3).

b. Zonal mean

Despite evidence of improvements in the spatial pat-

tern of precipitation, we find no sign of improvement

for the zonal mean precipitation across the CMIP phases

FIG. 2. Taylor diagrams for tropical precipitation. Shown are the correlation coefficient, spatial standard devi-

ation, and the root-mean-square error following Taylor (2001) of the tropical precipitation over (left) land and

(right) ocean. Statistics are calculated on the (a),(b) long-term means and (c),(d) the difference between June–

August and December–February means for the models (colored circles) against TRMM (black star). We mark the

spread and average for all models per CMIP phase (colored lines) and the average for the selection of those models

that participated in all CMIP phases (colored stars). We show CMIP6 model data for 1900–99 only, since the

differences in the statistics of CMIP6 for 2000–14 and 1900–99 are small. The observational uncertainty is indicated

by calculating the same statistics for CMORPH (gray star) against TRMM.
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(Figs. 3a–c). The zonally averaged annual mean pre-

cipitation is remarkably robust across all phases of

CMIP. The Northern Hemisphere rainfall maximum

is well matched compared to TRMM. In the Southern

Hemisphere, the rainfall maximum in CMIP6 and

CMIP5 is, however, overestimated compared to both

TRMM and CMIP3. This is likely related to the too-

pronounced double ITCZ in themodels (e.g., Li andXie

2014) and possibly explains the mean differences in

tropical precipitation in the central Pacific (Fig. 1). In

previous works, it has been related to biases in the

ocean–atmosphere feedbacks in the tropical Pacific (Lin

2007), errors in cloud simulations (Li and Xie 2014), and

the cold tongue bias in the topical Pacific (Samanta

et al. 2019).

The double ITCZ in CMIP6 (Figs. 3a–c) shares the

same biases as have been previously reported for CMIP3

and CMIP5 (Zhang et al. 2015). As quantitative com-

parison, we compute the double-ITCZ index I (Samanta

et al. 2019):

I5
P

N
1P

S

2
2P

E
. (1)

Here PN is the mean precipitation in the northern box

(58–158N, 1608E–1208W), PS is the mean precipitation

in the southern box (158–58S, 1608E–1208W), and PE

is the mean precipitation in the equatorial box (58S–

58N, 1608E–1208W). The median double-ITCZ index

is largely unchanged across different phases of CMIP,

with I5 4.3 in CMIP3, I5 3.6 in CMIP5, and I5 4.0 in

CMIP6 (Fig. 3d). Compared to the observational esti-

mates of I 5 1.5 (CMORPH) and I5 1.7 (TRMM), the

median of I is too large by more than a factor of 2 in

all CMIP phases. This means that the tropical precipita-

tion over the Pacific Ocean is overestimated (cf. Fig. 1c).

The model spread decreases as we move through CMIP

generations, but this is not an improvement. Some

models reproduced the ITCZ index of the observation

in both CMIP3 and CMIP5, but none do in CMIP6.

c. Intensity distribution

Frequency and intensity are important precipita-

tion characteristics with implications for hydrology and

aerosol burden. For instance, a large model spread for

surface runoff has been identified in CMIP5 (Lehner

et al. 2019), and for aerosol burden in aerosol–climate

models (e.g., Baker and Charlson 1990; Textor et al.

2006; Fan et al. 2018). Even models with a relatively

accurate representation of the spatial pattern of pre-

cipitation may have large biases in the frequency and

intensity (e.g., Trenberth et al. 2003; Pendergrass and

Hartmann 2014). Models in CMIP3 and CMIP5 are

known to produce too-frequent drizzle (e.g., Baker and

Huang 2014; Pendergrass and Hartmann 2014; Sun et al.

2015). Here, we test to what extent this behavior has

improved using long-term statistics of the frequency of

wet 3-h means, the 1-day lag autocorrelation, the num-

ber of consecutive dry days, and scaling relationships

between precipitation amount and its duration.

1) WET AND DRY FREQUENCY

All CMIP phases consistently produce more frequent

wet 3-h means in tropical precipitation than observed

(Fig. 4a). This overestimation has been slightly reduced

in CMIP6 with 85% of the 3-hourly means being wet,

compared to 93% in CMIP3. However, this is still a

substantial overestimation of the occurrence of precip-

itation compared to the observed frequency of 44%–54%.

The improvement in tropical precipitation frequency

in CMIP6 is primarily explained by the reduction of wet

FIG. 3. Zonal mean precipitation. Shown are annual means

across tropical latitudes for (a) CMIP6 compared to TRMM,

(b) CMIP5 compared to CMIP6, and (c) CMIP3 compared to

CMIP6, with shading indicating the model spread as one standard

deviation, and (d) the double-ITCZ index I calculated using trop-

ical precipitation in the regions defined by Samanta et al. (2019)

and explained in the text. In (d), the box-and-whisker plots indicate

the median, quartiles, and extremes in CMIP3, CMIP5, and

CMIP6, and the horizontal lines are the TRMM and CMORPH

observational means.
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3-h means over tropical oceans, whereas the frequency

over land has only slightly decreased compared to

CMIP3 (Figs. S4 and S5). We note, however, a sub-

stantial model spread for the frequency of precipitation

rates in all CMIP phases (Fig. S6).

We measure the day-to-day variability and spatio-

temporal coherence of the tropical precipitation with

the 1-day lag autocorrelation (Fig. 4b). A realistic lag

autocorrelation is associated with an improved repre-

sentation of deep convection and convection coupled

to equatorial waves, including the Madden–Julian

oscillation (Peters et al. 2017; Ma et al. 2019) assessed

in section 5a. Atmospheric models with parameterized

moist convection are known to have unrealistic day-to-

day variability in precipitation (Peters et al. 2017, 2019)

due to deficiencies in the physical parameterization

schemes that lead to too-frequent triggering of deep

convection (Klingaman et al. 2017; Peters et al. 2017).

This behavior is characterized by too-large 1-day lag

autocorrelations (i.e., wet episodes over several days are

not sufficiently interrupted by dry days). We identify a

slight improvement in the 1-day lag autocorrelation

fromCMIP3 and CMIP5 to CMIP6, namely, a reduction

from roughly 0.60 in CMIP3 to 0.50 in CMIP6. Since the

lag autocorrelation is sensitive to the representation of

convection (Klingaman et al. 2017; Peters et al. 2017),

this result indicates that the past model development

between CMIP phases contributed to a slightly better

day-to-day variability of moist convection. However,

compared to the observed 1-day lag autocorrelation of

0.35 in both TRMM and CMORPH, CMIP6 models still

substantially overestimate this quantity, pointing to too-

little intermittence of rainy episodes.

The maximum number of consecutive dry days (CDD)

are used to quantify the length of dryness. Following the

Expert Team on Climate Change Detection and Indices

(ETCCDI) as used by Frich et al. (2002), CDD is defined

as the number of consecutive days within a year that

have total daily precipitation amounts of less than

1mmday21. This threshold removes days with light

drizzle events that are difficult to measure. Although

TRMM (TMPA) is better for light rain events than

other satellite-based data (e.g., Burdanowitz et al. 2015),

it misses light precipitation (Behrangi et al. 2014) af-

fecting the frequency of occurrence of precipitation

events (Klepp et al. 2018). By eliminating days with such

light drizzle events, we determine the differences in

CDD considering more regular to extreme precipitation

events. We show the spatial and temporal average of

CDD (Fig. 4c) and the probability distribution of CDD

across time and space (Fig. 4d). The latter primarily

indicates spatial variability for CMIP due to the small

year-to-year changes in ensemble-averaged CDD with

standard deviations of 0.47–0.69 (not shown).

There is an improvement over the three CMIP gen-

erations in averaged CDD and their probability of oc-

currence (Figs. 4c,d), but CMIP6 models still produce

shorter dry periods on average than observed (Fig. 4c).

Reasons for the remaining difference to observations

stem from the poor representation of extremely long dry

episodes (Fig. 4d). For instance, the climate models show

too-low probabilities for CDD longer than 130 days in

FIG. 4. Wet and dry periods. (a) The frequency of wet 3-h means calculated by flattening 3-hourly CMIP data and observations in time

and space into a single dimension and counting the number of precipitation events; (b) the 1-day lag autocorrelation of total daily

precipitation, temporally and spatially averaged for CMIP and observations; and (c),(d) the number of consecutive dry days (CDD) as

(c) box-and-whisker plot for the time and spatial average of CDD of CMIP and observations plotted as horizontal lines and (d) the

probability of occurrence of CDD across time and space.
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CMIP3, and 200 days in CMIP5 and CMIP6, compared

to the observations (Fig. 4d). The underestimation of

such extremely long dry episodes is primarily explained

by the mismatch in CDD over oceans (Figs. S4 and S5),

but this is also the region where the improvement across

CMIP generations was largest. Compared to the ocean,

the number of CDD over land is generally better cap-

tured by CMIP models, except for CDDs longer than

250 days. The probability of occurrence for these ex-

tremely long dry episodes has slightly improved from

CMIP3 to CMIP6, but the occurrence of more than 300

CDDs in deserts, is still underestimated. This finding has

implications for other processes in the Earth system

(e.g., dust-aerosol emissions, which is influenced by the

soil moisture and lack of vegetation cover) (e.g., Shao

2001; Kok et al. 2014).

2) JENNINGS SCALING

Jennings (1950) discovered a scaling law, P ; Da, that

describes the global maximum of precipitation, P, ob-

served at rain gauges over land during an interval of some

duration, D, with the exponent a ; 1/2 for periods of

minutes to 1 year. Even earlier research on thresholds

of rainfall extremes supports this power-law scaling

(Wussow 1922). This type of scaling can be reproduced by

simple thermodynamic models whose large-scale input is

modulated by stochastic forcing (e.g., Field and Shutts

2009; Zhang et al. 2013b). The scaling relationships de-

scribed by Jennings, sometimes called maximum depth–

duration graphs, have entered textbooks in hydrology,

but their application to the evaluation of climate model

output is less common (Zhang et al. 2013a), which moti-

vates the present analysis. Moreover, whereas previous

studies focused on time periods of minutes to one year,

we test here the extension of the Jennings scaling to de-

cades by calculating the slope for data over longer aver-

aging intervals. We find that the Jennings slopes are very

similar in TRMM and all phases of CMIP.

The rainfall maxima P for a given D is determined

from the spatial distributions of tropical precipitation.

The literature typically refers to P as depth. The depth

is the maximum across time and space in the running

means of daily precipitation over the duration, calcu-

lated at every grid point. Durations range here from

1 day to 1 decade, with steps of 1 day, for all datasets,

except for CMIP6 and TRMM, where we also use the

entire overlapping period 2001–14. We show three

examples of the resulting points that fall on a line in the

depth–duration space (Fig. 5a). We find that all re-

gression lines closely fit the data points, with R2
5 0.97

being the smallest coefficient of determination across

all datasets here. The slopes of that line a are shown in

Fig. 5b and are known as the Jennings slope.

In both the CMIP output and the data from TRMM,

a is larger than the value determined from the earlier

gauge measurements by Jennings (1950). In addition

to the different spatial scales, Jennings (1950) covers

minutes to 1 year, while we start with daily precipitation

and move to decadal scales for TRMM and CMIP.

Looking at the line in Fig. 5a indicates that the steeper

slopes in TRMM are primarily explained by the interval

from 1 year to 1 decade (i.e., there is some curvature in

the slope when moving to longer averaging intervals).

Paired with the different spatial representation of gauge

measurements and the gridded data, it explains why

CMIP and TRMM produce slopes that are more similar

to one another than compared to Jennings (1950), with

CMIP6 following the observations better than the pre-

vious phases of CMIP.

There is considerable variability in the estimates of

a from the CMIP output, although less in CMIP6 than

in previous CMIP phases. The relatively good match

between TRMM and CMIP6 based estimates of a sug-

gests that despite biases in the distribution of precipi-

tation, the tendency for long-duration events to be

associated with more intense rainfall is well captured by

the models.

d. Low-level and deep clouds

We investigate tropical precipitation associated with

different cloud regimes, namely, low-level and deep

clouds. Low-level cloud regimes cover large parts of the

tropics away from the ITCZ. Using an outgoing long-

wave radiation (OLR) threshold of .250Wm22 to

FIG. 5. Jennings scaling. (a) Three examples for the calculated

data points that fall on a line in the depth–duration (P-D) space and

(b) the Jennings slopes a of that line across the CMIP phases and in

TRMM, compared to the gauge measurements used by Jennings

(1950). The box-and-whisker plot show the means, quartiles, and

extremes across the CMIP phases.
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exclude areas of deep convection, we estimate the ob-

served fractional area coverage of low-level cloud re-

gimes from the daily CERES product (Loeb et al. 2009)

to be 68% (not shown). We choose the threshold of

250Wm22, corresponding to a brightness temperature

of 258K and similar to other studies (e.g., Masunaga

et al. 2005). Note that this includes both low-level cumuli

and stratiform clouds. It also includes a fraction of cu-

mulus congestus, which is not distinguishable from low-

level clouds with OLR. Sensitivity tests with other

thresholds of 240–260Wm22, consistent with Stubenrauch

et al. (1999), give qualitatively similar results to 250Wm22.

For the analysis, we use daily OLR and precipitation

data, available from 16 CMIP3 models, 32 CMIP5

models, and 14 CMIP6 models, marked by indices 2 and

3 in Tables S1–S4.

The CMIP means have a fractional low-level cloud

area similar to the observations, with a slight increase

from 65% for CMIP3 to 69% for CMIP6. Despite a

similar areal coverage the models differ substantially by

50%–100% in the amount of precipitation associated

with low-level clouds (Fig. 6a). There is no clear im-

provement over the CMIP phases, although the very

large outliers evident in CMIP3 and CMIP5, with pre-

cipitation fractions associated with low-level cloud re-

gimes larger by a factor of four to five, have reduced

in CMIP6. Some models in CMIP6 lie within the ob-

servational range for the fractional precipitation

amount associated with low-level clouds (10%–14%),

namely, BCC-ESM1 (12%), CNRM-CM6–1 (10%), and

CNRM-ESM2–1 (11%). These three models, however,

tend to underestimate the fractional area coverage of

the low-level cloud regimes with 59%, 65%, and 65%,

respectively.

We extend the analysis to regimes with deep con-

vection, which we identify with regions of particularly

low OLR. In these regimes the observations differ

considerably (Fig. 6b). For an OLR of 120Wm22 the

precipitation rates are 25% larger in CERES-TRMM

(200mmday21) as compared to CERES-CMORPH

(150mmday21), consistent with the lower frequency of

these precipitation rates in CMORPH than in TRMM

(Fig. S6). CMIP5 and CMIP6 have a better representa-

tion of the relationship between OLR and precipitation

rate than CMIP3 for OLR of 120–270Wm22, and align

closely with what is diagnosed from the CERES-TRMM

measurements. For more moderate precipitation, be-

tween 10 and 100mmday21, the observations are more

consistent and suggest that the models require deeper

convection to produce these rain rates (too-low OLR)

across the CMIP phases.

In summary, models produce more precipitation from

low-level clouds than is observed, consistent with the

persistent overestimation of drizzle in CMIP. For more

moderate precipitation rates, the CMIP models are as-

sociated with lower OLR, pointing to deeper clouds or

more overcast conditions than is observed. For stronger

FIG. 6. Precipitation associated with clouds of different depth.

(a) The fraction of precipitation associated with low-level clouds,

defined as the daily precipitation in regions with daily outgoing

longwave radiation (OLR) greater than 250Wm22 divided by

the total tropical precipitation amount. (b) Tropical mean in

daily OLR against daily precipitation amount binned by steps of

10mmday21. Shaded areas mark half the standard deviation of the

model spread. The probability density functions of individual

models are shown in the supplemental material (Fig. S6). In both

(a) and (b) the black (gray) line is the precipitation observed by

TRMM (CMORPH) and OLR based on CERES. We use here

CMIP model data marked with indices 2 and 3 in Tables S1–S4,

which is slightly less than in analyses that only use daily precipi-

tation, because of the availability of OLR output.
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rain rates (p . 100mmday21) substantial divergence

between the observational datasets make an evaluation

of the models difficult, but CMIP3 clearly lies outside of

the observational range, whereas CMIP5 and CMIP6

are closer to the observations.

4. Solar radiative effects

Model-based climate change projections are essen-

tially an exercise in assessing how a model’s climate

respond to radiative forcing. In this context, the fidelity

of their response to known changes in the radiation

budget, for instance, as associated with the seasonal and

daily cycles of the sun, provides a useful test of their

plausibility. The response of precipitation to radiative

forcing associated with atmospheric composition changes,

as manifest by a global increase in surface temperatures,

is likely different than the response to seasonal and daily

cycles in irradiance. There is, however, little reason to

believe that a model could capture a forced response in

precipitation (e.g., to radiative forcing of greenhouse

gases), if they poorly represent the observed cycles

induced by radiative perturbations as strong as those

associated with the seasonal and daily changes of ir-

radiance. This is one of our motivations for this analysis

across the CMIP models.

a. Seasonal cycle

The seasonal cycle of tropical precipitation deter-

mines the regional climate in many tropical areas

(Knoben et al. 2019). Hence, quite apart from being a

generic test of how models respond to natural changes

in the radiation budget, an ability of CMIP models to

reproduce the seasonal cycle of tropical precipitation

with fidelity is relevant on its own. Through the influence

of precipitation on the regional energy budget, an ac-

curate simulation of tropical precipitation is also influ-

ential for other aspects of climate on both regional and

global scales.

1) ZONAL MEANS

Models in CMIP3 and CMIP5 are drier than obser-

vations early in the wet season and too wet later on in

both hemispheres (Seth et al. 2013). They showed two

systematic biases in tropical precipitation. First, most

CMIP3 and CMIP5 models underestimate the precipi-

tation near the equator between January and June.

Others also documented a regional underestimation of

precipitation in the 48–88N band within the tropical

Pacific from March to April (Mechoso et al. 1995;

Bellucci et al. 2010). Second, Seth et al. (2013) showed

that most CMIP5 models overestimate precipitation at

48–208S, particularly strongly between February and

May. This is consistent with observations showing more

hemispheric asymmetry in the zonal-mean annual pre-

cipitation and a dominant ITCZ signature to the north of

the equator than most CMIP models (Fig. 3).

Figure 7 shows that CMIP6 models still do not cor-

rectly represent the observed seasonal cycle of zonal-

mean precipitation over tropical land and ocean. We

find that they are generally wetter than observations in

the summer hemisphere by 0.5–2.5mmday21. Furthermore,

we find a too dry–too wet pattern between January and

May, explained by a rain belt that is displaced too far to

the south. Thismodel behavior might also delay the onset

of the summer monsoon in the Northern Hemisphere.

2) SUMMER MONSOONS

Monsoon rainfall dominates the annual variability in

the tropics (e.g., Trenberth et al. 2000; Wang and Ding

2008), affecting many tropical regions. Previous studies

show that CMIP5 models simulate better monsoonal

circulation climatology and variability thanCMIP3 (e.g.,

Sperber et al. 2013), but they still suffer from systematic

regional biases. For example, the CMIP5 mean tends

to underestimate precipitation over the eastern Indian

Ocean, the Bay of Bengal, the equatorial western

Pacific, and tropical Brazil, but overestimate precipi-

tation over the Maritime Continent, the Philippines,

and high-elevated terrains such as the Andes, Sierra

Madre, and the Tibetan Plateau (Lee et al. 2010; Lee

and Wang 2014). Despite these regional biases, the

CMIP5 mean reproduces the observed monsoon in-

tensity and area (Lee and Wang 2014).

We assess themonsoon across the CMIP phases with a

bulk measure for the monsoon area and intensity fol-

lowing earlier approaches (Wang and Ding 2006; Wang

et al. 2011). For each model simulation, the monsoon

regions are defined with two criteria: 1) the annual range

of precipitation (summer minus winter mean) exceeds

FIG. 7. Seasonal cycle of differences in zonal precipitation.

Shown are differences between the CMIP6 multimodel mean and

TRMM (shading) and the magnitude of precipitation from CMIP6

in steps of 2mmday21 (gray contours).
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2mmday21; and 2) the summertime precipitation con-

tributing at least 55% to the annual total. The monsoon

intensity is then defined as the area-weighted average of

summer precipitation (i.e., June–August in theNorthern

Hemisphere and December–February in the Southern

Hemisphere) within the monsoon area. The latter is

the composite of the regional monsoons in both hemi-

spheres (Fig. S7).

Based on these measures the monsoon in CMIP6 is

not better represented than in previous CMIP phases.

CMIP6 models rather produce the widest area among

the CMIP phases and the largest mismatch compared

to observations (Fig. 8a). Here, both TRMM and

CMORPH, fall outside the intermodel spread of the

monsoon area in the CMIP6 mean. The land-only

monsoon area is closer to the observations, with less

of a discrepancy between CMIP6 and previous CMIP

phases (Fig. 8b). Whereas the simulated monsoon in-

tensity fell within the range of observed values for both

CMIP3 and CMIP5, the intensity of the monsoon is too

large in the CMIP6 mean (Fig. 8c). This is also true for

the land-only monsoon, but the magnitude of the in-

tensity overestimation is less pronounced (Fig. 8d).

Based on these metrics, the monsoon in the CMIP6

mean is larger and wetter than in the previous CMIP

phases, and therefore agrees less with observations

than CMIP5.

The reasonable simulation of the land-only monsoon

area and intensity arises in part from regionally com-

pensating biases. Figure 9 shows summertime precipi-

tation differences for the regional monsoons, defined by

Kitoh et al. (2013). Overall, there is an apparent re-

duction in the dry bias across CMIP phases, so much

so that some regions (South Asia and western South

America) have had their dry bias in CMIP3 replaced

by a wet bias in CMIP6. This analysis suggests that the

degradation of the global monsoon metrics in CMIP6

(Fig. 8) might result from a diminishment of compen-

sating biases across the regional monsoons (Fig. 9),

particularly associated with what in CMIP3 were large

dry biases in the North American and South Asian

monsoon systems.

FIG. 8. Area-weighted summermonsoon area and intensity. Shown are the values for (a),(c) themonsoon and for

(b),(d) the monsoon over land for CMIP3, CMIP5, and CMIP6. Box-and-whisker plot show the median, quartiles,

the 99% percentiles, and extremes. Horizontal lines are the means of TRMM and CMORPH that overlap for the

monsoon area.
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Altogether, this analysis makes it difficult to refute the

hypothesis that the representation of the monsoon sys-

tems has not improved in successive CMIP phases. We

cannot identify an overall improvement of the monsoon

across the CMIP phases. Monsoon rainfall in some re-

gions improved across the phases, but the global mon-

soon intensity and area have a larger bias in CMIP6 than

in CMIP3. CMIP3 models showed already the basic

features of the summer monsoons and the monsoonal

teleconnections (Randall et al. 2007), but the location

and intensity of the observed rainfall differed from the

observations (Fan et al. 2010). Improvements in CMIP5

were attributed to a more realistic ENSO–monsoon

teleconnection (Meehl et al. 2012), but also an im-

proved spatial distribution of intraseasonal variations

(Sperber et al. 2013). Possible reasons for monsoon

differences in CMIP models are many (e.g., for CMIP5

these include too-cold SSTs, e.g., over the Arabian Sea;

Levine et al. 2013), too-weak meridional temperature

gradients (Joseph et al. 2012), an unrealistic develop-

ment of the Indian Ocean dipole (Achuthavarier et al.

2012; Boschat et al. 2012), regional differences in rainfall

affecting moisture advection (Bollasina andMing 2013),

and a different degree of compensation between ther-

modynamics and dynamics (D’Agostino et al. 2019).

b. Diurnal cycle

Moist convection causes differences in the diurnal

cycle of precipitation over land and ocean (Dai 2001), a

signal that models with parameterized convection have

historically struggled to represent (Dai et al. 1999).

Daytime heating over land triggers deep convection

that typically causes a delayed precipitation maximum

in the late afternoon to evening (e.g., Yang and Slingo

2001). Over the ocean, the nocturnal cooling at cloud

tops is important for the deepening of clouds, causing an

early morning precipitation maximum (Kraus 1963;

Gray et al. 1977; Sato et al. 2009). Vial et al. (2019) re-

cently documented a similar diurnal cycle for shallow

convective clouds.

The diurnal cycle of precipitation is reproduced by

both TRMMand CMORPH observations (Fig. 10). Our

data processing for the diurnal cycle includes a trans-

formation of the data from UTC to local time to make a

meaningful comparison of the diurnal cycles. The re-

sulting data of CMORPH has an offset of 1.5 h ahead of

TRMM. This difference is thought to be mostly associ-

ated with the different time accumulation periods of the

products. For CMORPH and the model output, these

are the 3-h periods: 0000–0300, 0300–0600, and so on,

but for TRMM, the periods are shifted by 1.5 h (i.e.,

0130–0430, 0430–0730, and so on) (e.g., see section 2.3 in

Rauniyar et al. 2017). Additionally, the time stamp had

to be changed in CMORPH’s metadata, since it was

defined at the beginning of the corresponding periods.

The other datasets define the time stamp at the center,

and thus, we shifted CMORPH’s time axis by 11.5 h,

for a consistent treatment.

FIG. 9. Difference in summer precipitation for the monsoon regions over land compared to

TRMM for (a) CMIP3, (b) CMIP5, and (c) CMIP6. The numbers are the precipitation dif-

ferences averaged for the regional monsoons, defined as in Kitoh et al. (2013). The monsoon

and its regional separation is graphically displayed in Fig. S7. The equator separates the

northern monsoons [North America monsoon system (NAMS), North Africa (NAF),

Southern Asia summer (SAS), East Asian summer (EAS)] from the southern ones [South

Americamonsoon system (SAMS), SouthAfrica (SAF), andAustralian–MaritimeContinent

(AUSMC)], 608E separates NAF and SAS, and 208N, 1008E separates SAS and EAS.
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FIG. 10. Time of occurrence of tropical precipitation. The 24-h clocks show the time of the day (the angle) and the magnitude (the

distance from the center) for (left) the precipitation amount, (center) the frequency of wet 3-h means, and (right) the all-hour 99th

percentile of all 3-h means as index for the intensity. The analyses are shown for (a)–(c) tropical land, (d)–(f) tropical ocean, and (g)–(i)

low-level clouds over tropical ocean, defined by a daily meanOLR. 250Wm22. The black solid (gray dashed) lines are the diurnal cycles

of TRMM (CMORPH) satellite observations. Thin gray lines indicate the diurnal cycles of individual climate models to illustrate the

model spread. The small circles mark the maxima in the observations and three generations of CMIP climate models. Please note that the

simulations provide 3-hourly averages and are shown at the middle of the averaging period. We do not show the ensemble-averaged

diurnal cycle of the CMIP phases due to the large model spread. (a)–(f) We use the 3-hourly precipitation data, marked by index 1,

and (g)–(i) 3-hourly precipitation data paired with daily OLR, marked with indices 1 and 3 in Tables S1–S4.
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We assess the diurnal cycle of precipitation in CMIP

through the time of occurrence for the peak rainfall, as

well as the frequency of wet 3-h means, and by the 99th

percentile of all 3-h means. We use 3-hourly data,

available from 7 CMIP3 models, 23 CMIP5 models, and

13 CMIP6models, marked with index 1 in Tables S1–S4.

The only exception here is the diurnal cycle of shallow

clouds, for which we had 4 models less due to the data

availability, marked with indices 1 and 3 in Tables S1–

S4. We found no systematic differences for the diurnal

cycle when we separated high- and low-resolution con-

figurations (not shown).

Some clear and systematic biases become apparent

through this analysis. One is that the simulated maxima

in the diurnal cycle are too strong in themodels, for both

the precipitation amount and the frequency of wet 3-h

means, shown in Fig. 10. This bias is most pronounced

over land and over the ocean in regions with low-level

clouds. Another is a bias in the simulated phase of the

diurnal cycle. Over tropical land, CMIPmodels typically

produce too-early maxima of precipitation amounts.

This problem has been extensively studied, and is often

attributed to the use of physical parameterization

schemes for moist convection that are designed to

remove convective instabilities quickly. The quasi-

equilibrium assumption (Arakawa and Schubert 1974),

which in some form is used in most parameterization

schemes, links precipitation to the rate at which con-

vective instability is produced, thereby strongly coupling

precipitation to surface fluxes (e.g., Bechtold et al. 2004)

over land, and net radiative cooling rate over the ocean.

This might also explain why the time of occurrence of

the maximum tends to appear too early over the ocean,

even in the absence of deep convection.

From Fig. 10 it is difficult to discern obvious changes

among CMIP phases, let alone systematic improve-

ments. As quantitative assessment, we therefore com-

pute the mean absolute phase lag of the maxima in the

models compared to CMORPH (Table 4). Here, too,

there is no evidence of a systematic improvement of the

time of occurrence for any of the three metrics of the

diurnal cycle across the CMIP phases, with CMIP3 be-

ing in the mean closer to the observed time of the

maximum than CMIP6. Measured by the mean absolute

phase lag of the maxima, the diurnal cycle of the pre-

cipitation of low-level clouds over the ocean is also worse

in CMIP6 than in the earlier phases. Using TRMM as

alternative observational reference does not change

these findings, except giving systematically larger phase

lags for most of the metrics in Table 4.

Although some models do show improvements, and

correspond to observations for individual metrics (Fig. 10),

none correctly represents the time of occurrence for all

three maxima in amount, frequency, and intensity (not

shown). Similarly, no model represents both the mini-

mum and maximum of a single metric correctly. When

taken together with the poor response of tropical pre-

cipitation to the seasonal cycle, these findings suggest that

CMIP models should only be used with great caution in

studies on the response of tropical precipitation to radi-

ative forcing of atmospheric composition changes.

5. Modes of internal variability

The CMIP6 output shows more marked improve-

ments in the representation of modes of tropical vari-

ability. This statement is based on the analysis of the two

most dominant modes of internal variability in the tropics:

the Madden–Julian oscillation (MJO) and El Niño–

Southern Oscillation (ENSO), which we present here.

a. Madden–Julian oscillation

The MJO is the dominant mode of intraseasonal

precipitation variability in the tropics, most pronounced

in boreal winter. Its salient feature is a coherent eastward-

propagating pattern of enhanced and suppressed con-

vection over the Indian Ocean, the Indo-Pacific warm

pool, and the western Pacific Ocean (Madden and Julian

1994). The critical processes that give rise to the MJO

remain debated (Maloney et al. 2018) and a realisticMJO

in climate models has been a challenge (Kim et al. 2009;

Crueger et al. 2013; Jiang et al. 2015). The present anal-

ysis focuses on the most obvious characteristic of the

MJO, namely, the eastward propagation of suppressed

and enhanced precipitation patterns.

Figure 11 shows the ratio of the eastward-propagating

spectral power of tropical precipitation to that of its

westward-propagating counterpart for the CMIP pha-

ses. Each is summed up over the MJO characteristic

wavenumbers one to three and periods of 20–100 days

for the November to April season between 108S and

108N. This quantity is often used as a measure for the

MJO (e.g., Crueger et al. 2013; Kim et al. 2014). A ratio

TABLE 4. Mean phase lag of the maxima in the amount, the

frequency, and the 99th percentile in the 3-hourly tropical precip-

itation across CMIP phases compared to CMORPH. All lag values

are in hours and listed for convection over land (L), convection

over ocean (O), and low-level clouds over ocean (low-O). Positive

values indicate that the models are leading the observations (i.e.,

earlier occurrence of the maximum in the models).

Amount Frequency 99th percentile

CMIP L O low-O L O low-O L O low-O

3 1.7 0.5 4.0 3.9 1.3 1.0 6.9 6.9 6.5

5 3.8 1.6 3.7 3.0 1.6 1.4 5.7 7.4 6.5

6 3.5 0.8 4.4 3.0 2.0 2.0 6.8 6.0 11.0
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larger than 1 indicates more spectral power in the

eastward-propagating modes, and thus measures the

dominance of an eastward-propagating disturbance. By

not measuring other aspects of the MJO, such as its

amplitude or composite structure, our analysis sets a

relatively low bar for the evaluation of the MJO, but

one which is informative. Calculations are performed

on daily precipitation data from individual models for

1961–75 and 1976–90, and then averaged to be consis-

tent with the 15-yr period of satellite observations.

Almost all models across all CMIP phases show

eastward propagation, indicated by ratios larger than

1. Thus, the most important characteristic of the MJO

is represented. The mean MJO skill, which only

slightly improves in going from CMIP3 to CMIP5, is

more substantially improved in CMIP6. Every phase

of CMIP has produced individual models that capture

the dominance of eastward propagation particularly

well—examples being the MRI-ESM for CMIP5, and

GFDL-CM4 in CMIP6, with ratios of 3.3 and 3.2, re-

spectively. Every phase of CMIP, and here CMIP6 is

no exception, however, also includes models with

predominantly westward-propagating disturbances.

Our results for the MJO are consistent with Fig. 4b

and the expectation that an improved MJO is accom-

panied by a more realistic 1-day lag autocorrelation

(Peters et al. 2017). However, this does not necessarily

imply an improvement of the mean state. In fact, a

realistic representation of the MJO is often accompa-

nied by an unrealistic mean state of, for example, the

ITCZ. Thus, the improvement of the MJO and the

large ITCZ bias in CMIP6 (Fig. 3d) found in this study

agree with previous results (Kim et al. 2011; Crueger

and Stevens 2015).

b. El Niño–Southern Oscillation

El Niño–Southern Oscillation (ENSO) is a coupled

ocean–atmosphere oscillation with a dominant period

of 3 to 7 years. Its main characteristics are changing

winds and sea surface temperatures over the tropical

Pacific Ocean. ENSO has major impacts in the tropics

and subtropics [e.g., on the monsoon (Kumar et al.

2013)], but is also thought to influence regions farther

poleward.

We identify El Niño events using the method by Power

et al. (2013). This includes the following processing steps

with the Climate Data Operators (Schulzweida 2019) for

each dataset. We compute the empirical orthogonal

function (EOF) of SSTmeans for June–December within

158S–158N, 1408E–1008W, based on detrended and fil-

tered SST time series that do not contain temporal vari-

ability on time scales longer than 30 years. El Niño events

are then defined as those cases when the principal

component of this data is greater than 0.8 times the

standard deviation of the principle component. We af-

terward select the precipitation anomalies relative to the

long-term mean during the detected El Niño events and

combine them by computing the average. As an example,

we show the resulting pattern of precipitation associated

with El Niño events for TRMM (Fig. 12a). It illustrates

the classical El Niño pattern with strongly positive

anomalies in precipitation over the west Pacific and

north of the equatorial Pacific, paired with negative

anomalies over the Maritime Continent. We also as-

sessed La Niña events (not shown) and found inverse

results to the ones for El Niño, shown next.

Comparing the CMIP results to TRMM points to two

clear regions with systematic biases in precipitation as-

sociated with El Niño events (Figs. 12b–d). The first one

is the too-strong positive anomaly around the Maritime

Continent indicating a westward displaced precipita-

tion maximum during El Niño events. This behavior

might be linked with the too-cold equatorial SST, which

also occurs in CMIP6 (Fig. S3), affecting the Walker

Circulation such that convective activity is displaced

westward (Bayr et al. 2019). The second bias is found

over the central Pacific that is consistent with the too-

pronounced double ITCZ (see Fig. 3). Both of these

features have been identified in earlier climate models

FIG. 11. Eastward-propagating strength of the Madden–Julian

oscillation (MJO). Shown is the ratio of the eastward- and

westward-propagating spectral power (r) of tropical precipitation

(see section 5a). The dashed line indicates a standing wave. Values

larger (smaller) than one are eastward- (westward-) propagating

waves. The box-and-whisker plots indicate the median, quartiles,

and extremes in the CMIP phases.
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(Li and Xie 2014) and we show here that these remain

challenges in CMIP6.

Biases in El Niño precipitation composites show

values that are in many regions commensurate with the

observed pattern. This is especially true for CMIP3, for

which the pattern is almost inverse to the observed pat-

tern (Figs. 12a,b). This is due to the small precipitation

amounts in CMIP3, which is reflected in the very small

standard deviation and weak spatial correlation, shown

in the Taylor diagram (Fig. 12e). CMIP5 witnessed a

marked improvement in the amplitude of the precipita-

tion signal for the composite El Niño events. This im-

provement is maintained by CMIP6, which additionally

shows a slight improvement in the spatial pattern, re-

flected by a correlation coefficients of r5 0.65 in CMIP6,

compared to r 5 0.51 in CMIP5 (Fig. 12e).

The representation of ENSO likely explains regional

precipitation biases over the Pacific Ocean and the

Maritime Continent (Fig. 1c). These might be linked with

SST biases (Figs. S2 and S3). The regional SSTs have

improved in CMIP5 and CMIP6 compared to CMIP3.

In contrast, the precipitation bias in the Indian Ocean

has increased in both CMIP5 and CMIP6 compared to

CMIP3. Overall, and in contrast to the natural cycles of

precipitation associated with solar radiative effects, pre-

cipitation anomalies from internal variability have im-

proved in the mean from one phase of CMIP to the next.

6. Climate change

In this section we compare the signal of climate

change in tropical precipitation in the twentieth century,

when the global near-surface temperature has increased

by 0.6 to 0.8K (Fig. 11 in Hansen et al. 2010). Given the

scarcity of precipitation data at the beginning of the

twentieth century, strong signals are difficult to identify.

For this reason we evaluate any signals that emerge not

only for consistency across CMIP phases, but also for

consistency with the present understanding of drivers of

precipitation changes.

a. Long-term trends

Greenhouse warming of the surface results from ad-

ditional cooling of the atmosphere, which one expects to

be balanced by an increase in precipitation (Mitchell

et al. 1987; Fläschner et al. 2016). Atmospheric heating

from the direct atmospheric radiative effects of in-

creased aerosol burden and CO2 (Bony et al. 2013) is

associated with reduced precipitation. Past studies

indicate that the increase in the twentieth-century

precipitation associated with the global temperature

increase has indeed been widely compensated by pre-

cipitation decreases due to atmospheric radiative effects

of changes in the atmospheric composition (Thorpe and

Andrews 2014; Myhre et al. 2017). Here, we investigate

whether the changes in tropical precipitation in the

twentieth century across the three CMIP phases are

consistent with the current understanding of changes in

atmospheric composition.

Figure 13 presents the mean precipitation across the

tropics for the different CMIP phases. For the conti-

nental land areas, we also include observations from

CRU, which because of its being drawn from a single

realization (one as opposed to an average across the

FIG. 12. Tropical precipitation associated with El Niño events. Shown are precipitation anomalies for El Niño

events from (a) TRMM, and the bias thereof for (b) CMIP3, (c) CMIP5, and (d) CMIP6, and (e) the Taylor diagram

as in Fig. 2, but using averages over land and ocean from (a)–(d). The ranges of the results were tested from each

model in CMIP6 for the shorter period of TRMM, but this gives a possible error due to too-few samples of observed

ENSO events. The range of standard deviations in CMIP6 from the samemodel (average over all models) was 0.10

and it was 0.05 for the correlation coefficient. This agrees well withWittenberg et al. (2014) andMaher et al. (2018).
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models) shows a much higher variability, which requires

it to be plotted on a different scale. Note that for this

reason, extremes occur in the CRU data over land that

do not appear with the samemagnitude for the averaged

model data (e.g., CRU has minima in 1972/73 and 1987).

These minima in CRU occur at times without strong

volcanic eruptions. They are rather associated with

natural variability (e.g., ENSO; Lyon and Barnston

2005; Gu et al. 2007; Gu and Adler 2011), which causes

year-to-year changes in precipitation that are compa-

rable to the magnitude of precipitation reduction after

strong volcanic eruptions.

We identify a small reduction in precipitation,

about 20.4mmday21, for a couple of years after the

largest explosive volcanic eruptions, namely, Santa Maria,

Pinatubo, El Chichon, andAgung (Fig. 13a), in agreement

with previous studies (Trenberth and Dai 2007; Gu et al.

2007; Iles and Hegerl 2014). For CMIP5 and CMIP6,

similar behaviors are found over land (Fig. 13b). Here, the

volcanic eruptions show stronger signatures than in the

tropicalmean over land and ocean together (note different

range in Figs. 13a and 13b). The posteruption reduction in

precipitation of theCMIPmeans over land is stronger than

what is indicated by CRU. This behavior suggests a too-

strong response of tropical precipitation to volcanic aero-

sol effects (e.g., potentially due to too-strong volcanic

aerosol radiative effects inCMIPmodels of phase 5 and 6).

For all phases of CMIP, precipitation increases

slightly over the first half of the twentieth century

(Fig. 13). This is followed by a reduction of precipitation

in the second half of the century in the CMIP5 and

CMIP6, but not in CMIP3. The weaker signal in CMIP3

might be from less pronounced aerosol-climate effects

as compared to the later CMIP phases. This aerosol

signature, combined with the direct effect of CO2 is

thought to explain the absence of a positive trend in

precipitation in the models that is to be expected based

on near-surface temperature changes alone. For in-

stance, the twentieth-century trend in precipitation from

CRU over land is positive, albeit small (Fig. 14b). The

precipitation in the models rather indicate a slowdown

of the hydrological cycle (Fig. 14), a change that has

been attributed to dimming by anthropogenic aerosols

(Wild 2009). This is consistent with the reduction of the

positive precipitation trends over ocean as we go from

CMIP3 to CMIP5 and CMIP6 (Fig. 14c), since anthro-

pogenic aerosols also affect regions offshore of land.

The reduction in precipitation over land is if anything

often stronger across the CMIP5 and CMIP6 ensembles.

Such differences could arise from either a tendency to-

ward more negative aerosol forcing in CMIP5 and

CMIP6, or a too-weak trend in near-surface tempera-

tures over tropical land for other reasons.

b. Extreme monthly precipitation

Here we assess trends in extreme monthly precipita-

tion sums to characterize changes in meteorological

droughts and wet spells. To this end, we employ the

FIG. 13. Time series of twentieth-century tropical precipitation

for CMIP multimodel means. (a) Tropical mean precipitation

anomalies with respect to their long-termmean for 1900–99. (b) As

in (a), but for continental land regions only, including CRU data.

The DPCRU axis is scaled by the fraction of the mean standard

deviations of CMIP and CRU to account for differences in the

year-to-year variability of ensemblemeans and observation [right y

axis in (b)]. The means are stated by the colored numbers 61

standard deviation of the CMIP ensemble.
FIG. 14. Precipitation trends over the period 1900–99 for CMIP3

(blue), CMIP5 (orange), CMIP6 (red), and CRU observations

(only available over land; black). The histogram values are marked

by the horizontal bars and the mean values by the dashed lines.

Gray shadingmarks the 90%confidence interval for no trend based

on a bootstrap method, calculating trends in about 104 random

sequences of 100 annual means from CMIP5, which has currently

the most models.
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standardized precipitation index (SPI; McKee et al.

1993), a widely used index for identifying dry and wet

spells across different climates. Examples of previous

applications include assessments of extreme precipita-

tion in the past (Bordi et al. 2009; Bothe et al. 2010; Zhu

et al. 2011; Sienz et al. 2012). On themonthly time scales,

we assess here, SPI can be related to groundwater and

water reservoir storage.

SPI is a normalized index for the probability of oc-

currence of a rainfall amount compared to the cli-

matology. SPI units are interpreted as the number of

standard deviations that an observed anomaly devi-

ates from the climatological mean, listed in Table S6.

The computation follows a standard procedure de-

scribed in detail elsewhere (e.g., Sienz et al. 2012). SPI

is a standardized departure of precipitation from a

selected probability distribution function fit to the

data by preserving the probabilities. This standardiz-

ing transformation ensures that the SPI gives a uni-

form measure for different climates. Here, we fit three

distribution types (gamma, generalized gamma, and

Weibull) at all grid points and chose the one that

yields the largest p-value, that is the specific proba-

bility for a value of the test statistics to occur ac-

cording to the null distribution. Thus, climate change

is determined by the change of the number of grid

points (per unit area), which belong to the same SPI

classes. Hence, the null hypothesis is rejected if the

p-value is less than or equal to a given test level (e.g.,

5%) and not rejected otherwise, ensuring thereby the

best-fitting distribution.

Our SPI analysis of the CMIPs and CRU is shown in

Fig. 15. The geographical distribution of SPI trends

in CMIP6 (Fig. 15a) indicates a tendency toward dryness

in the tropical rain forests of the Amazon, southern

Africa, and the subtropical parts of China. Slightly in-

creasing tendencies in SPI are observed for large parts

of the Sahel and the Maritime Continent. The CRU

data indicate that the number of both extreme wet and

dry months has increased (Fig. 15b), while the normal

events (N0)—which comprise the majority (68% of

the distribution probability)—have slightly decreased.

This is indicative of a broadening of the distribution of

monthly precipitation anomalies. In the course of the

three generations of CMIP, tendencies in the proba-

bilities of simulated dry anomalies (D1–D3) have be-

come systematically more similar to the CRU data.

This does not apply to the wet classes. All CMIPs show,

in contrast to the CRU data, a downward trend in the

number of wet anomalies (W1–W3), which is consis-

tent with a tendency toward dryness of tropical land

(e.g., Fig. 15a).

7. Opportunities for future advancements

Some of the biases in the representation of tropical

precipitation have been reduced over successive CMIP

phases. These include aspects of the pattern of the mean

precipitation as well as the precipitation signature of

modes of internal variability. But our progress has

been uneven. In many metrics, such as in the diurnal

or seasonal cycle, there is no clear sign of a continuous

FIG. 15. SPI over land. (a) The trends of SPI in CMIP6 (SPI units per decade), and (b) the

spatially averaged trends per decade for the number of events per SPI class for the CMIP

phases and CRU (1900–99).
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improvement in CMIP6. And for some quantities, such

as the fraction of precipitation that comes from low-

level cloud regimes (warm rain), or in measures of the

summer monsoon, the CMIP6 model mean depart more

from the observations than do earlier CMIP phases.

Even where progress has been most marked (e.g., for

the climatological pattern of precipitation), the model

biases are still larger than the signals they are being used

to predict (Palmer and Stevens 2019). To illustrate this,

Fig. 16 shows the change in precipitation expected at the

time of CO2 doubling, for simulations with a 1% yr21

increase in CO2. Typically the temperature increase at

this time, known as the Transient Climate Response, is

about 128C. We assume this to be representative of a

magnitude that CMIP6would project into the future and

hence use the associated tropical precipitation response

as signal to be compared to the bias. The analysis illus-

trates that the regional signals are much smaller than

the biases (cf. Fig. 1c), both in the multimodel mean and

also for the CMIP6 model MPI-ESM-LR (not shown).

Typical ways to argue that models are fit for the pur-

pose of projecting future precipitation changes would

be to point to the consistency of their response and the

strength of the signal relative to the bias. Although we

find some consistency across the models for the sign of

the precipitation response in the central Pacific, eval-

uations of earlier CMIP simulations than CMIP6 al-

ready indicated that this does not imply that the regional

signal is correct (England et al. 2014; Luo et al. 2018; Cai

et al. 2019). Moreover, we do not find regional model

agreements everywhere in the tropics. If the models are

to be justified as fit for purpose, a more sophisticated

argument is required.

One possible such argument would be the claim that

the projected changes do not depend on the model

representation of the mean state. There is some support

for this claim from precipitation changes without spatial

shifts in the sense of wet regions get wetter and dry

regions get drier (Mitchell et al. 1987; Held and Soden

2006). But this does not apply for the more crucial

question of regional changes in tropical precipitation

that additionally account for spatial shifts, like those

shown in Fig. 16. A part of the problem is the poor

understanding of how clouds couple to atmospheric

dynamics (e.g., reflected by the model diversity in

precipitation responses to warming in idealized simu-

lations; Stevens and Bony 2013).

Another unsatisfactory aspect comes from the reali-

zation that for many of the metrics we have evaluated,

the model biases are well known (e.g., Stouffer et al.

2017). The point of model development is to eliminate

biases, but it can be hard to knowwhether climatemodel

improvements arise from overfitting or overall a better

representation of physical processes, if one does not do a

comprehensive evaluation. In the case models are over

fit, one expects that improvements in a physical pa-

rameterization scheme deteriorate some aspects of the

simulated climate as errors in that parameterization

scheme no longer compensate for errors elsewhere in

the model. The uneven progress for tropical precipita-

tion that we document is an indication of the models

being over fitted, rather than being entirely based on

solid physical principles. For instance, MPI-ESM has a

poorer representation of the MJO in CMIP6, despite an

improvement of the spatial correlation with r 5 0.74 in

CMIP3 und CMIP5 to r 5 0.82 in CMIP6. On the con-

trary, GFDL and CNRM improved the MJO over time,

but show no gradual improvement in the spatial corre-

lation. Compared to the observed ratio of eastward-

to westward-propagating spectral power of 3.4, GFDL

has increased the ratios from 1.75 (CMIP3) and 1.88

(CMIP5) to 3.2 (CMIP6), whereas CNRMdecreased the

ratios of 5.9 (CMIP3) and 4.1 (CMIP5) to 3.7 (CMIP6).

However, the spatial correlations show less of a gradual

improvement in these models, with r 5 0.84 (CMIP3),

r 5 0.77 (CMIP5), r 5 0.91 (CMIP6) for GFDL and

FIG. 16. Precipitation difference in response to a doubling in atmospheric CO2 concen-

trations. Shown are the precipitation changes in the CMIP6 ensemble mean, obtained from

model experiments with an annual 1% CO2 increase as the difference between two 30-yr

averages in precipitation that are 70 years apart. Stippled regions indicate where at least 16 of

17 models agree on the sign of the change. We show the isoline of the tropical mean pre-

cipitation (thick contour) and use the same color bar as in Fig. 1 for an easier comparison of

the regional signals to the mean biases.
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r 5 0.68 (CMIP3), r 5 0.83 (CMIP5), r5 0.84 (CMIP6)

for CNRM.

Our documentation of the slow progress across the

analyzed CMIP phases indicates difficulties in develop-

ing a suite of physical parameterization schemes for fully

coupled Earth system models that successfully produce

the desired outcome—here just accurate tropical pre-

cipitation, let alone the dynamic climate system as a

whole. This is due to the complexity of interacting pro-

cesses and the degree of freedom for choosing appro-

priate settings in the various parameterizations, not

only for moist convection itself, but also processes like

radiative transfer, aerosols, and turbulent mixing that

influence the cloud development. Such problems are

for instance reflected in little progress on bounding ra-

diative forcing from aerosol perturbations (Bellouin

et al. 2020) and a poor model representation of the di-

urnal cycle in near-surface winds (Fiedler et al. 2016).

Moreover, potential errors in resolved processes project

onto tropical precipitation (e.g., the atmospheric and

ocean dynamics that set the large-scale environment in

which moist convection develops). Simulating circula-

tion is known as a grand challenge for climate models

(e.g., Sandeep et al. 2014; Bony et al. 2015).

There is a tendency to say that parameterization im-

provements are difficult but important, so we should

persevere. But given the slow pace and uneven nature of

improvements for tropical precipitation since CMIP3,

it at least seems fair to ask why one expects develop-

ments to accelerate when continuing along this same

path. In the absence of an especially compelling answer

and in the light of our own frustration, we discuss other

options for future research on tropical precipitation. We

focus on superparameterizations and storm-resolving

simulations, well aware that not all of them are in-

stantaneously feasible for the full breadth of research

interests.

One way forward to improve tropical precipita-

tion in coarse-resolution climate models are super-

parameterizations. Superparameterization refers to

the replacement of the parameterization scheme for

convection by a cloud-system resolving model (e.g.,

Khairoutdinov and Randall 2001; Dirmeyer et al. 2012).

The domain of the embedded model has a sufficiently

high resolution for simulating convective systems in-

cluding their triggering, organization, and propagation

within each grid box of a coarse-resolution model. This

idea has also further developed to ultraparameterizations

that resolve large-eddy mixing requiring resolutions at

the order of 20m (Parishani et al. 2017). Models with a

superparameterization can better simulate light and

extreme precipitation associated with convective clouds

(Li et al. 2012). A superparameterization therefore

helps to reduce tropical precipitation biases (e.g., in

the diurnal and seasonal cycle as well as the MJO;

Randall et al. 2016), despite challenges regarding the

correct orientation of the embedded model relative to

the wind (Dirmeyer et al. 2012) and the persistent

scale gap similar like for traditional parameterization

schemes (Stevens et al. 2020). Given the computa-

tional costs of superparameterizations, fast alterna-

tives using deep neural networks (e.g., trained on

model simulations with superparameterization), are

also being tested (e.g., Rasp et al. 2018) with the caveat

that physical processes are replaced with an artificial

intelligence.

It is therefore worthwhile to also explore different

approaches to study tropical precipitation with global

warming. Here global storm-resolving or convection-

permitting simulations, with horizontal resolutions

of 1 to 5 km, are attractive. Such simulations re-

solve more of deep convection (Kendon et al. 2017;

Hohenegger et al. 2020), and have successfully been

used for regional domains including parts of the

tropics (e.g., Heinold et al. 2013; Ban et al. 2014;

Leutwyler et al. 2016; Heinze et al. 2017; Klocke et al.

2017). Results of global storm-resolving simulations

indicate an ability to overcome persistent biases (e.g.,

in the diurnal cycle, precipitation extremes, and the

placement of the ITCZ; Sato et al. 2009; Satoh et al.

2019; Schär et al. 2020; Arnold and Randall 2015;

Stevens et al. 2020).

The idea that storm-resolvingmodels could be applied

for global climate research is sometimes dismissed as

something for the distant future (e.g., Schneider et al.

2017). However, recent studies (Neumann et al. 2019;

Düben et al. 2020) suggest that if existing models could

be run on today’s largest supercomputer, global simu-

lations on grids as fine as 1.5 km could already today

deliver one simulated year per day. As discussed else-

where (cf. Stevens et al. 2020), these models are not

likely to solve all problems (e.g., their results are sensi-

tive to the representation of cloud microphysical and

small-scale mixing processes), but they appear to have a

more solid physical basis for simulating processes rele-

vant to tropical precipitation, such as the coupling to

mesoscale atmospheric dynamics. We suggest that the

past view, whereby traditional parameterizations for

moist convection are necessary for all research questions

in climate sciences and global storm-resolving models

are amethod of the distant future, is outdated. If the past

pace of progress across the CMIP phases is any indica-

tion for the future, then we should not reject the idea

that storm-resolving models could offer a quicker route

to a better understanding of tropical precipitation within

the next decade.
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8. Conclusions

Our assessment of tropical precipitation as measured

across a wide range of metrics, and over three genera-

tions of CMIP models, shows that the simulations are

improving in some respects, but the improvements are

uneven. In some metrics the CMIP6 models appear to

have larger biases than previous generations of models.

Compared to state-of-the-art observations, we identify

some improvement in the 1) tropical mean spatial cor-

relations and the root-mean-square error of the clima-

tology of tropical precipitation, 2) day-to-day variability

and the number of consecutive dry days, 3) dominant

modes of internal variability measured by the Madden–

Julian oscillation and El Niño–Southern Oscillation,

and 4) trends in dry extremes in the twentieth century.

On the contrary, we find no clear improvement for

tropical precipitation in CMIP6, concerning 1) the sea-

sonal cycle, which shows a persistent double-ITCZ bias

and still poorly represented summer monsoons; 2) the

precipitation associated with convective cloud regimes

with the largest precipitation events being associated

with too-shallow deep clouds; 3) the time of occurrence

of diurnal maxima with still a systematically too-early

maximum in precipitation amount and frequency; and

4) the persistent negative trends in wet extremes across

all CMIPs, a change that is opposite to the positive trend

found in observations for the twentieth century.

In those metrics where the CMIP6 models better rep-

resent the observations as compared to previous phases

of CMIP, one can assess the rate of progress in different

ways. For instance, as regards the strength of eastward-

propagating information associated with the MJO, sub-

stantial progress has been made. But even if one assumes

that the current rate of progress can be maintained, an-

other two phases (15 years) will be required to match the

simulated MJO to within observational uncertainty. For

other quantities the time scale of model improvement

appears even longer. For instance, biases in the mean

climatology are still several times larger than the signals

projected in association with a roughly 28C warming.

Given the efforts that have been devoted to improving

global climate models, one is reluctant to be dismissive

of the improvements that have been realized. It is also

almost certainly the case that some models have made

much larger improvements than is apparent when one

looks at all the models as a whole. Nonetheless, a sober

analysis of progress must be based on quality of the

results rather than the magnitude and importance of

the effort. In this regard, and given the interest in us-

ing these models to project the response of tropical

precipitation to anthropogenic forcing, the poor re-

sponse to known solar radiative effects, in the form of

seasonal and diurnal cycles, is discouraging. When it is

considered that these are not independent tests of the

models, as the desired response of tropical precipitation

is well known, the results are even more discouraging.

Given that the present situation arises after model de-

velopment over three generations of CMIP models, we

begin to consider the possibility that coarse-resolution

global climate models suffer from structural deficiencies

(i.e., the past approach of convective parameterization is

ill-posed for representing tropical precipitation). This

would suggest that classical climate models with pa-

rameterized convection are not necessarily adequate

for the purpose of projecting future tropical precipita-

tion changes, with implications for both physical pro-

cesses that depend on them and impact studies that rely

on the model results. For this reason other approaches

should be encouraged, in which context storm-resolving

simulations are an option.
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