
Distributed Computing (1987) 2:80-94

�9 Springer-Verlag 1987

Simulating authenticated broadcasts

to derive simple fault-tolerant algorithms*

T.K. Srikanth and Sam Toueg

Cornell University, Ithaca, NY 14853, USA

T.K. Srikanth He received the

B. Tech. degree in Mechanical

Engineering from the Indian In-

stitute of Technology, Madras,

in 1981. He received the M.S.

and Ph.D. degrees in computer

science from Cornell University,
in 1985 and 1986, respectively.

He is currently a research scien-

tist at X O X Corporation, Ith-

aca, New York. His research in-

terests include distributed com-

puting, fault-tolerance, and geo-

metric modeling.

Sam Toueg He received the

B.Sc. Degree in computer

science from the Technion, Israel

Institute of Technology, in 1976,

and the M.S.E., M.A., and
Ph.D. degrees in computer

science from Princeton Universi-

ty, in 1977, 1978, and 1979, re-

spectively. He spent a post-doc-

toral year at the IBM Thomas
J. Watson Research Center, at

Yorktown Heights, in the Sys-

tems Analysis and Algorithms

division. In 1981 he joined the

Department of Computer
Science at Cornell University,

Ithaca, NY, where he is currently an Associate Professor. His

current research interests include distributed computing, fault-

tolerance, computer networks, and distributed database systems.

Dr. Toueg is a member of the Association for Computing Machin-

ery SIGACT and SIGCOMM.

Abstract. Fault-tolerant algorithms for distributed

systems with arbitrary failures are simpler to devel-

op and prove correct if messages can be authenti-

* Partial support for this work was provided by the National

Science Foundation under grant MCS 83-03135

Offprint requests to: T.K. Srikanth

cated. However, using digital signatures for mes-

sage authentication usually incurs substantial over-

head in communication and computation. To ex-

ploit the simplicity provided by authentication

without this overhead, we present a broadcast

primitive that provides properties of authenticated

broadcasts. This gives a methodology for deriving

non-authenticated algorithms. Starting with an au-

thenticated algorithm, we replace signed communi-

cation with the broadcast primitive to obtain an

equivalent non-authenticated algorithm. We have

applied this approach to various problems and in

each case obtained simpler and more efficient solu-

tions than those previously known.

Key words: Distributed systems - Fault-tolerance -

Byzantine agreement - Authentication

1 I n t r o d u c t i o n

Fault-tolerance is an important issue in distributed

systems. However, reasoning about distributed

computations is difficult, and particularly so when

arbitrary types of failures can occur. In this paper,.

we study techniques that impose restrictions on

the visible behavior of faulty processes and thereby

simplify the task of designing fault-tolerant algo-

rithms.

To illustrate our approach, we first consider

the problem of reaching agreement among pro-

cesses when some of them may be faulty. This

problem, called the Byzantine Generals Problem or

Byzantine Agreement, is a central issue in the de-

sign of fault-tolerant systems (Lamport et al. 1982;

Mohan etal. 1983; Garcia-Molina etal. 1984)

Formally, Byzantine Agreement requires that

when a message is sent by a transmitter to a set

T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts 81

of processes the following two conditions are sat-

isfied:

Agreement

All correct processes agree on the same mes-

sage.

Validity

If the transmitter is correct, then all correct pro-

cesses agree on its message.

We assume a set of n processes, of which no

more than t are faulty. A process is correct if it

always follows the agreement algorithm; it is faulty

otherwise. Correct processes must reach agreement

on a message m ~ M w {" sender faulty"}, where M

is the set of messages the transmitter can send.

We make no assumptions about the behavior of

faulty processes they can even be malicious in

attempting to foil agreement. We assume a com-

pletely connected network and a reliable message

system in which a process receiving a message can

identify the immediate sender of the message.

One way to restrict the visible behavior of

faulty processes is to assume that the message sys-

tem is authenticated (Lamport et al. 1982; Dolev

and Strong 1983; Merritt 1984). Informally, au-

thentication prevents a process from changing a

message it relays, or introducing a new message

into the system and claiming to have received it

from some other process. This restriction on the

behavior of faulty processes not only simplifies the

design of fault-tolerant algorithms, but often re-

sults in algorithms that are simpler, more efficient,

and tolerate more faults in the system than algo-

rithms without authentication (Fischer 1983).

We first consider synchronized algorithms that

proceed in synchronized phases. Informally, a

phase is an interval of time where processes first

send messages (according to their states), wait to

receive messages sent by other processes in the

same phase, and then change their states accord-

ingly.

If authentication is not available, the best

known Byzantine Agreement algorithm requires

2 t + 3 phases and has a message complexity of
O(nt+ t 3 log t) bits (Dolev et al. 1982). 1 This algo-

rithm is unintuitive and hard to understand, as

are most non-authenticated algorithms. On the

other hand, Dolev and Strong derive an authenti-

cated Byzantine Agreement algorithm that is easy

to understand and prove correct (Dolev and

1 A recent result by Coan (1986) shows that for any e>0 , By-

zantine Agreement can be achieved in (1 +e)(t+ 1) phases with
a polynomial message complexity

Strong 1982). Thus, we see that the assumption

that messages are authenticated simplifies the de-

velopment of fault-tolerant algorithms. This is be-

cause authentication imposes restrictions on the

otherwise arbitrary behavior of faulty processes.

Cryptographic techniques that provide digital

signatures can be used for message authentication

(Rivest et al. 1978). However, all known crypto-

graphic schemes have disadvantages. They all re-

quire some computational and communication

overhead. Furthermore, none of them has been

proven unconditionally secure from attacks by ma-

licious processes. In fact, malicious processes can

break such schemes by computing or guessing the

signature of another process. Although the proba-

bility of such an occurrence can be very small, it

is nevertheless non-zero.

We describe a methodology for deriving non-

authenticated algorithms with the simplifying as-

sumption that messages are authenticated, but

without paying the costs of digital signatures. The

idea is as follows. We first derive an algorithm

assuming message authentication. We then identify

the properties of authentication the algorithm uses

and derive a broadcast primitive that provides

these properties without using signatures. Finally,

we automatically convert the authenticated algo-

rithm into a nonauthenticated one by just replacing

signed communication in the original algorithm

with our communication primitive. This transla-

tion method results in a non-authenticated algo-

rithm which is as simple as the original authenti-

cated algorithm; furthermore, it has the same

proof of correctness. However, it may tolerate

fewer faults than the corresponding authenticated

algorithm.

Apart from simplifying the design of fault-tol-

erant algorithms, this approach also unifies a large

class of results. Previous work has provided differ-

ent and more or less unrelated solutions for a prob-

lem depending on whether or not authentication

is available. For example, the simple authenticated

algorithm by Dolev and Strong (Dolev and Strong

1982) did not seem to help solve the non-authenti-

cated version of the problem (Dolev et al. 1982).

Other examples are the problems of Byzantine

Elections (Merritt 1984) and clock synchronization

(Halpern et al. 1984; Lundelius and Lynch 1984).

Our broadcast primitive and translation technique

yield uniform solutions for both systems.

We illustrate this new approach on two syn-

chronous agreement problems. The first applica-

tion gives an efficient non-authenticated algorithm

for Byzantine Agreement that improves on known

algorithms by terminating in 2 t + 1 phases using

82 T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts

O(nt 2 log n) bits. Further, this algorithm is as sim-

ple as the authenticated algorithm in (Dolev and

Strong 1982) from which it is derived.

We then consider the Byzantine Elections prob-

lem. This problem was solved assuming message

authentication (Merritt 1984). By replacing signed

communication with our primitive, we automati-

cally obtain the first known non-authenticated al-

gorithm for Byzantine Elections. Its communica-

tion complexity is the same as that of the authenti-

cated algorithm.

We then extend this approach to asynchronous

systems and use it to derive a non-authenticated

randomized Byzantine Agreement algorithm from

an authenticated one (Toueg 1984). The resulting

algorithm has a lower message complexity than

the original authenticated one.

This approach has also been applied to derive

a simple, efficient early-stopping Byzantine Agree-

ment algorithm (Toueg et al. 1987), and to derive

algorithms for synchronizing clocks (Srikanth and

Toueg 1987).

It should be noted that authentication is differ-

ent from secrecy (Tanenbaum 1981). Crypto-

graphic techniques can be used to achieve both.

Our communication primitives provide authentica-

tion, not secrecy.

2 Properties of authenticated broadcasts

Consider an algorithm that proceeds in synchro-

nous rounds a and uses authenticated broadcasts.

A process p broadcasts a message m in round k

by sending signed copies of the triple (p, m, k)

to all processes (including itself). A process that

receives (p, m, k) accepts it if it can verifyp's signa-

ture. We denote these two operations by broadcast
(p, m, k) and accept (p, m, k).

Since a message broadcast by a correct process

in a synchronous system is received by all correct

processes in the same round, and since we assume

that signatures of correct processes cannot be

forged, authenticated broadcasts satisfy the follow-

ing two properties:

1. (Correctness) If correct process p broadcasts (p,

m, k) in round k, then every correct process

accepts (p, m, k) in the same round.

2. (Unforgeability) If process p is correct and does

not broadcast (p, m, k), then no correct process

ever accepts (p, m, k).

One advantage of authentication is that it pre-

vents faulty processes from modifying broadcasts

of correct processes or from sending messages on

z For the present, a round is just a phase

behalf of correct processes. This restriction is cap-

tured by the unforgeability property. Authentica-

tion has another advantage as explained below.

If a correct process accepts a message signed

by a processp, it cannot be sure that other pro-

cesses have also accepted this message. However,

by relayingp's signed message, it ensures that every

process receives it, verifies p's signature and ac-

cepts the message. Hence, authentication provides

the following property: if a process relays all the

signed messages it accepts in a round, then it en-

sures that all processes accept these messages by

the next round. Therefore, if processes immediately

relay every message they accept, then message au-

thentication provides the following additional

property:

3. (Relay) If a correct process accepts (p, m, k)

in round r > k, then every other correct process

accepts (p, m, k) in round r + 1 or earlier.

Note that correctness implies that messages

broadcast by correct processes are accepted by all

correct processes in the same round. On the other

hand, a message broadcast by a faulty process p

and later relayed by other processes might be ac-

cepted by a correct process many rounds after it

was first broadcast by p. Thus, a correct process

might accept (p, m, k) in some round r > k.

Receiving a relayed message m with p's signa-

ture does not necessarily imply that p is indeed

the originator of the message. In fact, p could have

been faulty and given its signature to another pro-

cess. This process could then originate m "signed

b y p " (Lamport et al. 1982). Therefore, unforgeabi-
lity only guarantees that if a process accepts (p,

m, k), it can infer that, /f p is correct, then p is

the originator of the message.

3 An algorithm using authenticated
broadcasts

We now consider an authenticated algorithm for

Byzantine Agreement. This algorithm, presented

in Fig. 1, is similar to that in Dolev and Strong

(1983) restricted to the case where messages are

binary, i.e., processes attempt to reach agreement

on a value me {0,1}. Algorithms for multivalued

agreement are described in Sect. 6. The following

is an informal description of the binary algorithm.

The algorithm proceeds in synchronous

rounds. In this algorithm, the only value broadcast

by correct processes is 1. The value 0 is decided

upon by default. A correct transmitter broad-

casts 1 in round 1 if agreement is to be reached

on the value 1. Otherwise, the transmitter remains

silent. Process p sets the variable value to 1 in

T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts 83

process p: /*m ~{0,1 } */

i fp is the transmitter then value:-m else value: =0;

f o r r : - I t o t + l d o

if value = 1 and

p has not broadcast a message in earlier rounds
then broadcast (p, 1, r) ;

relay the r - 1 messages accepted in previous rounds
that caused value to be set to 1 ;

if in rounds r' _< r, accepted Qgk, 1, rk)
from r distinct processes Ok, including the transmitter Pl
then value: = 1 ;

od

decide value.

Fig. 1. A binary Byzantine Agreement algorithm using authenti-
cated broadcasts

round r, and thereby decides on 1, if it has accepted

r messages, each message signed by a distinct pro-

cess, one o f which is the transmitter . I f p sets value

to 1 in round r, then in round r + 1, it signs and

broadcasts its own message, and relays the r mes-

sages that caused it to set its value to 1. The correct-

ness and relay propert ies o f authent icated broad-

casts ensure that p 's signed message, and all r mes-

sages that caused p to set value to 1, are accepted

by all correct processes by round r + 1. Hence, they

too will set value to 1, and decide on 1.

I f 0 is the value to be agreed upon, then a

correct t ransmit ter never broadcasts any message.

By unforgeability of authent icated broadcasts , no

correct process ever accepts any message originat-

ing f rom the transmitter. Hence, no correct process

sets value to 1, and all correct processes decide

on the default value 0.

T h e o r e m 1. The authenticated algorithm in Fig. 1

achieves Byzantine Agreement in t+ 1 rounds with

O (n 2 t log n) message bits.

Proof The p r o o f is similar to that in Dolev and

Strong (1983). No te that broadcasts are authent i-

cated and processes immediately relay the signed

messages they accept. Therefore , broadcasts satisfy

the correctness, unforgeability and relay propert ies.

We first show that Validity is achieved. Th a t

is, if the t r ansmi t t e rp l is correct , then every correct

process decides on the t ransmit ter 's value.

(i) I f agreement is to be reached on the value 1,

the t ransmit ter initially sets value to 1 and

broadcasts (p l , 1, 1) in round 1. By correctness,

every correct process accepts (p~, 1, 1) in

round 1. Therefore , every correct process sets

value to 1. Once a process sets value to 1, it

does not change it and hence decides on 1.

(ii) I f agreement is to be reached on 0, the transmit-

ter initially sets value to 0 and does no t broad-

cast any message in round 1. Therefore , by un-

forgeability it will never broadcas t any message

in any other round either. Hence, by unforgea-

bility, no correct process can ever accept a mes-

sage f rom the transmitter . Therefore , every cor-

rect process retains value-- 0 th roughou t the al-

gori thm, and when it terminates, decides on 0.

To show that Agreement is reached, we consider

the following two cases:

(i) I f some correct p roces sp first sets value to 1

at the end o f round r < t + 1, it must have ac-

cepted messages (Pk, 1, rk) f rom at least r dis-

tinct processes Pk including the t ransmit ter Pl

(note that p r for 1 < k < r). In round r + 1,

it broadcasts (p, 1, r + 1) . By the correctness

and relay propert ies, in round r + 1 every cor-

rect process accepts (p, 1, r + l) and (Pk, 1, rk)

for 1 < k < r, and thus sets value to 1.

(ii) I f a correct process first sets value to I in round

t + 1, it must have accepted messages (Pk, 1, rk)

f rom t + 1 distinct processes Pk- At least one

of these processes must be correct . This correct

process, say Pi, broadcas t (Pi, 1, ri) in round

r i< t + i. Therefore , Pi set value to 1 in round

r i - 1 < t + 1. By case (i), every correct process

sets value to 1 by the end o f round t + 1.

Thus, if a correct process sets value to 1, every

correct process sets value to 1 and decides on 1.

Otherwise, every correct process has value = 0 and

decides on 0. Therefore , Agreement is satisfied.

The a lgor i thm requires t + 1 rounds. Each pro-

cess broadcasts at mos t one message and relays

up to O (t) signed messages. Thus, correct processes

send a total of O(n 2 t) messages. Assuming that

each signature requires O (log n) bits, the a lgor i thm

requires O(nZt logn) bits o f in format ion ex-

change. []

Note that the p r o o f o f correctness relies only

on the correctness, unforgeability and relay proper-

ties provided by signed broadcasts .

4 An implementation of authenticated

broadcasts

Implement ing authent ica t ion using digital signa-

tures is one way o f providing the propert ies o f

correctness, unforgeability and relay described in

Sect. 2. In this section, we describe a b roadcas t

primitive that provides these three propert ies o f

authent icated broadcasts wi thout using signatures

(Fig. 2). Informally, we achieve this by requiring

that to broadcas t a message, a process has to use

a set of processes as "wi tnesses" o f this event.

A correct process accepts a message only when

it knows that there are sufficient witnesses to this

84 T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts

Algorithm for broadcasting and accepting (p, m, k):

Round k :

Phase 2 k - l : process p sends (init, p, m, k) to all processes;

Phase 2 k: each process executes the following
for each meM:

i f received (init, p, m, k) from p in phase 2 k - 1
then send (echo, p, m, k) to all;

i f received (echo, p, m, k) from at least n - t distinct
processes in phase 2k

then accept (p, m, k);

Round r _> k + 1 ;

Phase 2r -1 , 2r: each process executes the following:

i f received (echo, p, m, k) from at least n - 2 t distinct
processes in previous phases

and not sent (echo, p, m, k)
then send (echo, p, m, k) to all;

i f received (echo, p, m, k) from at least n - t distinct
processes in this and previous phases
then accept (p, m, k);

Fig. 2. A broadcast primitive to simulate authenticated broad-
casts

broadcas t . This prevents a faul ty process f r o m

claiming to have received a message tha t was not

sent to it, and allows a correct process tha t accepts

a message to later p rove tha t the message was in-

deed sent. This pr imit ive requires n > 3 t processes.

I f n < 3 t, no b roadcas t pr imit ive can provide these

three proper t ies wi thou t using signatures (this is

shown in Sect. 5).

The pr imit ive in Fig. 2 simulates the authent i -

cated b roadcas t o f a message m by a process p

dur ing round k o f a synchronized a lgor i thm. I t

uses two kinds o f messages. The sender initially

sends messages o f type init to all processes (includ-

ing itself). These processes now act as " w i t n e s s e s "

to this broadcas t . Each such process then sends

a message o f type echo to all processes. A process

tha t receives t + 1 echoes o f a message becomes

a witness to the broadcas t , for it knows tha t at

m o s t t processes are faul ty and therefore there is

at least one correct witness a m o n g these t + 1 p ro-

cesses. A process tha t receives 2 t + 1 echoes accepts

the message.

The pr imit ive can be viewed at two different

levels. At one level, processes exchange high-level

messages with the pr imit ive opera t ions broadcast

and accept. A round is the interval o f t ime t aken

to exchange these logical messages. A t a lower level

o f the a lgor i thm, these logical messages are imple-

men ted by the exchange of messages o f type init

and echo. We define a phase to be the interval

o f t ime it takes for a process to send such low-level

messages to all processes, receive low-level mes-

sages sent by processes in the same phase, and

pe r fo rm some local computa t ion . A high-level

message b roadcas t by a correct process is accepted

by all correc t processes af ter two phases o f syn-

chronized exchange o f low-level messages. There-

fore, each r o u n d of the pr imit ive is implemented

by two phases o f message exchange: round r is

made up o f phases 2 r - 1 and 2 r.

To p rove tha t this pr imit ive provides the three

proper t ies o f authent ica t ion , we first establish the

following lemma.

L e m m a 1. I f a correct process sends' (echo, p, m, k)

then p must have sent (init, p, m, k) to at least one

correct process in phase 2 k - 1.

Proof. Let 1 be the earliest phase in which any

correct process q sends (echo, p , m , k). I f l > 2 k ,

process q mus t have received (echo, p, m, k) mes-

sages f r o m at least n - 2 t distinct processes. There-

fore, it mus t have received (echo, p, m, k) f r o m at

least one correct process in phase l - 1 or earlier.

Hence, some correct process sends (echo, p, m, k)

before phase l, a contradic t ion. Therefore , l = 2 k ,

and q mus t have received (init, p, m, k) in phase

2 k - 1 . []

T h e o r e m 2. The broadcast primitive in Fig. 2 pro-

vides the correctness, unforgeability and relay prop-

erties.

Proof

Correctness: Since p is correct , every process re-

ceives (#tit, p, m, k) in phase 2 k - 1 and every cor-

rect process sends (echo, p, m, k) in phase 2k.

Hence, every process receives (echo, p, m, k) f rom

at least n - t distinct processes in phase 2 k and

every correct process accepts (p, m, k) in phase 2 k,

i.e., in round k.

Unforgeability: I f p is correct and does not b road-

cast (p, m, k), it does not send any (init, p, m, k)

message in phase 2 k - 1. I f any correct process ever

accepts (p, m, k), it mus t have received

(echo, p, m, k) messages f r o m at least n - t pro-

cesses. Hence, at least n - 2 t correct processes mus t

have sent (echo, p, m, k) messages. By L e m m a 1,

p mus t have sent (init, p, m, k) to at least one cor-

rect process in phase 2 k - 1, a contradict ion.

Relay: Suppose a correct process q accepts

(p, m, k) dur ing phase i, where i = 2 r - 1 or 2 r. Pro-

cess q mus t have received (echo, p, m, k) f r o m at

least n - t distinct processes by phase i. Hence,

every correct process receives messages

(echo, p, m, k) f rom at least n - 2 t distinct p ro-

cesses by phase i, and therefore sends

T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts 85

(echo, p, m, k) by phase i+ 1. Hence, every correct

process receives (echo, p, m, k) from at least n - t

distinct processes by phase i+1 and accepts

(p, m, k) by the end of phase i+ 1, i.e., in round

r + l or earlier. []

As presented here, the broadcast primitive does

not terminate in a fixed number of rounds. If the

broadcaster is faulty, other faulty processes can

collude with the sender so that arbitrarily many

rounds elapse before any correct process accepts

the broadcaster's message. However, in an applica-

tion that terminates in r rounds, processes stop

executing the primitive at the end of round r.

In computing the message complexity of the

primitive, we consider only messages sent by cor-

rect processes. It is not possible to restrict the

number of messages sent by faulty processes.

Lemma 2. The total number o f messages sent by
all the correct processes for each broadcast by a
correct process is 0 (n2) .

Proof. When a correct process p broadcasts

(p, m, k), each correct process broadcasts one

(echo, p, m, k) message to each process. Hence, the

total number of messages sent by all correct pro-

cesses is O(n2). []

Although the primitive requires O (n 2) messages

for each broadcast by a correct process, it also

provides for the automatic relay of all broadcasts

accepted by correct processes. Thus, processes

need never explicitly relay messages they accept.

In the applications we study, this compensates for

the cost of each broadcast.

To reduce the message complexity from that

shown in Lemma 2, we can use the following well-

known technique. We isolate a set of 3 t + 1 pro-

cesses called the reflectors, and execute the primi-

tive with n replaced by 3 t + 1 as follows: only ref-

lectors send echo messages to all the other pro-

cesses, other processes only receive these messages

and accept messages according to the primitive.

It can be verified that Theorem 2 still holds. Since

there are O (t) reflectors, the total number of mes-

sages sent by all correct processes for each broad-

cast by a correct process is O(nt).
However, a broadcast of a faulty process, with

the collusion of other faulty processes, can still

cause correct processes to send O(nt) messages for

each round of the algorithm. We can modify the

primitive to reduce the number of messages due

to faulty broadcasts. This modified primitive (de-

scribed in the Appendix) imposes additional re-

strictions on the behavior of faulty processes and

thereby reduces the number of messages sent by

correct processes: In an algorithm in which each

correct process broadcasts at most R high-level

messages, at most O(Rnt) messages are sent by

all correct processes for all the broadcasts of any

single process.

5 A simple non-authenticated algorithm
for Byzantine Agreement

The proof of the authenticated Byzantine Agree-

ment algorithm of Fig. 1 only needs the correct-

ness, unforgeability, and relay properties of authen-

ticated broadcasts. Cryptographic techniques that

provide digital signatures can be used for message

authentication, and hence for the implementation

of authenticated broadcasts with those properties.

However, the correctness of the authenticated al-

gorithm does not depend on this particular imple-

mentation, and any other implementation of au-

thenticated broadcasts providing these three prop-

erties can be used instead. In Sect. 4, we described

a broadcast primitive providing these three proper-

ties. Replacing signed communication in the au-

thenticated algorithm with this primitive directly

yields an equivalent non-authenticated algorithm.

In addition, the relay property of the primitive en-

sures that messages accepted by correct processes

are automatically relayed to all other processes.

Hence, processes need not explicitly relay accepted

messages.

In Fig. 3, we present the non-authenticated al-

gorithm derived by just replacing signed communi-

cation in the authenticated algorithm of Fig. 1 with

the broadcast primitive of Fig. 2. Each logical

round of the algorithm corresponds to two phases

of the underlying primitive.

Theorem 3. The non-authenticated algorithm in
Fig. 3 achieves Byzantine Agreement in 2 t + 2

phases with 0 (n 2 t log n) message bits.

process p: /*m e{0,1 }*/

if p is the transmitter then v a l u e : - m else value:= 0;

for r : - -1 to t + l do

if value = 1 and

p has not broadcast a message in earlier rounds

then broadcast (p, 1, r) ;

if in rounds r' < r, accepted (Pk, 1, rk)

from r distinct processes Pk, including the transmitter Pl

then value: = 1 ;

od

decide value.

Fig. 3. A non-authenticated algorithm for binary Byzantine

Agreement using the broadcast primitive of Fig. 2

86 T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts

Proof. The proof of correctness is identical to that

of the authenticated algorithm in Theorem 1.

The algorithm requires 2 t + 2 phases since each

round of the algorithm is implemented by two

phases of the underlying primitive. Since each pro-

cess broadcasts at most one message, correct pro-

cesses send a total of O(n 2 t) messages using the

primitive in the Appendix. We assume that each

message is O (log n) bits long. []

The broadcast primitive requires n > 3 t pro-

cesses. Therefore, although the authenticated algo-

rithm (in Fig. 1) can tolerate any number of faulty

processes, the equivalent non-authenticated algo-

rithm (in Fig. 3) requires n > 3 t processes. It is well-

known that no non-authenticated Byzantine

Agreement algorithm exists for n < 3 t (Lamport

etal . 1982). Therefore, if n<_3t, no broadcast

primitive can provide the properties of correctness,

unforgeability, and relay without using signatures.

If such a primitive existed, it could be used to con-

vert the authenticated algorithm of Fig. 1 into a

non-authenticated one for n < 3 t processes, contra-

dicting the lower bound given in Lamport et al.

(1982). Hence, our broadcast primitive is optimal

with respect to the number of faulty processes that

can be tolerated.

We now outline some simple optimizations to

reduce the message and time complexity of the

non-authenticated algorithm. The first optimiza-

tion is to reduce the message complexity by isolat-

ing a set of 3 t + 1 active processes (Dolev et al.

1982; Dolev and Strong 1983). The remaining pro-

cesses are denoted passive. Only active processes

broadcast messages according to the algorithm.

Passive processes only accept messages, and decide

on a value 1 only if they accept this message from

at least t + 1 distinct processes. Otherwise, they de-

cide on 0. The proof of Theorem 3 can be easily

extended to show the correctness of this algorithm.

Since there are O(t) active processes, each broad-

casting at most once, we have:

Corollary 1. Byzantine Agreement can be reached

in 2 t + 2 phases with O(nt 2 log n) message bits.

It is clear that in the authenticated algorithm,

messages signed and broadcast in the last round

will not be relayed further. Hence, processes need

not sign these messages. Consider a modified au-

thenticated algorithm where processes broadcast

unsigned messages in round t + 1. Translating this

algorithm into a non-authenticated one saves one

phase: in round t + 1, our broadcast primitive is

not needed and a one-phase unsigned broadcast

suffices. However, we must guarantee that a mes-

sage accepted by a correct process in round t (i.e.,

by phase 2 0 is accepted by all correct processes

by phase 2 t + 1, i.e., within one additional phase.

This is achieved by using a simple version of the

primitive in round t, for example, that of Fig. 2.

Therefore:

Corollary 2. Byzantine Agreement can be reached

in 2 t + 1 phases with O(n t21ogn) message bits.

The communication complexity can be further

reduced at the cost of an extra phase, with another

well-known technique (Dolev et al. 1982; Dolev

and Strong 1983). The 3 t + 1 active processes de-

scribed earlier run the agreement algorithm strictly

among themselves, and broadcast their decision (0

or 1) directly to all the passive processes only at

the end. The passive processes decide on the major-

ity value. Since there are O(t) active processes

which reach agreement in 2 t + 1 phases, this algo-

rithm terminates in 2 t + 2 phases and requires

O (n t + t 3 log t) message bits.

Corollary 3. Byzantine Agreement can be reached

in 2 t + 2 phases with 0 (n t + t 3 log t) message bits.

6 Multivalued Byzantine Agreement

Binary valued Byzantine Agreement algorithms

can be extended to multivalued ones using stan-

dard techniques. These schemes add a phase to

the running time of the binary valued algorithms.

Algorithms such as that in Dolev and Strong

(1983) have been directly developed for the multi-

valued case and are no more expensive in time

than the corresponding binary valued algorithms.

Our goal is to develop a non-authenticated multi-

valued algorithm that requires no more phases

than the binary algorithm in Fig. 3. This can be

achieved by using our primitive to translate an au-

thenticated multivalued Byzantine Agreeement al-

gorithm (similar to that in Dolev and Strong

(1983)) into a non-authenticated one.

In the authenticated multivalued algorithm,

each correct process broadcasts at most 2 mes-

sages. However, faulty processes could try to

broadcast more than twice each. This would result

in a high message complexity for the translated

algorithm, if we use the primitive of Fig. 2. Hence,

to translate this authenticated algorithm to an effi-

cient non-authenticated one, we must use the prim-

itive in the Appendix.

The proofs of the authenticated and non-authen-

ticated algorithms, written in terms of the proper-

ties of authenticated broadcasts, are identical. We

T.K, Srikanth and S. Toueg: Simulating authenticated broadcasts 87

process p: / * m E M * /

i f p is the transmitter then values: = {m} else values: = ~j;

f o r r : - l t o t + l d o

for each m e values that p has not broadcast in previous

rounds do

i fp has not yet broadcast 2 distinct values

then broadcast (p, m, r); od

for each m ~ M:

if in rounds r' _< r, accepted (Pk, m, rk),

from r distinct processes Pk,

including the transmitter Pl

then values: = values U {m} ;

od

if I values I= 1 then decide on the value m E values

else decide "sender faulty" ;

Fig. 4. A non-authenticated algorithm for multivalued Byzan-

tine Agreement using the broadcast primitive

present only the non-authent ica ted a lgor i thm

(Fig. 4) and its p r o o f o f correctness.

The mult ivalued algori thm is a s t ra ightforward

modif icat ion of the binary algori thm presented in

Sect. 3. Each process maintains a set values of po-

tential decision values. A process p adds m to this

set in round r if it has accepted messages contain-

ing m from r distinct processes including the trans-

mit ter p l . In the next round, p broadcasts m if it

has not yet b roadcas t 2 distinct values. On termi-

nation, if the set values of process p contains ex-

actly one element, it decides on that value. Other-

wise it decides that the sender is faulty.

Theorem 4. Multivalued Byzantine Agreement can
be achieved in 2 t + 2 phases with O(n2t (logn+

logIMI)) message bits using the non-authenticated
algorithm in Fig. 4.

Proof. The p r o o f o f correctness is similar to tha t

o f Theorem 1 and that in (Dolev and Strong 1983).

We first prove Validity.
I f the t ransmit ter Pl is correct and agreement

is to be reached on the value m, then Pl broadcasts

(pl, m, 1) in round 1. By correctness, every correct

process accepts this message in round 1, and adds

m to its set values. The t ransmit ter does not broad-

cast any other message in round 1. Hence, by un-
forgeability, the t ransmit ter will never broadcas t

any other message in any round. Thus, by unfor-
geability no correct process can accept any message

(p l , m ' , r l) for m r Therefore , every correct

process has values = {m} when it stops and decides

o n t7/.

To show that Agreement is satisfied, we consid-

er two cases:

(i) I f a correct process p first adds m to its set

values in round r < t + 1, it must have accepted

messages (Pk, m, rk) f rom r distinct processes

Pk including the t ransmit ter P l - N o te that p v~

Pk, l < k < r . In round r + l , p broadcasts

(p, m, r + 1) if it has not already broadcas t two

distinct values. In that case, by correctness and

relay, every correct process accepts these r + 1

messages and adds m to values.
(ii) I f a correct process p first adds m to its set

values in round t + l , it must have accepted

messages (Pk, m, rk) f rom t + 1 distinct processes

Pk. At least one of these processes must be cor-

rect. This correct process must have first added

m to its set values in round r - 1 < t + 1. By case

(i), every correct process adds m to its set

values.

Let p be the correct process whose set values
has the m ax im u m number o f elements at the termi-

nat ion o f the algori thm. I f process p has

]values] < 2, it follows f rom (i) and (ii) that the

set values of every correct process contains at least

the elements tha t p has added to its set. Since the

set values of p is the largest, it follows that every

correct process has the same elements in values.
Therefore , all correct processes reach identical de-

cisions. Specifically, if process p has]values I= 1,
then all correct processes have the same element

m in values and decide on m. I f process p has

Ivaluesl = 0 or Ivalues] = 2 , then all correct pro-

cesses decide that the sender is faulty.

I f process p has]values]>2, it follows f rom

cases (i) and (ii) that the set values of every correct

process contains at least two o f the elements that

p has added to its set. Therefore , every correct

process has]valuesl _> 2 and decides that the sender

is faulty. This proves that Agreement is satisfied.

The a lgor i thm requires t + 1 rounds, i.e., 2 t + 2

phases o f communica t ion . Since each correct pro-

cess broadcasts at most two messages, correct pro-

cesses send a total of O(n 2 t) messages using the

broadcas t primitive in the Appendix. As described

in the p r o o f o f Coro l la ry 1, this can be reduced

to O (nt 2) messages. Since messages are O (log n +

log]M [) bits long, the total bit complexi ty is O (nt 2

(l o g n + l o g l M])) . []

7 Byzantine Elections

The prob lem of Byzant ine Elections (Merr i t t 1984)

involves the forecast ing o f election results in a syn-

chronous ne twork of unreliable processes. I f an

election is not close, these algori thms allow accu-

rate forecast ing o f results in less than t + i rounds.

88 T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts

Round 1 :

Each voter signs and broadcasts its vote.

Round j , 2 < j < t + 1 :

Each witness w does the following:

Fo r every voter i:

if witness w has accepted an i - v o t e with at least j - 2

distinct affidavits

then the vote is valid.

Sign any new valid i - v o t e s , producing a new affidavit.

broadcast every valid i - v o t e or affidavit for a valid vote

that was not broadcas t by w in earlier rounds.

Decision procedure for round j , 1 _<j< t + 1 :

if process p has accepted exactly one i - v o t e with at least

j - 1 distinct affidavits (including its own, i f p is a witness),

then decide on the value signed as process rs vote,

else decide error as i's vote.

Fig. 5. Authent ica ted algori thm for Notar ized Byzantine Elec-

tions (Merri t t 1984)

Thus, a l though processes might not agree on the

votes o f individual processes until the a lgor i thm

terminates, they obta in enough informat ion to pre-

dict the ou tcome of the election in fewer than t + 1

rounds. No non-authent ica ted algori thm for By-

zantine Elections was known. Using our broadcas t

primitive, we now derive one f rom the authent i-

cated a lgor i thm proposed by Merr i t t (1984).

Consider a system in which the processes have

to agree on the votes o f a set o f v processes called

voters. In this paper , we only consider the algo-

r i thm for Notar ized Elections (Merr i t t 1984),

where a set of w processes are assigned to be wit-

nesses, with w > 2 t . Witnesses do not themselves

vote, they just sign and forward messages f rom

the voters and other witnesses. Dur ing each round

o f the algori thm, each process (voter or witness)

chooses a value as the vote o f each voter. We as-

sume there are w- -2 t witnesses and hence a total

of n = v + 2 t processes.

The requirements o f an algori thm for Byzan-

tine Elections are:

(1) Dur ing any round j of the algorithm, there is

never any disagreement on a correct process 's

vote.

(2) All correct processes reach Byzantine Agree-

ment on every vote when the algori thm termi-

nates.

(3) After round j , 1 _<j< t + 1, values chosen as the

votes o f at mos t t - j + 1 processes are different

f rom those eventually chosen. This allows pro-

cesses to arrive at a decision earlier than round

t + 1 if the election is not close.

An authent icated a lgor i thm for Notar ized By-

zantine Elections f rom Merr i t t (1984) is presented

in Fig. 5. A value signed by a voter i is an i - v o t e .

The signature o f a witness of an i - v o t e is an affi-

davit for that i-vote.

The complete p r o o f of correctness o f this algo-

r i thm is found in Merr i t t (1984). The p r o o f is out-

lined below, highlighting those por t ions that iden-

tify the propert ies o f authent icat ion required by

the algori thm.

(1) I f a process accepts an affidavit f rom a correct

witness p for an i - vote in round j , then every

process accepts the i - v o t e and at least t affida-

vits for it by round j + 1. This follows f rom

the fact that if a correct witness finds an i - vote

valid, it broadcasts an affidavit for that vote

and also relays the vote and all the affidavits

tha t caused it to find the i - v o t e valid. Hence,

by correctness and relay, every correct witness

finds the i - v o t e valid in round j , and broad-

casts an affidavit.

(2) I f a correct process changes its decision for

some process i after round j, then at least j - 1

witnesses are faulty. This is shown by consider-

ing the various situations in which a correct

process could change its decision. In each case,

either the j - 1 witnesses that caused it to de-

cide on a value at round j or the witnesses

that cause it to later change its decision are

faulty.

(3) There is never any disagreement on the vote

o f correct processes. A correct process i broad-

casts its vote to all o ther processes in round 1.

By correctness, every correct process accepts

this message in round 1, and decides on this

value. Since process i does not broadcas t any

other vote, by unforgeability, no correct pro-

cess finds any other i - v o t e valid.

At the end o f round t + l , correct processes

agree on every vote. By (3), agreement is guar-

anteed on votes o f correct processes. I f a cor-

rect witness broadcasts an affidavit for an i -

vote, then it also relays the i - v o t e and all the

affidavits that caused it to find the i - v o t e val-

id. Hence, by correctness and relay, every pro-

cess finds the i - v o t e valid in the next round

and further, every correct witness also broad-

casts an affidavit for this i - v o t e . I f a process

finds an i - v o t e valid at the end o f round t + 1,

it must have accepted the i - v o t e and accepted

affidavits f rom at least t witnesses. I f voter i

is faulty, at least one o f these witnesses is cor-

rect and hence every other correct process finds

the i - v o t e valid. F r o m this, it can be seen that

correct processes either agree on an i - v o t e or

decide on error as the vote.

(5) In (2), we saw that if any value is changed

after round j , there are at least j - 1 faulty wit-

(4)

T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts 89

Round 1 :
Each voter broadcasts its vote.

Round j, 2_<j_< t+ 1 :

Each witness w does the following:
For every voter i:

if witness w has accepted an i-vote with at least j - 2
distinct affidavits then the vote is valid.
broadcast an affidavit for a valid vote that
was not broadcast by w in earlier rounds.

Decision procedure for round j, 1 < j< t + 1 :
if process p has accepted exactly one i-vote with at least
j - 1 distinct affidavits (including its own, ifp is a witness),
then decide on process i's vote,
else decide error as i's vote.

Fig. 6. A non-authenticated algorithm for Notarized Byzantine
Elections

Rules for broadcasting and accepting (p, m, k):

Round k (phase k) :
process p sends (init, p, m, k) to all processes.

Each process executes the following for each m E M:

if received (init, p, m, k) from p
then send (echo, p, m, k) to all;

if received (echo, p, m, k) from at least n - t distinct
processes in previous phases

then accept (p, m, k);

if received (echo, p, m, k) from at least n - 2 t distinct
processes in previous phases

and not sent (echo, p, m, k)
then send (echo, p, m, k) to all;

Fig. 7. A primitive to simulate asynchronous authenticated
broadcasts

nesses. Hence, at m o s t t - j + l voters are

faulty, and hence correct processes a lways

agree on the votes o f the remain ing (correct)

voters. Tha t is, ag reement is reached on

max(O, v + j - t - 1) votes.

Each witness relays a vote and O(t) affidavits

for each voter . Thus, the total n u m b e r o f messages

exchanged is O (n v t2).

F r o m the p r o o f out l ined above, we see tha t the

proper t ies o f au thent ica t ion required by the algo-

r i thm are the three proper t ies described in Sect. 2.

Hence, the b roadcas t pr imit ive o f Fig. 2 can be

used in place o f au thent ica ted communica t ion , re-

sulting in an equivalent non-au then t ica ted algo-

r i thm for Byzant ine Elections. Once again, p ro-

cesses need not relay accepted votes or aff idavits

since the under lying pr imit ive achieves this. The

non-au then t ica ted a lgor i thm is described in Fig. 6.

This a lgor i thm requires a total o f n > 3 t processes,

o f which at least 2 t are designated as witnesses.

T h e o r e m 5. The algorithm of Fig. 6 solves the By-

zantine Elections problem without authentication in

2 t + 2 phases and O(n v t2).

Proof The p r o o f o f correctness is exactly the same

as that o f the au thent ica ted a lgor i thm, s ta ted in

terms o f the three proper t ies o f au then t ica ted sys-

tems.

Each witness b roadcas t s an aff idavi t for each

vote of each voter , hence the total n u m b e r o f mes-

sages b roadcas t is O(nvt2), the same as tha t in

the original au thent ica ted algori thm. []

8 A s y n c h r o n o u s a u t h e n t i c a t e d b r o a d c a s t s

We now consider systems where c o m m u n i c a t i o n

is asynchronous . Messages sent by correc t p ro-

cesses are eventual ly received by all correct p ro-

cesses, bu t this could take an arbi t rar i ly long time.

Hence, there can be no fixed b o u n d on the dura-

t ion of a phase, and the phases are not synchro-

nized. The proper t ies tha t au thent ica ted b road -

casts in a synchronous systems satisfy are therefore

weaker versions o f those described in Sect. 2, and

can be stated as follows:

1. (Correctness) I f correc t process p b roadcas t s

(p, m, k), then every correct process accepts

(p ,m, k).

2. (Unforgeability) I f correct process p does not

b roadcas t (p, m, k) then no correct process ever

accepts (p, m, k).

3. (Relay) I f a correct process accepts (p, m, k),

then every o ther correct process accepts

(p , m , k) .

The synchronous b roadcas t pr imit ive of Fig. 2

can be easily modi f ied to derive an a synchronous

pr imit ive with the three proper t ies described above

(Fig. 7).

T h e o r e m 6. The primitive o f Fig. 7 achieves the

properties of correctness, unforgeabi l i ty , and relay

in asynchronous systems.

Proof The p r o o f closely follows tha t o f T h e o r e m 2

for synchronous systems. We use the a s s u m p t i o n

tha t messages sent out by correct processes are

eventual ly received by all correct processes. Detai ls

are left to the reader. []

As in the synchronous system, we can show

tha t a b roadcas t by a correct process using the

pr imit ive o f Fig. 7 causes correc t processes to send

a total o f at m o s t O(n 2) messages. However , a

faul ty process m a y or iginate m a n y b roadcas t s in

each round, thus causing correc t processes to send

m o r e than O(n 2) messages for these broadcas t s .

90 T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts

It is possible to modify this asynchronous primi-

tive, so that correct processes send a total of at

most O(n 2) messages for all broadcasts originated

by each process in each round. This modified prim-

itive is the asynchronous version of the one in the

Appendix.

In general, the asynchronous primitive of Fig. 7

can be used in developing non-authenticated algo-

rithms that do not proceed in synchronized phases.

An example of this is clock synchronization, as

shown in Srikanth and Toueg (1987). Another ex-

ample is presented in the next section.

9 Randomized Asynchronous Byzantine
Agreement

An asynchronous randomized algorithm for By-

zantine Agreement was presented by Rabin (1983).

This was improved by Toueg (1984) to overcome

arbitrary failures of up to a third of the processes.

The latter algorithm consists of iterations with two

rounds each. The first round uses authenticated

broadcasts and the second round uses a non-au-

thenticated broadcast primitive described in that

paper. The algorithm, presented in Fig. 8, reaches

agreement in an expected number of iterations that

is a small constant independent of n and t.

In the authenticated algorithm of Fig. 8, a pro-

cess p justifies the message it sends in the second

round by broadcasting the list of signed messages

it receives in the first round. The proof of correct-

ness onlyneeds the three properties of authentica-

tion provided by our asynchronous broadcast

Process Pi : M : = M i

for k = 1 to k = R do

(* Round 1 *)

broadcast M ;

wait to accept messages f rom n - - t distinct processes;

proof : = set o f accepted messages;

count (l) : = number of accepted messages with a value o f 1 ;

if count (l) >~ n - 2t then M' : = 1

else M' : = 0;

(* Round 2 *)

echo_broadcast [M', proof];

wait to accept [m, proof]-messages, with correct proofs,

f rom n - t distinct processes;

coun t (l) : - number of accepted messages with rn = 1 ;

sk: = compu t~sec re t (k) ;

if (Sk=0 and count (l) > 1) or

(Sa=l and coun t (l) _ > 2 t + l) then M : = I

else M : = 0;

o d

Fig. 8. An authenticated asynchronous binary agreement pro to-

col (Toueg 1984)

primitive. Therefore, we can convert this algorithm

to a non-authenticated one by simply replacing au-

thenticated broadcasts with the primitive of Fig. 7.

With our primitive, signed messages accepted

by process p in the first round are automatically

relayed to all, and therefore, p does not have to

explicitly relay (broadcast) this list of accepted

messages. Hence, the translation reduces the origi-

nal communication complexity by a factor of n.

As in Rabin's algorithm (Rabin 1983), the re-

sulting algorithm still requires that a correct dealer

use encryption to distribute shares of the secret

random bits to each process individually, before
the agreement algorithm starts.

10 Discussion

In some applications, it might be desirable to re-

strict processes to broadcast a single message per

round of the algorithm. That is, in addition to

the properties of correctness, unforgeability, and

relay, we might be interested in achieving the fol-

lowing property:

4. (Uniqueness) If a correct process accepts

(p, m, k) in round k, no correct process accepts

(p, m', k) in round k where m v e m'.

The broadcast primitive of Fig. 2 can be easily

extended to achieve this property with the follow-

ing modification: in phase 2k, a correct process

sends (echo, p, m, k) only for the first init message

it receives from process p in phase 2 k - 1. All addi-

tional init messages from p in phase 2 k - 1 are ig-

nored. We now show that uniqueness holds.

Assume that two correct processes accept

(p, m, k) and (p, m', k), respectively, in round k,

with my am'. Then, at least n - t processes sent

(echo, p, m, k) and at least n - t processes sent

(echo, p, m', k) in phase 2 k. Therefore, at least one

correct process sent both (echo, p, m, k) and

(echo, p, m', k) in phase 2 k, a contradiction.

The Crusader Agreement problem, a weaker

version of the Byzantine Agreement problem, has

been defined in Dolev (1982). The problem re-

quires that, when a transmitter sends a message

to a set of processes, the following conditions are

satisfied:

(1) If the transmitter is correct, then all correct

processes agree on its message.

(2) If the transmitter is faulty, all correct processes

that do not decide that the transmitter is faulty

agree on the same message.

A known solution to the Crusader Agreement

algorithm (Dolev 1982) achieves the properties of

correctness, unforgeability and uniqueness. How-

ever, it does not have the relay property, and there-

T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts 91

fore it cannot model the relaying of signed mes-

sages, a crucial property of message authentica-

tion. The first two phases of our primitive achieve

Crusader Agreement.

In some authenticated algorithms such as those

in Dolev and Strong (1983) and Halpern et al.

(1984), a process accepting a message appends its

signature to this message and then broadcasts it.

When a process receives a message with a list of

signatures, it can verify from these signatures that

each process on the list actually broadcast the mes-

sage. Non-authenticated algorithms can be derived

from such algorithms in one of two ways. The first

approach involves modifying the authenticated al-

gorithm so that when a process accepts a message,

it signs the message, and also relays all the mes-

sages that caused it to accept the message. Thus,

messages contain exactly one signature each. We

used this approach for the authenticated Byzantine

Agreement algorithm in Section 3.

Another approach is to require that when

a process q accepts a message of the form

m:pl :P2---:Pk, where each Pi is the signature of

a process, q considers the message to be valid only

if has also accepted each prefix of the message,

i.e., it has also accepted each o fm :Pl, m :Pl :P2

re:p1 :P2---:Pk 1- This provides a simple and di-

rect, although inefficient, method for deriving a

non-authenticated algorithm from the authenti-

cated one.

11 Conclusions

The design of fault-tolerant algorithms for systems

with arbitrary failures is a very difficult task. These

algorithms are usually complex, unintuitive, and

difficult to prove correct. Assuming message au-

thentication greatly simplifies the design of such

algorithms. Moreover, authenticated algorithms

are usually simpler, and easier to prove correct.

However, known implementations of message au-

thentication, such as digital signatures, incur sub-

stantial computation and communication costs.

Furthermore, no such implementation is proven

secure under malicious attack. In this paper, we

described a methodology to reduce the difficult

task of designing non-authenticated algorithms to

the simpler task of designing authenticated ones.

Our methodology is based on a communication

primitive that provides properties of message au-

thentication without using cryptographic tech-

niques. The idea is to first derive a fault-tolerant

algorithm assuming that messages are authenti-

cated. We then convert this algorithm into a non-

authenticated one by substituting authenticated

communication with our primitive. The resulting

non-authenticated algorithm is as simple as the au-

thenticated one from which it is derived.

In this paper, we have applied this approach

to several problems. The first application gave a

Byzantine Agreement algorithm requiring 2 t + l

rounds of message exchange and O (nt 2 log n) mes-

sage bits. This algorithm is conceptually as simple

as the original authenticated algorithm and has the

same proof of correctness. The best previously

known such algorithm needed 2 t + 3 rounds for

the same message complexity.

We also applied this methodology to the By-

zantine Elections problem, and it resulted in the

first known solution that does not use authentica-

tion. This solution is as simple as, and has the

same message complexity as, the authenticated al-

gorithm from which it is derived.

We then extended the primitive to asynchro-

nous systems. We translated an authenticated ran-

domized Byzantine Agreement algorithm (Toueg

1984) into a non-authenticated one with lower

message complexity and no extra phases.

More recently, the approach outlined in this

paper has been adopted to derive a simple and

efficient early-stopping Byzantine Agreement algo-

rithm (Toueg et al. 1987), and to achieve optimal

clock synchronization (Srikanth and Toueg 1987).

We believe that the methodology we have de-

scribed is one of the first powerful tools for under-

standing and developing non-authenticated fault-

tolerant algorithms for systems with arbitrary fail-

ures.

Appendix

A m e s s a g e e f f i c i e n t b r o a d c a s t p r i m i t i v e

In some algorithms, correct processes broadcast

at most R broadcasts, for some R. For example,

in the authenticated algorithm of Fig. 1, R = 1, and

in the one of Fig. 4, R = 2. In this section, we modi-

fy the primitive of Fig. 2 to ensure that faulty pro-

cesses do not execute more broadcasts than that

required by the algorithm. This reduces the

number of messages sent by witnesses and hence

the overall message complexity.

We introduce additional types of messages:

init' sent by processes in the third phase of a broad-

cast, and echo' sent by processes in the remaining

phases of the broadcast. The primitive is described

in Fig. 9. As before, each round r corresponds to

phases 2 r - 1 and 2r of the primitive. The value

m to be broadcast can be drawn from some arbi-

92 T.K_ Srikanth and S. Toueg: Simulating authenticated broadcasts

Algorithm for broadcasting and accepting (p, m, k):

/* Processes execute at most R broadcasts in the algorithm

in which this primitive is applied. */

R o u n d k :

Phase 2k-- 1 : process p sends (init, p, m, k) to all processes.

Each process executes the following for each mEM:

Phase 2k:

if received (init, p, m, k) from p in phase 2 k - 1

and received at most R (init, p, , _) messages from p

in all previous phases

then send (e.cho, p, m, k) to all;

if received (echo, p, m, k) from at least n-- t distinct

processes in phase 2k

then accept (p, m, k);

R o u n d k + 1 :

Phase 2 k + 1 :

if received (echo, p, m, k) from at least n - -2 t distinct

processes q in phase 2k

and received at most R (echo, p, ,) messages

from q in all previous phases

then send (init', p, m, k) to all;

Phase 2 k + 2 :

if received (init', p, m, k) from at least n - t distinct

processes in phase 2k+ I

then send (echo', p, m, k) to all;

if received (echo', p, m, k) from at least n - t distinct

processes in phase 2k + 2

then accept (p, m, k);

R o u n d r>_k+2:

Phase 2 r - 1,2r:

if received (echo', p, m, k) from at least n - - 2 t distinct

processes in previous phases

and not sent (echo', p, m, k)

then send (echo', p, m, k) to all;

if received (echo', p, m, k) from at least n - t distinct

processes in this and previous phases

then accept (p, m, k);

Fig. 9. A primitive that permits up to R authenticated broad-

casts per process

t ra ry set M. In what follows, message fields

m a r k e d by an " - " (underscore) can conta in arbi-

t ra ry values. F o r example , (, p) refers to all

messages sent by process p, and (echo, p, ,)

refers to all messages of type echo sent by p.

Lemma 3. I f a correct process ever sends

(echo' ,p , m, k) , then at least one correct process

must have sent (echo', p, m, k) in phase 2 k + 2 .

Proof. Let l be the earliest phase in which any

correct process q sends (echo', p, m, k). I f l>_2k +

3, process q mus t have received (echo' ,p, m, k)

messages f rom at least n - 2 t distinct processes, i.e.,

it mus t have received (echo', p, m, k) f rom at least

one correct process in phase l - 1 or earlier. Hence,

some correct process sends (echo', p, m, k) before

phase l, a contradic t ion. Therefore , 1 = 2 k + 2.

Lemma4. I f a correct process ever sends

(echo', p, m, k), then p must have sent (init, p, m, k)

to at least one correct process in phase 2 k - 1 .

Proof. By L e m m a 3, if a correct process ever sends

(echo', p, m, k), then some correct process q mus t

have sent (echo', p, m, k) in phase 2 k + 2 . There-

fore, process q mus t have received (init', p, m, k)

f r o m at least n - t processes in phase 2 k + 1. At

least n - - 2 t o f these processes are correct , and each

of them mus t have received at least n - 2 t

(echo, p, m, k) messages in phase 2k. Hence, at

least one correct process mus t have sent

(echo, p, m, k) in phase 2 k and it mus t have re-

ceived (init, p, m, k) f rom p in phase 2 k - 1. []

Theorem 7. The broadcast primitive in Fig. 9 has

the properties of correctness, unforgeabi l i ty , and re-

lay.

P r o o f

Correctness: Since p is correct , every correct pro-

cess receives (init, p, m, k) in phase 2 k - - 1 and

sends (echo, p, m, k) in phase 2k. Hence, every pro-

cess receives (echo, p, m, k) f rom at least n - t cor-

rect processes in phase 2 k and every correct pro-

cess accepts (p, m, k) at the end of phase 2k, i.e.

at the end o f round k.

Utforgeabili ty: I f p is correct and does not execute

b roadcas t (p, m, k), it does not send any message

(init, p, m, k) in phase 2 k - 1, and no correct pro-

cess sends (echo, p, m, k) in phase 2k. Hence, no

correct process can accept (p, m, k) in phase 2k.

I f some correct process accepts (p, m, k) at the end

of p h a s e 2 k + 2 or later, it mus t have received

(echo', p, m, k) messages f r o m at least n - t distinct

processes, i.e., it mus t have received (echo', p, m, k)

f rom at least n - 2 t correct processes. By L e m m a 4,

p mus t have sent (init, p, m, k) to at least one cor-

rect process in phase 2 k - l , a contradic t ion. Thus,

no correct process ever accepts (p, m, k).

Relay." Let q be a correct process that accepts

(p, m, k) in phase i where i = 2 r - 1 or 2 r. I f r = k,

then q mus t have received (echo, p, m, k) f rom at

least n - t distinct processes in phase 2k. Hence,

in the same phase, every correct process receives

(echo, p, m, k) f rom at least n - 2 t distinct pro-

cesses and sends (init', p, m, k) in phase 2 k + 1 .

Therefore , every correct process sends (echo',

p, m, k) dur ing phase 2 k + 2 and every correct pro-

T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts 93

cess accepts (p, m, k) at the end o f phase 2 k + 2 ,

i.e., round r + l . Now. suppose r>_ k+l . Process

q must have received (echo', p, m, k) f rom at least

n - t distinct processes by phase i. Hence, every

correct process receives (echo' ,p, m, k) f rom at

least n - 2 t distinct processes by phase i, and there-

fore sends (echo', p, m, k) at or before phase i + 1.

Thus, every correct process receives (echo', p, m, k)

f rom at least n - t distinct processes by phase i + 1,

and therefore accepts (p, m, k) by the end o f pha-

se i + 1, i.e., in round r + 1 or earlier. []

As before, in comput ing the message complex-

ity o f the primitive, we only consider messages sent

by correct processes.

Lemma 5. In an algorithm in which the primitive

o f Fig. 9 is applied, each correct process sends a

total o f 0 (Rn) (_, p) messages for each process

p.

Proo f Consider a given process p. Each correct

process Pi accepts at most R (init, p) messages

f rom p and thus sends at mos t R (echo, p)

messages to each process. Pi considers at mos t R

(echo, p) messages f rom each other process pj

t h roughou t the algorithm. Since p~ sends

(init ' ,p, m, k) only on receiving at least n - 2 t

(echo, p, m, k) messages, and since n > 3 t, each cor-

rect process sends at most R n / (n - - 2 t) < 3 R

(init', p) messages.

We now show that at mos t 6R distinct

(echo' ,p, ,) messages are sent (to all) by the set

o f correct processes (and hence by each individual

correct process). Let C be a set o f n - t correct

processes. By L e m m a 3, if a correct process sends

(echo' ,p, m, k) in any phase, then some correct

process q must have scent (echo' ,p, m, k) in

p h a s e 2 k + 2 . Fo r correct process q to send

(echo' ,p, m, k) in phase 2 k + 2 , it must receive

(init ' ,p, m, k) messages f rom at least n - t pro-

cesses, i.e., f rom at least n - 2 t correct processes

in C. Therefore , the sending o f an (echo', p, m, k)

by a correct process requires the sending o f

(init', p, m, k) by n - 2 t correct processes in C to

all processes, i.e., a total of (n - 2 t)n such messages

sent by processes in C. Since each correct process

sends at most 3 R (init', p) messages to all pro-

cesses, then processes in C send a total of at most

3 R (n - t)n (init', p, ,) messages. Hence, the total

number of distinct (echo' ,p, , ~ sent by the set

o f correct processes is bounded by 3 R (n - t) n / (n -

2 t)n_<6R. Thus, each correct process sends at

most 6R (echo' ,p, ,) messages.

Therefore, each correct process sends at most

10R (_ ,p ) messages to all processes, i.e., a

total of O(n) C , p , , ~ messages. []

Corollary 3. For each process p, the total number

o f (_, p, _,) messages sent by all correct processes

throughout an algorithm is" O(Rn2).

As in Sect. 4, we reduce the message complexi ty

by isolating a set of 3 t + 1 processes called the ref-

lectors, and execute the primitive with n = 3 t + 1

as follows: only reflectors send init', echo and echo'

messages to all the other processes and other pro-

cesses only receive these messages and accept mes-

sages according to the primitive. It can be verified

that the proofs of Th eo rem 7 and Lemmas 3 and

4 still hold. Since there are O(t) reflectors, by

L e m m a 5, the total number o f C, p, , _) messages

sent by all correct processes for each p roces sp is

o(Rnt).

Acknowledgements. We would like to thank (3zalp Babao~lu,
John Gilbert and Fred Schneider for their helpful comments
and suggestions on earlier drafts of this paper.

References

Coan AB (1986) A communication-efficient canonical form for
fault-tolerant distributed protocols. Proc Fifth Annu ACM
Symp on Principles of Distributed Computing, Calgary,
Canada (August 1986), pp. 63 72

Dolev D (1982) The Byzantine Generals Strike again. J Algo-
rithms 3(1):14-30

Dolev D, Strong HR (1982) Polynomial algorithms for multiple
process agreement. Proc 14th Annual ACM Symp Theory
Comput, San Francisco, California, (May 1982), pp 404~
407

Dolev D, Strong HR (1983) Authenticated algorithms for By-
zantine Agreement. SIAM J Comput 12(4) : 656 666

Dolev D, Fischer M J, Fowler R, Lynch NA, Strong HR (1982)
An efficient algorithm for Byzantine Agreement without au-
thentication, Inf Control, vol 52, no 3

Fischer MJ (1983) The consensus problem in unreliable distrib-
uted systems (A Brief Survey), YALEU/DCS/RR-273 (June
1983)

Garcia-Molina H, Pittelli F, Davidson S (1984) Applications
of Byzantine Agreement in database systems. Tech Rep TR
316, Princeton University (June 1984)

Halpern JY, Strong HR, Dolev D (1984) Fault-tolerant clock
synchronization, Proc Third Annual ACM Symp Principles
of Distributed Computing, Vancouver, Canada, (August
1984) pp 89 102

Lamport L, Shostak R, Pease M (1982) The Byzantine Generals
problem. ACM Trans Program Lang Syst 4:382~401

Lundelius J, Lynch N (1984) A new fault-tolerant algorithm
for clock synchronization. Proc Third Annual ACM Symp
on Principles of Distributed Computing, Vancouver, Can-
ada (August 1984), pp 75-88

Lynch N, Fischer M, Fowler R (1982) A simple and efficient
Byzantine Generals algorithm. Proc Second IEEE Symp Re-
liability in Distributed Software and Data Base Systems,
Pittsburgh, Pennsylvania, pp 46-52

Merritt M (1984) Elections in the presence of faults. Proc 3rd
Symp Principles of Distributed Computing, Vancouver,
Canada

Mohan C, Strong HR, Filkenstein S (1983) Method for distrib-
uted transaction commit and recovery using Byzantine

94 T.K. Srikanth and S. Toueg: Simulating authenticated broadcasts

Agreement within clusters of processors. Proc 2nd Symp

Principles of Distributed Computing (August 1983). Mon-
treal, Canada, pp 89-103

Pease M, Shostak R, Lamport L (1980) Reaching agreement
in the presence of faults. J ACM 27(2):228-234

Rabin M (1983) Randomized Byzantine generals. Proc 24th
Symp Foundations of Computer Science, Tucson, Arizona
(November 1983) pp 403M09

Rivest RL, Shamir A, Adleman L (1978) A method for obtain-
ing digital signatures and public-key cryptosystems. Com-

mun ACM 21 (2): 120-126
Srikanth TK, Toueg S (1987) Optimal clock synchronization.

Proc 4th Symp Principles of Distributed Computing, Min-
aki, Canada (August 1985). To appear in the Journal of

the ACM (July 1987)
Tanenbaum AS (1981) Computer networks. Prentice-Hall soft-

ware series
Toueg S (1984) Randomized asynchronous Byzantine Agree-

ments. Proc 3rd Symp Principles of Distributed Computing,
Vancouver, Canada (August 1984)

Toueg S, Perry KJ, Srikanth TK (1987) Fast distributed agree-
ment. Proc 4th Symp Principles of Distributed Computing,
Minaki, Canada (August 1985). Also appeared in SIAM
J Comput Vol. 16, No. 3, June 1987

