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Abstract. Fault-tolerant algorithms for distributed 

systems with arbitrary failures are simpler to devel- 

op and prove correct if messages can be authenti- 
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cated. However, using digital signatures for mes- 

sage authentication usually incurs substantial over- 

head in communication and computation. To ex- 

ploit the simplicity provided by authentication 

without this overhead, we present a broadcast 

primitive that provides properties of  authenticated 

broadcasts. This gives a methodology for deriving 

non-authenticated algorithms. Starting with an au- 

thenticated algorithm, we replace signed communi- 

cation with the broadcast primitive to obtain an 

equivalent non-authenticated algorithm. We have 

applied this approach to various problems and in 

each case obtained simpler and more efficient solu- 

tions than those previously known. 
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1 I n t r o d u c t i o n  

Fault-tolerance is an important issue in distributed 

systems. However, reasoning about distributed 

computations is difficult, and particularly so when 

arbitrary types of  failures can occur. In this paper,. 

we study techniques that impose restrictions on 

the visible behavior of  faulty processes and thereby 

simplify the task of  designing fault-tolerant algo- 

rithms. 

To illustrate our approach, we first consider 

the problem of reaching agreement among pro- 

cesses when some of  them may be faulty. This 

problem, called the Byzantine Generals Problem or 

Byzantine Agreement, is a central issue in the de- 

sign of  fault-tolerant systems (Lamport et al. 1982; 

Mohan etal.  1983; Garcia-Molina etal.  1984) 

Formally, Byzantine Agreement requires that 

when a message is sent by a transmitter to a set 
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of processes the following two conditions are sat- 

isfied: 

Agreement 

All correct processes agree on the same mes- 

sage. 

Validity 

If the transmitter is correct, then all correct pro- 

cesses agree on its message. 

We assume a set of  n processes, of  which no 

more than t are faulty. A process is correct if it 

always follows the agreement algorithm; it is faulty 

otherwise. Correct processes must reach agreement 

on a message m ~ M w  {" sender faulty"}, where M 

is the set of  messages the transmitter can send. 

We make no assumptions about  the behavior of  

faulty processes they can even be malicious in 

attempting to foil agreement. We assume a com- 

pletely connected network and a reliable message 

system in which a process receiving a message can 

identify the immediate sender of  the message. 

One way to restrict the visible behavior of  

faulty processes is to assume that the message sys- 

tem is authenticated (Lamport et al. 1982; Dolev 

and Strong 1983; Merritt 1984). Informally, au- 

thentication prevents a process from changing a 

message it relays, or introducing a new message 

into the system and claiming to have received it 

from some other process. This restriction on the 

behavior of  faulty processes not only simplifies the 

design of  fault-tolerant algorithms, but often re- 

sults in algorithms that are simpler, more efficient, 

and tolerate more faults in the system than algo- 

rithms without authentication (Fischer 1983). 

We first consider synchronized algorithms that 

proceed in synchronized phases. Informally, a 

phase is an interval of  time where processes first 

send messages (according to their states), wait to 

receive messages sent by other processes in the 

same phase, and then change their states accord- 

ingly. 

If  authentication is not available, the best 

known Byzantine Agreement algorithm requires 

2 t + 3  phases and has a message complexity of  
O(nt+ t 3 log t) bits (Dolev et al. 1982). 1 This algo- 

rithm is unintuitive and hard to understand, as 

are most non-authenticated algorithms. On the 

other hand, Dolev and Strong derive an authenti- 

cated Byzantine Agreement algorithm that is easy 

to understand and prove correct (Dolev and 

1 A recent result by Coan (1986) shows that for any e>0 ,  By- 

zantine Agreement can be achieved in (1 +e)(t+ 1) phases with 
a polynomial message complexity 

Strong 1982). Thus, we see that the assumption 

that messages are authenticated simplifies the de- 

velopment of  fault-tolerant algorithms. This is be- 

cause authentication imposes restrictions on the 

otherwise arbitrary behavior of faulty processes. 

Cryptographic techniques that provide digital 

signatures can be used for message authentication 

(Rivest et al. 1978). However, all known crypto- 

graphic schemes have disadvantages. They all re- 

quire some computational and communication 

overhead. Furthermore, none of  them has been 

proven unconditionally secure from attacks by ma- 

licious processes. In fact, malicious processes can 

break such schemes by computing or guessing the 

signature of  another process. Although the proba- 

bility of  such an occurrence can be very small, it 

is nevertheless non-zero. 

We describe a methodology for deriving non- 

authenticated algorithms with the simplifying as- 

sumption that messages are authenticated, but 

without paying the costs of  digital signatures. The 

idea is as follows. We first derive an algorithm 

assuming message authentication. We then identify 

the properties of  authentication the algorithm uses 

and derive a broadcast primitive that provides 

these properties without using signatures. Finally, 

we automatically convert the authenticated algo- 

rithm into a nonauthenticated one by just replacing 

signed communication in the original algorithm 

with our communication primitive. This transla- 

tion method results in a non-authenticated algo- 

rithm which is as simple as the original authenti- 

cated algorithm; furthermore, it has the same 

proof  of  correctness. However, it may tolerate 

fewer faults than the corresponding authenticated 

algorithm. 

Apart from simplifying the design of  fault-tol- 

erant algorithms, this approach also unifies a large 

class of results. Previous work has provided differ- 

ent and more or less unrelated solutions for a prob- 

lem depending on whether or not authentication 

is available. For  example, the simple authenticated 

algorithm by Dolev and Strong (Dolev and Strong 

1982) did not seem to help solve the non-authenti- 

cated version of  the problem (Dolev et al. 1982). 

Other examples are the problems of  Byzantine 

Elections (Merritt 1984) and clock synchronization 

(Halpern et al. 1984; Lundelius and Lynch 1984). 

Our broadcast primitive and translation technique 

yield uniform solutions for both systems. 

We illustrate this new approach on two syn- 

chronous agreement problems. The first applica- 

tion gives an efficient non-authenticated algorithm 

for Byzantine Agreement that improves on known 

algorithms by terminating in 2 t +  1 phases using 
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O(nt  2 log n) bits. Further, this algorithm is as sim- 

ple as the authenticated algorithm in (Dolev and 

Strong 1982) from which it is derived. 

We then consider the Byzantine Elections prob- 

lem. This problem was solved assuming message 

authentication (Merritt 1984). By replacing signed 

communication with our primitive, we automati- 

cally obtain the first known non-authenticated al- 

gorithm for Byzantine Elections. Its communica- 

tion complexity is the same as that of  the authenti- 

cated algorithm. 

We then extend this approach to asynchronous 

systems and use it to derive a non-authenticated 

randomized Byzantine Agreement algorithm from 

an authenticated one (Toueg 1984). The resulting 

algorithm has a lower message complexity than 

the original authenticated one. 

This approach has also been applied to derive 

a simple, efficient early-stopping Byzantine Agree- 

ment algorithm (Toueg et al. 1987), and to derive 

algorithms for synchronizing clocks (Srikanth and 

Toueg 1987). 

It should be noted that authentication is differ- 

ent from secrecy (Tanenbaum 1981). Crypto- 

graphic techniques can be used to achieve both. 

Our communication primitives provide authentica- 

tion, not secrecy. 

2 Properties of authenticated broadcasts 

Consider an algorithm that proceeds in synchro- 

nous rounds a and uses authenticated broadcasts. 

A process p broadcasts a message m in round k 

by sending signed copies of  the triple (p, m, k) 

to all processes (including itself). A process that 

receives (p, m, k) accepts it if it can verifyp's signa- 

ture. We denote these two operations by broadcast 
(p, m, k) and accept (p, m, k). 

Since a message broadcast by a correct process 

in a synchronous system is received by all correct 

processes in the same round, and since we assume 

that signatures of correct processes cannot be 

forged, authenticated broadcasts satisfy the follow- 

ing two properties: 

1. (Correctness) If correct process p broadcasts (p, 

m, k) in round k, then every correct process 

accepts (p, m, k) in the same round. 

2. (Unforgeability) If process p is correct and does 

not broadcast (p, m, k), then no correct process 

ever accepts (p, m, k). 

One advantage of  authentication is that it pre- 

vents faulty processes from modifying broadcasts 

of  correct processes or from sending messages on 

z For the present, a round is just a phase 

behalf of  correct processes. This restriction is cap- 

tured by the unforgeability property. Authentica- 

tion has another advantage as explained below. 

If a correct process accepts a message signed 

by a processp,  it cannot be sure that other pro- 

cesses have also accepted this message. However, 

by relayingp's signed message, it ensures that every 

process receives it, verifies p's signature and ac- 

cepts the message. Hence, authentication provides 

the following property: if a process relays all the 

signed messages it accepts in a round, then it en- 

sures that all processes accept these messages by 

the next round. Therefore, if processes immediately 

relay every message they accept, then message au- 

thentication provides the following additional 

property: 

3. (Relay) If  a correct process accepts (p, m, k) 

in round r > k, then every other correct process 

accepts (p, m, k) in round r + 1 or earlier. 

Note that correctness implies that messages 

broadcast by correct processes are accepted by all 

correct processes in the same round. On the other 

hand, a message broadcast by a faulty process p 

and later relayed by other processes might be ac- 

cepted by a correct process many rounds after it 

was first broadcast by p. Thus, a correct process 

might accept (p, m, k) in some round r > k. 

Receiving a relayed message m with p's signa- 

ture does not necessarily imply that p is indeed 

the originator of  the message. In fact, p could have 

been faulty and given its signature to another pro- 

cess. This process could then originate m "signed 

b y p "  (Lamport  et al. 1982). Therefore, unforgeabi- 
lity only guarantees that if a process accepts (p, 

m, k), it can infer that, /f p is correct, then p is 

the originator of  the message. 

3 An algorithm using authenticated 
broadcasts 

We now consider an authenticated algorithm for 

Byzantine Agreement. This algorithm, presented 

in Fig. 1, is similar to that in Dolev and Strong 

(1983) restricted to the case where messages are 

binary, i.e., processes attempt to reach agreement 

on a value me  {0,1}. Algorithms for multivalued 

agreement are described in Sect. 6. The following 

is an informal description of  the binary algorithm. 

The algorithm proceeds in synchronous 

rounds. In this algorithm, the only value broadcast 

by correct processes is 1. The value 0 is decided 

upon by default. A correct transmitter broad- 

casts 1 in round 1 if agreement is to be reached 

on the value 1. Otherwise, the transmitter remains 

silent. Process p sets the variable value to 1 in 
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process p: /*m ~{0,1 } */ 

i fp  is the transmitter then value:-m else value: =0; 

f o r r : - I  t o t + l d o  

if value = 1 and 

p has not broadcast a message in earlier rounds 
then broadcast (p, 1, r) ; 

relay the r -  1 messages accepted in previous rounds 
that caused value to be set to 1 ; 

if in rounds r' _< r, accepted Qgk, 1, rk) 
from r distinct processes Ok, including the transmitter Pl 
then value: = 1 ; 

od 

decide value. 

Fig. 1. A binary Byzantine Agreement algorithm using authenti- 
cated broadcasts 

round  r, and thereby decides on 1, if it has accepted 

r messages, each message signed by a distinct pro-  

cess, one o f  which is the transmitter .  I f p  sets value 

to 1 in round  r, then in round  r +  1, it signs and 

broadcasts  its own message, and relays the r mes- 

sages that  caused it to set its value to 1. The correct- 

ness and relay propert ies  o f  authent icated broad-  

casts ensure that  p 's  signed message, and all r mes- 

sages that  caused p to set value to 1, are accepted 

by all correct  processes by round  r + 1. Hence,  they 

too will set value to 1, and decide on 1. 

I f  0 is the value to be agreed upon,  then a 

correct  t ransmit ter  never broadcasts  any message. 

By unforgeability of  authent icated broadcasts ,  no 

correct  process ever accepts any message originat-  

ing f rom the transmitter.  Hence,  no correct  process 

sets value to 1, and all correct  processes decide 

on the default  value 0. 

T h e o r e m  1. The authenticated algorithm in Fig. 1 

achieves Byzantine Agreement in t+ 1 rounds with 

O (n 2 t log n) message bits. 

Proof  The p r o o f  is similar to that  in Dolev and 

Strong (1983). No te  that  broadcasts  are authent i-  

cated and processes immediately relay the signed 

messages they accept. Therefore ,  broadcasts  satisfy 

the correctness, unforgeability and relay propert ies.  

We first show that  Validity is achieved. Th a t  

is, if  the t r ansmi t t e rp l  is correct ,  then every correct  

process decides on the t ransmit ter 's  value. 

(i) I f  agreement  is to be reached on the value 1, 

the t ransmit ter  initially sets value to 1 and 

broadcasts  (p l ,  1, 1) in round  1. By correctness, 

every correct  process accepts (p~, 1, 1) in 

round  1. Therefore ,  every correct  process sets 

value to 1. Once a process sets value to 1, it 

does not  change it and hence decides on  1. 

(ii) I f  agreement  is to be reached on 0, the transmit-  

ter initially sets value to 0 and does no t  broad-  

cast any message in round  1. Therefore ,  by un- 

forgeability it will never broadcas t  any message 

in any other  round  either. Hence,  by unforgea- 

bility, no correct  process can ever accept a mes- 

sage f rom the transmitter .  Therefore ,  every cor- 

rect process retains value-- 0 th roughou t  the al- 

gori thm, and when it terminates,  decides on 0. 

To  show that  Agreement is reached, we consider 

the following two cases: 

(i) I f  some correct  p roces sp  first sets value to 1 

at the end o f  round  r <  t + 1, it must  have ac- 

cepted messages (Pk, 1, rk) f rom at least r dis- 

tinct processes Pk including the t ransmit ter  Pl  

(note that  p r for  1 < k <  r). In round  r + 1, 

it broadcasts  (p, 1, r + 1 ) .  By the correctness 

and relay propert ies,  in round  r +  1 every cor- 

rect process accepts (p, 1, r + l )  and (Pk, 1, rk) 

for  1 < k < r, and thus sets value to 1. 

(ii) I f  a correct  process first sets value to I in round  

t + 1, it must  have accepted messages (Pk, 1, rk) 

f rom t +  1 distinct processes Pk- At least one 

of  these processes must  be correct .  This correct  

process, say Pi, broadcas t  (Pi, 1, ri) in round  

r i<  t + i.  Therefore ,  Pi set value to 1 in round  

r i - 1  < t + 1. By case (i), every correct  process 

sets value to 1 by the end o f  round  t + 1. 

Thus,  if  a correct  process sets value to 1, every 

correct  process sets value to 1 and decides on 1. 

Otherwise, every correct  process has value = 0 and 

decides on 0. Therefore ,  Agreement is satisfied. 

The a lgor i thm requires t + 1 rounds.  Each pro-  

cess broadcasts  at mos t  one message and relays 

up to O (t) signed messages. Thus,  correct  processes 

send a total  of  O(n 2 t) messages. Assuming that  

each signature requires O (log n) bits, the a lgor i thm 

requires O(nZt logn)  bits o f  in format ion  ex- 

change. [] 

Note  that  the p r o o f  o f  correctness relies only 

on the correctness, unforgeability and relay proper-  

ties provided  by signed broadcasts .  

4 An implementation of authenticated 

broadcasts 

Implement ing  authent ica t ion  using digital signa- 

tures is one way o f  providing the propert ies  o f  

correctness, unforgeability and relay described in 

Sect. 2. In this section, we describe a b roadcas t  

primitive that  provides  these three propert ies  o f  

authent icated broadcasts  wi thout  using signatures 

(Fig. 2). Informally,  we achieve this by requiring 

that  to broadcas t  a message, a process has to use 

a set of  processes as "wi tnesses"  o f  this event. 

A correct  process accepts a message only when 

it knows that  there are sufficient witnesses to this 
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Algorithm for broadcasting and accepting (p, m, k): 

Round k : 

Phase 2 k -  l : process p sends (init, p, m, k) to all processes; 

Phase 2 k: each process executes the following 
for each meM: 

i f  received (init, p, m, k) from p in phase 2 k -  1 
then send (echo, p, m, k) to all; 

i f  received (echo, p, m, k) from at least n - t distinct 
processes in phase 2k 

then accept (p, m, k); 

Round r _> k + 1 ; 

Phase 2r -1 ,  2r: each process executes the following: 

i f  received (echo, p, m, k) from at least n - 2 t distinct 
processes in previous phases 

and not sent (echo, p, m, k) 
then send (echo, p, m, k) to all; 

i f  received (echo, p, m, k) from at least n - t distinct 
processes in this and previous phases 
then accept (p, m, k); 

Fig. 2. A broadcast primitive to simulate authenticated broad- 
casts 

broadcas t .  This  prevents  a faul ty  process  f r o m  

claiming to have  received a message tha t  was  not  

sent to it, and  allows a correct  process tha t  accepts 

a message  to later  p rove  tha t  the message  was in- 

deed sent. This pr imit ive  requires n > 3 t processes.  

I f  n < 3 t, no b roadcas t  pr imit ive can provide  these 

three proper t ies  wi thou t  using signatures (this is 

shown in Sect. 5). 

The  pr imit ive in Fig. 2 simulates the authent i -  

cated b roadcas t  o f  a message  m by a process p 

dur ing round  k o f  a synchronized a lgor i thm.  I t  

uses two kinds o f  messages.  The sender  initially 

sends messages o f  type init to all processes (includ- 

ing itself). These processes now act as " w i t n e s s e s "  

to this broadcas t .  Each  such process then sends 

a message  o f  type echo to all processes.  A process  

tha t  receives t +  1 echoes o f  a message  becomes  

a witness to the broadcas t ,  for  it knows  tha t  at 

m o s t  t processes are faul ty  and  therefore  there is 

at  least one correct  witness a m o n g  these t + 1 p ro-  

cesses. A process tha t  receives 2 t + 1 echoes accepts 

the message.  

The  pr imit ive  can be viewed at two different 

levels. At  one level, processes exchange high-level 

messages with the pr imit ive  opera t ions  broadcast 

and  accept. A round  is the interval  o f  t ime t aken  

to exchange these logical messages.  A t  a lower level 

o f  the a lgor i thm,  these logical messages are imple- 

men ted  by  the exchange  of  messages  o f  type init 

and echo. We define a phase to be the interval  

o f  t ime it takes for  a process  to send such low-level 

messages to all processes,  receive low-level mes-  

sages sent by processes  in the same phase,  and  

pe r fo rm  some local computa t ion .  A high-level 

message b roadcas t  by  a correct  process is accepted  

by all correc t  processes af ter  two phases  o f  syn- 

chronized exchange o f  low-level messages.  There-  

fore, each r o u n d  of  the pr imit ive  is implemented  

by two phases  o f  message  exchange:  round  r is 

made  up  o f  phases  2 r - 1  and  2 r. 

To  p rove  tha t  this pr imit ive  provides  the three 

proper t ies  o f  authent ica t ion ,  we first establish the 

following lemma.  

L e m m a  1. I f  a correct process sends' (echo, p, m, k) 

then p must have sent (init, p, m, k)  to at least one 

correct process in phase 2 k -  1. 

Proof. Let 1 be the earliest phase  in which any  

correct  process  q sends (echo, p , m ,  k). I f  l > 2 k ,  

process q mus t  have received (echo, p, m, k) mes- 

sages f r o m  at  least n -  2 t distinct processes. There-  

fore, it mus t  have received (echo, p, m, k) f r o m  at 

least one correct  process in phase  l - 1  or earlier. 

Hence,  some correct  process  sends (echo, p, m, k) 

before phase  l, a contradic t ion.  Therefore ,  l = 2 k ,  

and  q mus t  have  received (init, p, m, k) in phase  

2 k - 1 .  [] 

T h e o r e m  2. The broadcast primitive in Fig. 2 pro- 

vides the correctness, unforgeability and relay prop- 

erties. 

Proof 

Correctness: Since p is correct ,  every process re- 

ceives (#tit, p, m, k) in phase  2 k -  1 and  every cor-  

rect process sends (echo, p, m, k) in phase  2k. 

Hence,  every process receives (echo, p, m, k) f rom 

at least n - t  distinct processes in phase  2 k  and  

every correct  process accepts (p, m, k) in phase  2 k, 

i.e., in round  k. 

Unforgeability: I f p  is correct  and  does not  b road-  

cast (p, m, k), it does not  send any (init, p, m, k) 

message in phase  2 k -  1. I f  any  correct  process ever 

accepts (p, m, k), it mus t  have received 

(echo, p, m, k) messages f r o m  at  least n - t  pro-  

cesses. Hence,  at least n -  2 t correct  processes mus t  

have sent (echo, p, m, k) messages.  By L e m m a  1, 

p mus t  have  sent (init, p, m, k) to at  least one cor-  

rect process  in phase  2 k -  1, a contradict ion.  

Relay: Suppose  a correct  process q accepts 

(p, m, k) dur ing phase  i, where  i = 2 r -  1 or 2 r. Pro-  

cess q mus t  have received (echo, p, m, k) f r o m  at  

least n - t  distinct processes by phase  i. Hence,  

every correct  process receives messages 

(echo, p, m, k) f rom at least n - 2 t  distinct p ro-  

cesses by  phase  i, and  therefore sends 
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(echo, p, m, k) by phase i+  1. Hence, every correct 

process receives (echo, p, m, k) from at least n - t  

distinct processes by phase i+1  and accepts 

(p, m, k) by the end of phase i+  1, i.e., in round 

r + l  or earlier. [] 

As presented here, the broadcast primitive does 

not terminate in a fixed number of  rounds. If  the 

broadcaster is faulty, other faulty processes can 

collude with the sender so that arbitrarily many 

rounds elapse before any correct process accepts 

the broadcaster's message. However, in an applica- 

tion that terminates in r rounds, processes stop 

executing the primitive at the end of round r. 

In computing the message complexity of  the 

primitive, we consider only messages sent by cor- 

rect processes. It is not possible to restrict the 

number of  messages sent by faulty processes. 

Lemma 2. The total number o f  messages sent by 
all the correct processes for each broadcast by a 
correct process is 0 (n2) .  

Proof. When a correct process p broadcasts 

(p, m, k), each correct process broadcasts one 

(echo, p, m, k) message to each process. Hence, the 

total number of  messages sent by all correct pro- 

cesses is O(n2). [] 

Although the primitive requires O (n 2) messages 

for each broadcast by a correct process, it also 

provides for the automatic relay of all broadcasts 

accepted by correct processes. Thus, processes 

need never explicitly relay messages they accept. 

In the applications we study, this compensates for 

the cost of  each broadcast. 

To reduce the message complexity from that 

shown in Lemma 2, we can use the following well- 

known technique. We isolate a set of  3 t + 1 pro- 

cesses called the reflectors, and execute the primi- 

tive with n replaced by 3 t + 1 as follows: only ref- 

lectors send echo messages to all the other pro- 

cesses, other processes only receive these messages 

and accept messages according to the primitive. 

It can be verified that Theorem 2 still holds. Since 

there are O (t) reflectors, the total number of  mes- 

sages sent by all correct processes for each broad- 

cast by a correct process is O(nt). 
However, a broadcast of a faulty process, with 

the collusion of  other faulty processes, can still 

cause correct processes to send O(nt) messages for 

each round of the algorithm. We can modify the 

primitive to reduce the number of  messages due 

to faulty broadcasts. This modified primitive (de- 

scribed in the Appendix) imposes additional re- 

strictions on the behavior of faulty processes and 

thereby reduces the number of  messages sent by 

correct processes: In an algorithm in which each 

correct process broadcasts at most R high-level 

messages, at most O(Rnt) messages are sent by 

all correct processes for all the broadcasts of  any 

single process. 

5 A simple non-authenticated algorithm 
for Byzantine Agreement 

The proof  of  the authenticated Byzantine Agree- 

ment algorithm of Fig. 1 only needs the correct- 

ness, unforgeability, and relay properties of  authen- 

ticated broadcasts. Cryptographic techniques that 

provide digital signatures can be used for message 

authentication, and hence for the implementation 

of  authenticated broadcasts with those properties. 

However, the correctness of  the authenticated al- 

gorithm does not depend on this particular imple- 

mentation, and any other implementation of  au- 

thenticated broadcasts providing these three prop- 

erties can be used instead. In Sect. 4, we described 

a broadcast primitive providing these three proper- 

ties. Replacing signed communication in the au- 

thenticated algorithm with this primitive directly 

yields an equivalent non-authenticated algorithm. 

In addition, the relay property of the primitive en- 

sures that messages accepted by correct processes 

are automatically relayed to all other processes. 

Hence, processes need not explicitly relay accepted 

messages. 

In Fig. 3, we present the non-authenticated al- 

gorithm derived by just replacing signed communi- 

cation in the authenticated algorithm of Fig. 1 with 

the broadcast primitive of  Fig. 2. Each logical 

round of the algorithm corresponds to two phases 

of the underlying primitive. 

Theorem 3. The non-authenticated algorithm in 
Fig. 3 achieves Byzantine Agreement in 2 t + 2  

phases with 0 (n  2 t log n) message bits. 

process p: /*m e{0,1 }*/ 

if p is the transmitter then v a l u e : - m  else value:= 0; 

for r : - -1  to t + l  do 

if value = 1 and 

p has not broadcast  a message in earlier rounds 

then broadcast (p, 1, r) ; 

if in rounds r' < r, accepted (Pk, 1, rk) 

from r distinct processes Pk, including the transmitter Pl 

then value: = 1 ; 

od 

decide value. 

Fig. 3. A non-authenticated algorithm for binary Byzantine 

Agreement using the broadcast primitive of  Fig. 2 
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Proof. The proof  of correctness is identical to that 

of  the authenticated algorithm in Theorem 1. 

The algorithm requires 2 t + 2 phases since each 

round of  the algorithm is implemented by two 

phases of the underlying primitive. Since each pro- 

cess broadcasts at most one message, correct pro- 

cesses send a total of  O(n 2 t) messages using the 

primitive in the Appendix. We assume that each 

message is O (log n) bits long. [] 

The broadcast primitive requires n > 3 t  pro- 

cesses. Therefore, although the authenticated algo- 

rithm (in Fig. 1) can tolerate any number of  faulty 

processes, the equivalent non-authenticated algo- 

rithm (in Fig. 3) requires n > 3 t processes. It is well- 

known that no non-authenticated Byzantine 

Agreement algorithm exists for n < 3 t  (Lamport 

etal .  1982). Therefore, if n<_3t, no broadcast 

primitive can provide the properties of correctness, 

unforgeability, and relay without using signatures. 

If such a primitive existed, it could be used to con- 

vert the authenticated algorithm of Fig. 1 into a 

non-authenticated one for n < 3 t processes, contra- 

dicting the lower bound given in Lamport  et al. 

(1982). Hence, our broadcast primitive is optimal 

with respect to the number of  faulty processes that 

can be tolerated. 

We now outline some simple optimizations to 

reduce the message and time complexity of  the 

non-authenticated algorithm. The first optimiza- 

tion is to reduce the message complexity by isolat- 

ing a set of  3 t +  1 active processes (Dolev et al. 

1982; Dolev and Strong 1983). The remaining pro- 

cesses are denoted passive. Only active processes 

broadcast messages according to the algorithm. 

Passive processes only accept messages, and decide 

on a value 1 only if they accept this message from 

at least t + 1 distinct processes. Otherwise, they de- 

cide on 0. The proof  of  Theorem 3 can be easily 

extended to show the correctness of this algorithm. 

Since there are O(t) active processes, each broad- 

casting at most once, we have: 

Corollary 1. Byzantine Agreement can be reached 

in 2 t + 2  phases with O(nt 2 log n) message bits. 

It is clear that in the authenticated algorithm, 

messages signed and broadcast  in the last round 

will not be relayed further. Hence, processes need 

not sign these messages. Consider a modified au- 

thenticated algorithm where processes broadcast 

unsigned messages in round t +  1. Translating this 

algorithm into a non-authenticated one saves one 

phase: in round t +  1, our broadcast primitive is 

not needed and a one-phase unsigned broadcast 

suffices. However, we must guarantee that a mes- 

sage accepted by a correct process in round t (i.e., 

by phase 2 0  is accepted by all correct processes 

by phase 2 t + 1, i.e., within one additional phase. 

This is achieved by using a simple version of  the 

primitive in round t, for example, that of Fig. 2. 

Therefore: 

Corollary 2. Byzantine Agreement can be reached 

in 2 t + 1 phases with O(n t21ogn) message bits. 

The communication complexity can be further 

reduced at the cost of  an extra phase, with another 

well-known technique (Dolev et al. 1982; Dolev 

and Strong 1983). The 3 t +  1 active processes de- 

scribed earlier run the agreement algorithm strictly 

among themselves, and broadcast their decision (0 

or 1) directly to all the passive processes only at 

the end. The passive processes decide on the major- 

ity value. Since there are O(t) active processes 

which reach agreement in 2 t + 1 phases, this algo- 

rithm terminates in 2 t + 2  phases and requires 

O (n t + t 3 log t) message bits. 

Corollary 3. Byzantine Agreement can be reached 

in 2 t + 2 phases with 0 (n t + t 3 log t) message bits. 

6 Multivalued Byzantine Agreement 

Binary valued Byzantine Agreement algorithms 

can be extended to multivalued ones using stan- 

dard techniques. These schemes add a phase to 

the running time of  the binary valued algorithms. 

Algorithms such as that in Dolev and Strong 

(1983) have been directly developed for the multi- 

valued case and are no more expensive in time 

than the corresponding binary valued algorithms. 

Our goal is to develop a non-authenticated multi- 

valued algorithm that requires no more phases 

than the binary algorithm in Fig. 3. This can be 

achieved by using our primitive to translate an au- 

thenticated multivalued Byzantine Agreeement al- 

gorithm (similar to that in Dolev and Strong 

(1983)) into a non-authenticated one. 

In the authenticated multivalued algorithm, 

each correct process broadcasts at most 2 mes- 

sages. However, faulty processes could try to 

broadcast more than twice each. This would result 

in a high message complexity for the translated 

algorithm, if we use the primitive of  Fig. 2. Hence, 

to translate this authenticated algorithm to an effi- 

cient non-authenticated one, we must use the prim- 

itive in the Appendix. 

The proofs of  the authenticated and non-authen- 

ticated algorithms, written in terms of  the proper- 

ties of  authenticated broadcasts, are identical. We 
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process p: / * m E M * /  

i f p  is the transmitter then values: = {m} else values: = ~j;  

f o r r : - l t o t + l d o  

for each m e  values that p has not broadcast in previous 

rounds do 

i fp  has not yet broadcast 2 distinct values 

then broadcast (p, m, r); od 

for each m ~ M: 

if in rounds r' _< r, accepted (Pk, m, rk), 

from r distinct processes Pk, 

including the transmitter Pl 

then values: = values U {m} ; 

od 

if  I values I= 1 then decide on the value m E values 

else decide "sender faulty" ; 

Fig. 4. A non-authenticated algorithm for multivalued Byzan- 

tine Agreement using the broadcast primitive 

present  only the non-authent ica ted  a lgor i thm 

(Fig. 4) and its p r o o f  o f  correctness. 

The mult ivalued algori thm is a s t ra ightforward 

modif icat ion of  the binary algori thm presented in 

Sect. 3. Each process maintains a set values of  po- 

tential decision values. A process p adds m to this 

set in round  r if  it has accepted messages contain-  

ing m from r distinct processes including the trans- 

mit ter  p l .  In the next  round,  p broadcasts  m if  it 

has not  yet b roadcas t  2 distinct values. On termi- 

nation,  if the set values of  process p contains ex- 

actly one element,  it decides on that  value. Other-  

wise it decides that  the sender is faulty. 

Theorem 4. Multivalued Byzantine Agreement can 
be achieved in 2 t + 2  phases with O(n2t ( logn+ 

logIMI)) message bits using the non-authenticated 
algorithm in Fig. 4. 

Proof. The p r o o f  o f  correctness is similar to tha t  

o f  Theorem 1 and that  in (Dolev and Strong 1983). 

We first prove Validity. 
I f  the t ransmit ter  Pl  is correct  and agreement  

is to be reached on  the value m, then Pl broadcasts  

(pl,  m, 1) in round  1. By correctness, every correct  

process accepts this message in round  1, and adds 

m to its set values. The t ransmit ter  does not  broad-  

cast any other  message in round  1. Hence,  by un- 
forgeability, the t ransmit ter  will never broadcas t  

any other message in any round.  Thus,  by unfor- 
geability no correct  process can accept any message 

( p l , m ' ,  r l )  for  m r  Therefore ,  every correct  

process has values = {m} when it stops and decides 

o n  t7/. 

To  show that  Agreement is satisfied, we consid- 

er  two cases: 

(i) I f  a correct  process p first adds m to its set 

values in round  r < t + 1, it must  have accepted 

messages (Pk, m, rk) f rom r distinct processes 

Pk including the t ransmit ter  P l -  N o te  that  p v~ 

Pk, l < k < r .  In round  r + l ,  p broadcasts  

(p, m, r +  1) if it has not  already broadcas t  two 

distinct values. In that  case, by correctness and 

relay, every correct  process accepts these r +  1 

messages and adds m to values. 
(ii) I f  a correct  process p first adds m to its set 

values in round  t + l ,  it must  have accepted 

messages (Pk, m, rk) f rom t + 1 distinct processes 

Pk. At least one of  these processes must  be cor- 

rect. This correct  process must  have first added 

m to its set values in round  r -  1 < t + 1. By case 

(i), every correct  process adds m to its set 

values. 

Let p be the correct  process whose set values 
has the m ax im u m  number  o f  elements at the termi- 

nat ion o f  the algori thm. I f  process p has 

]values] < 2, it follows f rom (i) and (ii) that  the 

set values of  every correct  process contains at least 

the elements tha t  p has added to its set. Since the 

set values of  p is the largest, it follows that  every 

correct  process has the same elements in values. 
Therefore ,  all correct  processes reach identical de- 

cisions. Specifically, if  process p has ]values I= 1, 
then all correct  processes have the same element 

m in values and decide on m. I f  process p has 

Ivaluesl = 0 or Ivalues] = 2 ,  then all correct  pro- 

cesses decide that  the sender is faulty. 

I f  process p has ]values]>2, it follows f rom 

cases (i) and (ii) that  the set values of  every correct  

process contains at least two o f  the elements that  

p has added to its set. Therefore ,  every correct  

process has ]valuesl _> 2 and decides that  the sender 

is faulty. This proves that  Agreement is satisfied. 

The a lgor i thm requires t + 1 rounds,  i.e., 2 t + 2 

phases o f  communica t ion .  Since each correct  pro-  

cess broadcasts  at most  two messages, correct  pro-  

cesses send a total  of  O(n 2 t) messages using the 

broadcas t  primitive in the Appendix.  As described 

in the p r o o f  o f  Coro l la ry  1, this can be reduced 

to O (nt 2) messages. Since messages are O (log n + 

log ]M [) bits long, the total  bit complexi ty  is O (nt 2 

( l o g n + l o g l M ] ) ) .  [] 

7 Byzantine Elections 

The prob lem of  Byzant ine Elections (Merr i t t  1984) 

involves the forecast ing o f  election results in a syn- 

chronous  ne twork  of  unreliable processes. I f  an 

election is not  close, these algori thms allow accu- 

rate forecast ing o f  results in less than  t + i rounds.  
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Round 1 : 

Each  voter  signs and broadcasts  its vote. 

Round j ,  2 < j <  t +  1 : 

Each  witness w does the following: 

Fo r  every voter  i: 

if witness w has accepted an i - v o t e  with at least j - 2  

distinct affidavits 

then the vote is valid. 

Sign any new valid i - v o t e s ,  producing a new affidavit. 

broadcast every valid i - v o t e  or affidavit for a valid vote 

that  was not  broadcas t  by w in earlier rounds.  

Decision procedure  for round  j ,  1 _<j< t +  1 : 

if  process p has accepted exactly one i - v o t e  with at least 

j -  1 distinct affidavits (including its own, i f p  is a witness), 

then decide on the value signed as process rs  vote, 

else decide error as i's vote. 

Fig. 5. Authent ica ted  algori thm for Notar ized Byzantine Elec- 

tions (Merri t t  1984) 

Thus,  a l though processes might  not  agree on the 

votes o f  individual processes until the a lgor i thm 

terminates,  they obta in  enough informat ion  to pre- 

dict the ou tcome  of  the election in fewer than t + 1 

rounds.  No  non-authent ica ted  algori thm for By- 

zantine Elections was known.  Using our  broadcas t  

primitive, we now derive one f rom the authent i-  

cated a lgor i thm proposed  by Merr i t t  (1984). 

Consider  a system in which the processes have 

to agree on the votes o f  a set o f  v processes called 

voters. In this paper ,  we only consider the algo- 

r i thm for Notar ized  Elections (Merr i t t  1984), 

where a set of  w processes are assigned to be wit- 

nesses, with w > 2 t .  Witnesses do not  themselves 

vote, they just  sign and forward  messages f rom 

the voters and other  witnesses. Dur ing  each round  

o f  the algori thm, each process (voter or witness) 

chooses a value as the vote o f  each voter.  We as- 

sume there are w- -2  t witnesses and hence a total  

of  n = v + 2 t processes. 

The requirements  o f  an algori thm for Byzan- 

tine Elections are: 

(1) Dur ing  any round  j of  the algorithm, there is 

never any disagreement  on a correct  process 's  

vote. 

(2) All correct  processes reach Byzantine Agree- 

ment  on every vote when the algori thm termi- 

nates. 

(3) After  round  j ,  1 _<j< t +  1, values chosen as the 

votes o f  at mos t  t - j  + 1 processes are different 

f rom those eventually chosen. This allows pro-  

cesses to arrive at a decision earlier than round  

t + 1 if  the election is not  close. 

An authent icated a lgor i thm for Notar ized  By- 

zantine Elections f rom Merr i t t  (1984) is presented 

in Fig. 5. A value signed by a voter  i is an i - v o t e .  

The signature o f  a witness of  an i - v o t e  is an affi- 

davit for  that  i-vote. 

The complete  p r o o f  of  correctness o f  this algo- 

r i thm is found  in Merr i t t  (1984). The p r o o f  is out- 

lined below, highlighting those por t ions  that  iden- 

tify the propert ies  o f  authent icat ion required by 

the algori thm. 

(1) I f  a process accepts an affidavit f rom a correct  

witness p for  an i -  vote in round  j ,  then every 

process accepts the i - v o t e  and at least t affida- 

vits for  it by round  j +  1. This follows f rom 

the fact that  if  a correct  witness finds an i -  vote 

valid, it broadcasts  an affidavit  for  that  vote 

and also relays the vote  and all the affidavits 

tha t  caused it to find the i - v o t e  valid. Hence,  

by correctness and relay, every correct  witness 

finds the i - v o t e  valid in round  j ,  and broad-  

casts an affidavit. 

(2) I f  a correct  process changes its decision for  

some process i after round  j,  then at least j - 1  

witnesses are faulty. This is shown by consider- 

ing the various situations in which a correct  

process could change its decision. In each case, 

either the j - 1  witnesses that  caused it to de- 

cide on a value at round  j or the witnesses 

that  cause it to later  change its decision are 

faulty. 

(3) There  is never any disagreement on the vote 

o f  correct  processes. A correct  process i broad-  

casts its vote to all o ther  processes in round  1. 

By correctness, every correct  process accepts 

this message in round  1, and decides on this 

value. Since process i does not  broadcas t  any 

other  vote, by unforgeability, no correct  pro-  

cess finds any other  i - v o t e  valid. 

At  the end o f  round  t + l ,  correct  processes 

agree on every vote. By (3), agreement  is guar- 

anteed on votes o f  correct  processes. I f  a cor- 

rect witness broadcasts  an affidavit  for  an i -  

vote, then it also relays the i - v o t e  and all the 

affidavits that  caused it to find the i - v o t e  val- 

id. Hence,  by correctness and relay, every pro- 

cess finds the i - v o t e  valid in the next round  

and further,  every correct  witness also broad-  

casts an affidavit  for  this i - v o t e .  I f  a process 

finds an i - v o t e  valid at the end o f  round  t +  1, 

it must  have accepted the i - v o t e  and accepted 

affidavits f rom at least t witnesses. I f  voter  i 

is faulty, at least one o f  these witnesses is cor- 

rect and hence every other  correct  process finds 

the i - v o t e  valid. F r o m  this, it can be seen that  

correct  processes either agree on  an i - v o t e  or 

decide on error as the vote. 

(5) In (2), we saw that  if  any value is changed 

after  round  j ,  there are at least j -  1 faulty wit- 

(4) 
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Round 1 : 
Each voter broadcasts its vote. 

Round j, 2_<j_< t+  1 : 

Each witness w does the following: 
For every voter i: 

if witness w has accepted an i-vote with at least j - 2  
distinct affidavits then the vote is valid. 
broadcast an affidavit for a valid vote that 
was not broadcast by w in earlier rounds. 

Decision procedure for round j, 1 < j<  t + 1 : 
if process p has accepted exactly one i-vote with at least 
j -  1 distinct affidavits (including its own, ifp is a witness), 
then decide on process i's vote, 
else decide error as i's vote. 

Fig. 6. A non-authenticated algorithm for Notarized Byzantine 
Elections 

Rules for broadcasting and accepting (p, m, k): 

Round k (phase k) : 
process p sends (init, p, m, k) to all processes. 

Each process executes the following for each m E M: 

if received (init, p, m, k) from p 
then send (echo, p, m, k) to all; 

if received (echo, p, m, k) from at least n - t distinct 
processes in previous phases 

then accept (p, m, k); 

if received (echo, p, m, k) from at least n - 2 t distinct 
processes in previous phases 

and not sent (echo, p, m, k) 
then send (echo, p, m, k) to all; 

Fig. 7. A primitive to simulate asynchronous authenticated 
broadcasts 

nesses. Hence,  at m o s t  t - j + l  voters  are 

faulty, and  hence correct  processes a lways 

agree on the votes  o f  the remain ing  (correct)  

voters.  Tha t  is, ag reement  is reached on 

max(O, v + j -  t -  1) votes.  

Each witness relays a vote  and  O(t) affidavits  

for  each voter .  Thus,  the total  n u m b e r  o f  messages  

exchanged is O (n v t2). 

F r o m  the p r o o f  out l ined above,  we see tha t  the 

proper t ies  o f  au thent ica t ion  required by the algo- 

r i thm are the three proper t ies  described in Sect. 2. 

Hence,  the b roadcas t  pr imit ive o f  Fig. 2 can be 

used in place o f  au thent ica ted  communica t ion ,  re- 

sulting in an equivalent  non-au then t ica ted  algo- 

r i thm for  Byzant ine Elections. Once again,  p ro-  

cesses need not  relay accepted votes  or  aff idavits  

since the under lying pr imit ive achieves this. The  

non-au then t ica ted  a lgor i thm is described in Fig. 6. 

This a lgor i thm requires a total  o f  n > 3 t processes,  

o f  which at  least 2 t are designated as witnesses. 

T h e o r e m  5. The algorithm of  Fig. 6 solves the By- 

zantine Elections problem without authentication in 

2 t + 2 phases and O(n v t2). 

Proof  The p r o o f  o f  correctness is exactly the same 

as that  o f  the au thent ica ted  a lgor i thm,  s ta ted in 

terms o f  the three proper t ies  o f  au then t ica ted  sys- 

tems. 

Each witness b roadcas t s  an aff idavi t  for  each 

vote of  each voter ,  hence the total  n u m b e r  o f  mes-  

sages b roadcas t  is O(nvt2),  the same as tha t  in 

the original au thent ica ted  algori thm. [] 

8 A s y n c h r o n o u s  a u t h e n t i c a t e d  b r o a d c a s t s  

We now consider  systems where c o m m u n i c a t i o n  

is asynchronous .  Messages  sent by correc t  p ro-  

cesses are eventual ly  received by all correct  p ro-  

cesses, bu t  this could take  an arbi t rar i ly  long time. 

Hence,  there can  be no  fixed b o u n d  on the dura-  

t ion of  a phase,  and  the phases  are not  synchro-  

nized. The  proper t ies  tha t  au thent ica ted  b road -  

casts in a synchronous  systems satisfy are therefore  

weaker  versions o f  those described in Sect. 2, and  

can be stated as follows: 

1. (Correctness) I f  correc t  process  p b roadcas t s  

(p, m, k), then every correct  process  accepts  

(p ,m,  k). 

2. (Unforgeability) I f  correct  process  p does not  

b roadcas t  (p, m, k) then no correct  process  ever 

accepts (p, m, k). 

3. (Relay) I f  a correct  process  accepts (p, m, k), 

then every o ther  correct  process  accepts  

( p , m , k ) .  

The synchronous  b roadcas t  pr imit ive  of  Fig. 2 

can be easily modi f ied  to derive an a synchronous  

pr imit ive  with the three proper t ies  described above  

(Fig. 7). 

T h e o r e m  6. The primitive o f  Fig. 7 achieves the 

properties of  correctness,  unforgeabi l i ty ,  and relay 

in asynchronous systems. 

Proof  The p r o o f  closely follows tha t  o f  T h e o r e m  2 

for  synchronous  systems. We  use the a s s u m p t i o n  

tha t  messages sent out  by  correct  processes are 

eventual ly  received by  all correct  processes.  Detai ls  

are left to the reader.  [] 

As in the synchronous  system, we can show 

tha t  a b roadcas t  by a correct process  using the 

pr imit ive o f  Fig. 7 causes correc t  processes to send 

a total  o f  at m o s t  O(n 2) messages.  However ,  a 

faul ty  process  m a y  or iginate  m a n y  b roadcas t s  in 

each round,  thus causing correc t  processes to send 

m o r e  than  O(n 2) messages  for  these broadcas t s .  
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It is possible to modify this asynchronous primi- 

tive, so that correct processes send a total of  at 

most O(n 2) messages for all broadcasts originated 

by each process in each round. This modified prim- 

itive is the asynchronous version of  the one in the 

Appendix. 

In general, the asynchronous primitive of Fig. 7 

can be used in developing non-authenticated algo- 

rithms that do not proceed in synchronized phases. 

An example of  this is clock synchronization, as 

shown in Srikanth and Toueg (1987). Another ex- 

ample is presented in the next section. 

9 Randomized Asynchronous Byzantine 
Agreement 

An asynchronous randomized algorithm for By- 

zantine Agreement was presented by Rabin (1983). 

This was improved by Toueg (1984) to overcome 

arbitrary failures of  up to a third of  the processes. 

The latter algorithm consists of  iterations with two 

rounds each. The first round uses authenticated 

broadcasts and the second round uses a non-au- 

thenticated broadcast primitive described in that 

paper. The algorithm, presented in Fig. 8, reaches 

agreement in an expected number of iterations that 

is a small constant independent of n and t. 

In the authenticated algorithm of Fig. 8, a pro- 

cess p justifies the message it sends in the second 

round by broadcasting the list of signed messages 

it receives in the first round. The proof  of  correct- 

ness onlyneeds the three properties of  authentica- 

tion provided by our asynchronous broadcast 

Process Pi  : M : = M i  

for k =  1 to k = R  do 

(* Round  1 *) 

broadcast M ;  

wait to accept messages f rom n - - t  distinct processes;  

proof :  = set o f  accepted messages;  

count ( l )  : = number  of  accepted messages with a value o f  1 ; 

if  count ( l )  >~ n -  2t  then M' : = 1 

else M' : = 0; 

(* Round  2 *) 

echo_broadcast [M', proof];  

wait to accept [m, proof]-messages,  with correct  proofs,  

f rom n -  t distinct processes;  

coun t ( l )  : - number  of  accepted messages with rn = 1 ; 

sk: = compu t~sec re t (k ) ;  

if  (Sk=0 and count ( l )  > 1) or 

(Sa=l  and coun t ( l )  _ > 2 t + l )  then M : = I  

else M :  = 0; 

o d  

Fig. 8. An authenticated asynchronous  binary agreement  pro to-  

col (Toueg 1984) 

primitive. Therefore, we can convert this algorithm 

to a non-authenticated one by simply replacing au- 

thenticated broadcasts with the primitive of  Fig. 7. 

With our primitive, signed messages accepted 

by process p in the first round are automatically 

relayed to all, and therefore, p does not have to 

explicitly relay (broadcast) this list of  accepted 

messages. Hence, the translation reduces the origi- 

nal communication complexity by a factor of  n. 

As in Rabin's algorithm (Rabin 1983), the re- 

sulting algorithm still requires that a correct dealer 

use encryption to distribute shares of  the secret 

random bits to each process individually, before 
the agreement algorithm starts. 

10 Discussion 

In some applications, it might be desirable to re- 

strict processes to broadcast a single message per 

round of  the algorithm. That is, in addition to 

the properties of  correctness, unforgeability, and 

relay, we might be interested in achieving the fol- 

lowing property: 

4. (Uniqueness) If a correct process accepts 

(p, m, k) in round k, no correct process accepts 

(p, m', k) in round k where m v e m'. 

The broadcast primitive of Fig. 2 can be easily 

extended to achieve this property with the follow- 

ing modification: in phase 2k, a correct process 

sends (echo, p, m, k) only for the first init message 

it receives from process p in phase 2 k -  1. All addi- 

tional init messages from p in phase 2 k -  1 are ig- 

nored. We now show that uniqueness holds. 

Assume that two correct processes accept 

(p, m, k) and (p, m', k), respectively, in round k, 

with my am'. Then, at least n - t  processes sent 

(echo, p, m, k) and at least n - t  processes sent 

(echo, p, m', k) in phase 2 k. Therefore, at least one 

correct process sent both (echo, p, m, k) and 

(echo, p, m', k) in phase 2 k, a contradiction. 

The Crusader Agreement problem, a weaker 

version of the Byzantine Agreement problem, has 

been defined in Dolev (1982). The problem re- 

quires that, when a transmitter sends a message 

to a set of  processes, the following conditions are 

satisfied: 

(1) If  the transmitter is correct, then all correct 

processes agree on its message. 

(2) If the transmitter is faulty, all correct processes 

that do not decide that the transmitter is faulty 

agree on the same message. 

A known solution to the Crusader Agreement 

algorithm (Dolev 1982) achieves the properties of  

correctness, unforgeability and uniqueness. How- 

ever, it does not have the relay property, and there- 
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fore it cannot model the relaying of  signed mes- 

sages, a crucial property of  message authentica- 

tion. The first two phases of  our primitive achieve 

Crusader Agreement. 

In some authenticated algorithms such as those 

in Dolev and Strong (1983) and Halpern et al. 

(1984), a process accepting a message appends its 

signature to this message and then broadcasts it. 

When a process receives a message with a list of  

signatures, it can verify from these signatures that 

each process on the list actually broadcast the mes- 

sage. Non-authenticated algorithms can be derived 

from such algorithms in one of two ways. The first 

approach involves modifying the authenticated al- 

gorithm so that when a process accepts a message, 

it signs the message, and also relays all the mes- 

sages that caused it to accept the message. Thus, 

messages contain exactly one signature each. We 

used this approach for the authenticated Byzantine 

Agreement algorithm in Section 3. 

Another approach is to require that when 

a process q accepts a message of  the form 

m:pl  :P2---:Pk, where each Pi is the signature of  

a process, q considers the message to be valid only 

if has also accepted each prefix of  the message, 

i.e., it has also accepted each o fm :Pl, m :Pl :P2 . . . . .  

re:p1 :P2---:Pk 1- This provides a simple and di- 

rect, although inefficient, method for deriving a 

non-authenticated algorithm from the authenti- 

cated one. 

11 Conclusions 

The design of  fault-tolerant algorithms for systems 

with arbitrary failures is a very difficult task. These 

algorithms are usually complex, unintuitive, and 

difficult to prove correct. Assuming message au- 

thentication greatly simplifies the design of  such 

algorithms. Moreover, authenticated algorithms 

are usually simpler, and easier to prove correct. 

However, known implementations of  message au- 

thentication, such as digital signatures, incur sub- 

stantial computation and communication costs. 

Furthermore, no such implementation is proven 

secure under malicious attack. In this paper, we 

described a methodology to reduce the difficult 

task of  designing non-authenticated algorithms to 

the simpler task of  designing authenticated ones. 

Our methodology is based on a communication 

primitive that provides properties of  message au- 

thentication without using cryptographic tech- 

niques. The idea is to first derive a fault-tolerant 

algorithm assuming that messages are authenti- 

cated. We then convert this algorithm into a non- 

authenticated one by substituting authenticated 

communication with our primitive. The resulting 

non-authenticated algorithm is as simple as the au- 

thenticated one from which it is derived. 

In this paper, we have applied this approach 

to several problems. The first application gave a 

Byzantine Agreement algorithm requiring 2 t + l  

rounds of  message exchange and O (nt 2 log n) mes- 

sage bits. This algorithm is conceptually as simple 

as the original authenticated algorithm and has the 

same proof  of  correctness. The best previously 

known such algorithm needed 2 t +  3 rounds for 

the same message complexity. 

We also applied this methodology to the By- 

zantine Elections problem, and it resulted in the 

first known solution that does not use authentica- 

tion. This solution is as simple as, and has the 

same message complexity as, the authenticated al- 

gorithm from which it is derived. 

We then extended the primitive to asynchro- 

nous systems. We translated an authenticated ran- 

domized Byzantine Agreement algorithm (Toueg 

1984) into a non-authenticated one with lower 

message complexity and no extra phases. 

More recently, the approach outlined in this 

paper has been adopted to derive a simple and 

efficient early-stopping Byzantine Agreement algo- 

rithm (Toueg et al. 1987), and to achieve optimal 

clock synchronization (Srikanth and Toueg 1987). 

We believe that the methodology we have de- 

scribed is one of  the first powerful tools for under- 

standing and developing non-authenticated fault- 

tolerant algorithms for systems with arbitrary fail- 

ures. 

Appendix 

A m e s s a g e  e f f i c i e n t  b r o a d c a s t  p r i m i t i v e  

In some algorithms, correct processes broadcast 

at most R broadcasts, for some R. For  example, 

in the authenticated algorithm of Fig. 1, R = 1, and 

in the one of  Fig. 4, R = 2. In this section, we modi- 

fy the primitive of Fig. 2 to ensure that faulty pro- 

cesses do not execute more broadcasts than that 

required by the algorithm. This reduces the 

number of  messages sent by witnesses and hence 

the overall message complexity. 

We introduce additional types of  messages: 

init' sent by processes in the third phase of a broad- 

cast, and echo' sent by processes in the remaining 

phases of the broadcast. The primitive is described 

in Fig. 9. As before, each round r corresponds to 

phases 2 r - 1  and 2r  of  the primitive. The value 

m to be broadcast can be drawn from some arbi- 
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Algorithm for broadcasting and accepting (p, m, k): 

/* Processes execute at most R broadcasts in the algorithm 

in which this primitive is applied. */ 

R o u n d  k : 

Phase 2k--  1 : process p sends (init, p, m, k) to all processes. 

Each process executes the following for each mEM: 

Phase 2k: 

if received (init, p, m, k) from p in phase 2 k - 1  

and received at most R (init, p,  , _) messages from p 

in all previous phases 

then send (e.cho, p, m, k) to all; 

if received (echo, p, m, k) from at least n--  t distinct 

processes in phase 2k 

then accept (p, m, k); 

R o u n d  k + 1 : 

Phase 2 k + 1 : 

if received (echo, p,  m, k) from at least n - -2  t distinct 

processes q in phase 2k 

and received at most R (echo, p, , ) messages 

from q in all previous phases 

then send (init', p, m, k) to all; 

Phase 2 k + 2 :  

if received (init', p, m, k) from at least n -  t distinct 

processes in phase 2k+  I 

then send (echo', p, m, k) to all; 

if received (echo', p, m, k) from at least n -  t distinct 

processes in phase 2k + 2 

then  accept (p, m, k); 

R o u n d  r>_k+2: 

Phase 2 r -  1,2r: 

if received (echo', p, m, k) from at least n - - 2 t  distinct 

processes in previous phases 

and not sent (echo', p, m, k) 

then send (echo', p, m, k) to all; 

if received (echo', p, m, k) from at least n - t distinct 

processes in this and previous phases 

then accept (p, m, k); 

Fig. 9. A primitive that permits up to R authenticated broad- 

casts per process 

t ra ry  set M.  In  what  follows, message fields 

m a r k e d  by an " - " (underscore)  can conta in  arbi-  

t ra ry  values. F o r  example ,  ( , p . . . .  ) refers to all 

messages sent by process  p, and  (echo, p, , ) 

refers to all messages  of  type echo sent by p. 

Lemma 3. I f  a correct process ever sends 

(echo' ,p ,  m, k ) ,  then at least one correct process 

must  have sent (echo', p, m, k) in phase 2 k + 2 .  

Proof. Let l be the earliest phase  in which any  

correct  process q sends (echo', p, m, k). I f  l>_2k + 

3, process q mus t  have received (echo' ,p,  m, k) 

messages  f rom at least n - 2 t distinct processes,  i.e., 

it mus t  have  received (echo', p, m, k) f rom at least 

one correct  process in phase  l -  1 or  earlier. Hence,  

some correct  process sends (echo', p, m, k) before 

phase  l, a contradic t ion.  Therefore ,  1 = 2 k + 2. 

Lemma4. I f  a correct process ever sends 

(echo', p, m, k), then p must  have sent (init, p, m, k) 

to at least one correct process in phase 2 k - 1 .  

Proof. By L e m m a  3, if  a correct  process  ever sends 

(echo', p, m, k), then some correct  process q mus t  

have  sent (echo', p, m, k) in phase  2 k + 2 .  There-  

fore, process  q mus t  have  received (init', p, m, k) 

f r o m  at  least n - t  processes in phase  2 k +  1. At  

least n - -  2 t o f  these processes are correct ,  and  each 

of  them mus t  have received at least n - 2 t  

(echo, p, m, k) messages in phase  2k. Hence,  at 

least one correct  process  mus t  have  sent 

(echo, p, m, k) in phase  2 k  and  it mus t  have  re- 

ceived (init, p, m, k) f rom p in phase  2 k -  1. [] 

Theorem 7. The broadcast primitive in Fig. 9 has 

the properties of  correctness,  unforgeabi l i ty ,  and re- 

lay. 

P r o o f  

Correctness: Since p is correct ,  every correct  pro-  

cess receives (init, p, m, k) in phase  2 k - - 1  and 

sends (echo, p, m, k) in phase  2k. Hence,  every pro-  

cess receives (echo, p, m, k) f rom at  least n - t  cor- 

rect processes in phase  2 k  and every correct  pro-  

cess accepts  (p, m, k) at the end of  phase  2k, i.e. 

at  the end o f  round  k. 

Utforgeabili ty: I f p  is correct  and does not  execute 

b roadcas t  (p, m, k), it does not  send any  message 

(init, p, m, k) in phase  2 k -  1, and  no correct  pro-  

cess sends (echo, p, m, k) in phase  2k. Hence,  no 

correct  process  can accept  (p, m, k) in phase  2k. 

I f  some correct  process  accepts (p, m, k) at  the end 

of  p h a s e 2 k + 2  or later, it mus t  have received 

(echo', p, m, k) messages f r o m  at least n -  t distinct 

processes,  i.e., it mus t  have  received (echo', p, m, k) 

f rom at  least n - 2 t correct  processes. By L e m m a  4, 

p mus t  have sent (init, p, m, k) to at  least one cor- 

rect process  in phase  2 k -  l ,  a contradic t ion.  Thus,  

no correct  process ever accepts (p, m, k). 

Relay." Let q be a correct  process that  accepts 

(p, m, k) in phase  i where i =  2 r -  1 or  2 r. I f  r = k, 

then q mus t  have received (echo, p, m, k) f rom at 

least n - t  distinct processes in phase  2k. Hence,  

in the same phase,  every correct  process receives 

(echo, p, m, k) f rom at  least n - 2 t  distinct pro-  

cesses and sends (init', p, m, k) in phase  2 k + 1 .  

Therefore ,  every correct  process sends (echo', 

p, m, k) dur ing phase  2 k + 2 and  every correct  pro-  
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cess accepts (p, m, k) at the end o f  phase 2 k + 2 ,  

i.e., round  r + l .  Now.  suppose r>_ k+l .  Process 

q must  have received (echo', p, m, k) f rom at least 

n - t  distinct processes by phase i. Hence,  every 

correct  process receives (echo' ,p,  m, k) f rom at 

least n - 2 t distinct processes by phase i, and there- 

fore sends (echo', p, m, k) at or before phase i +  1. 

Thus,  every correct  process receives (echo', p, m, k) 

f rom at least n - t distinct processes by phase i + 1, 

and therefore accepts (p, m, k) by the end o f  pha- 

se i +  1, i.e., in round  r +  1 or earlier. [] 

As before,  in comput ing  the message complex- 

ity o f  the primitive, we only consider messages sent 

by correct  processes. 

Lemma 5. In an algorithm in which the primitive 

o f  Fig. 9 is applied, each correct process sends a 

total o f  0 (Rn) (_, p . . . .  ) messages for  each process 

p. 

Proo f  Consider  a given process p. Each correct  

process Pi accepts at most  R (init, p . . . .  ) messages 

f rom p and thus sends at mos t  R (echo, p . . . .  ) 

messages to each process. Pi considers at mos t  R 

(echo, p . . . .  ) messages f rom each other  process pj  

t h roughou t  the algorithm. Since p~ sends 

(init ' ,p,  m, k) only on receiving at least n - 2 t  

(echo, p, m, k) messages, and since n > 3 t, each cor- 

rect process sends at most  R n / ( n - - 2 t ) < 3 R  

(init', p . . . .  ) messages. 

We now show that  at mos t  6R  distinct 

(echo' ,p, , ) messages are sent (to all) by the set 

o f  correct  processes (and hence by each individual 

correct  process). Let  C be a set o f  n - t  correct  

processes. By L e m m a  3, if a correct  process sends 

(echo' ,p,  m, k) in any phase, then some correct  

process q must  have scent (echo' ,p,  m, k) in 

p h a s e 2 k + 2 .  Fo r  correct  process q to send 

(echo' ,p,  m, k) in phase 2 k + 2 ,  it must  receive 

(init ' ,p,  m, k) messages f rom at least n - t  pro- 

cesses, i.e., f rom at least n - 2 t  correct  processes 

in C. Therefore ,  the sending o f  an (echo', p, m, k) 

by a correct  process requires the sending o f  

(init', p, m, k) by n - 2  t correct  processes in C to 

all processes, i.e., a total  of  ( n - 2  t)n such messages 

sent by processes in C. Since each correct  process 

sends at most  3 R (init', p . . . .  ) messages to all pro-  

cesses, then processes in C send a total  of  at most  

3 R ( n -  t)n (init', p, , ) messages. Hence,  the total  

number  of  distinct (echo' ,p,  , ~ sent by the set 

o f  correct  processes is bounded  by 3 R ( n -  t ) n / ( n -  

2 t )n_<6R.  Thus,  each correct  process sends at 

most  6R (echo' ,p,  , ) messages. 

Therefore,  each correct  process sends at most  

10R (_ ,p  . . . .  ) messages to all processes, i.e., a 

total  of  O(n) C , p ,  , ~ messages. [] 

Corollary 3. For each process p, the total number 

o f  (_, p, _, ) messages sent by all correct processes 

throughout an algorithm is" O(Rn2).  

As in Sect. 4, we reduce the message complexi ty  

by isolating a set of  3 t + 1 processes called the ref- 

lectors, and execute the primitive with n = 3 t +  1 

as follows: only reflectors send init', echo and echo' 

messages to all the other  processes and other  pro-  

cesses only receive these messages and accept mes- 

sages according to the primitive. It can be verified 

that  the proofs  of  Th eo rem  7 and Lemmas  3 and 

4 still hold. Since there are O(t)  reflectors, by 

L e m m a  5, the total  number  o f  C,  p, , _) messages 

sent by all correct  processes for  each p roces sp  is 

o(Rnt). 
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