
Simulating Boolean Circuits on a DNA Computer

Mitsunori Ogihara* Animesh Rayf

Abstract

We demonstrate that DNA computers can simulate
Boolean circuits with a small overhead. Boolean circuits
embody the notion of massively parallel signal processing
and are jrequen,tly encountered in many parallel algorithms.
Many important problems such as sorting, integer arith-
metic, and matrix multiplication are known to be computable
by small size Boolean circuits much faster than by ordinary
sequential digital computers. This paper shows that DNA
chemistry allows one to simulate large semi-unbounded jan-
in Boolean circuits with a logarithmic slowdown in compu-
tation time. Also, for the class NC’, the slowdown can be
reduced to a constant. In this algorathm we have encoded
the inputs, the Boolean AND gates, and the OR gates to
DNA oligonucleotide sequences. We operate on the gates
and the inputs by standard molecular techniques of sequence-
specific annealing, ligation, separation by size, amplification,
sequence-specific cleavage, and detection by size. Additional
steps of amplification are not necessary for NC” circuits.
Preliminary biochemical experiments on a small test circuit
have produced encouraging results. Further confirmatory ex-
periments are in progress.

1 Introduction

Adleman [Ad194], subsequently Lipton [Lip951 showed
the potential of Recombinant DNA-based combinatorial
chemistry as a tool for solving computationally difficult
search problems. The massive parallelism of liquid phase
DNA chemistry, coupled with the encoding of information in
DNA strands, raises the hope for solving “intractable” prob-
lems. These novel approaches to computation also raise the

*Department of Computer Science, University of Rochester,
Rochester, NY 14627. email: ogihara@cs.rochester.edu.

‘Department of Biology, University of Rochester, Rochester, NY
14627. Supported in part by National Science Foundation Grant
MCB-9630402. email: ray@ar.biology.rochester.edu.

permission to make digital/h,ard copies of all or parl of this mderi.ll for
paonal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the COPY-
ri&t notice, the title of the publication and its date appear, and notice is
given tint copyright is by permission of the ACM, Inc. TO copy otherwise,
to republish, to post on serverS or to redistribute to list.?, requires specific
permission and/or fee.
RECOMB 97. Santa Fe New Mexico WA
Copyright 1997 ACM O-89791-882-8/97/01 ..$3.50

question whether the DNA computers as a devise for sim-
ulating existing massively parallel computation models can
go beyond the limit of digital computers.

Among many massively parallel computation models,
typical are the Parallel Random Access Machines (PRAM)
and the Boolean circuits. In the PRAM model, the com-
putation is carried out by ordinary serial processors that
have as storage a shared, global memory. The processors
execute individual programs. All processors can read from
or write to the global memory “in parallel” (at the same
time), and depending on the outcome of the simultaneous
read and the simultaneous write, various PRAM models
are defined. The complexity of a PRAM algorithm is mca-
sured by the number of processors involved and the running
time. Recently, Reif [Rei95] formulated an abstract parallel
DNA computation model, the Parallel Associative Memory
model, and showed that his parallel model can simulate the
Concurrent-Read, Exclusive-Write PRAM model (CREW
PR.AM model), with a small time overhead. More precisely,
a CREW PRAM algorithm running in time T on P proces-
sors with the total memory size A4 can be simulated by a
Parallel Associative Memory algorithm in time O(T+log” S)
and space polynomial in S where 5’ = PM. Implement,ing
the abstract model on DNA computers with Recombinant,
DNA techniques results in O(log S) slowdown. Thus, in this
case, the time complexity becomes O(T log S + log” S).

On the other hand, in the Boolean circuit model, the
computation is carried out by a network of signal processors
(called gates) computing simple Boolean functions, the AND
and the OR. These gates have no memory and process their
incoming signals only once during the computation. The
complexity of a Boolean circuit is measured by the size (thr
number of gates) and the depth (the length of the longest
directed path). Depending on the input capacity of the AND
and the OR, three Boolean circuit models are defined. They
are (i) the unbounded fan-in circuits (the input capacit,y is
unlimited for both the AND gate and the OR gate), (ii) the
semi-unbounded fan-in circuits (the input capacity is two for
the AND and unlimited for the OR), and (iii) the hounded
fan-in circuits (the input capacity is two for both the AND
gate and the OR gate).

The present communication studies the DNA computer
simulation of the Boolean circuits. Our attention is on the
following three issues: (I) the biochemical operations that
are assumed; (2) the efficiency of the simulations, i.e., thr
cost functions (the time and the space) of the DNA siln-
ulation algorithms expressed as the depth and the size of

226

the circuits to be simulated; (3) the maximum size of the
circuits that the DNA algorithms can simulate.

There already exists a general answer to the second ques-
tion. Boolean circuits of size m and depth d can be simu-
lated by CREW PRAM algorithms with O(mlog m) pro-
cessors in time O(d log m) (see [SV84]). Thus, it follows
from the result by R.eif, that DNA computers can simulate
Boolean circuits of size m and depth d in time O(d log’ m)
and space polynomial in m. However, we should not be sat-
isfied with the answer for t,he following two reasons. First,
direct simulations may result in a smaller overhead. Second,
more importantly, concerns have been expressed about the
use of extract for separation, as employed in Reif’s method.
There has been much discussion on the feasibility of extract
[Ad195, Rei95, BL95, KKW96] because its error rate, even
with the current hest Recombinant DNA technique, is as
large as 10eG (see, [ABLf94]) which is high enough to fail
the whole computation. We thus study the problem of sim-
ulating Boolean circuits by DNA computers without using
extract.

This paper presents a DNA algorithm for simulating
semi-unbounded fan-in circuits. In the DNA algorithm, the
separated strands are always much longer than the others,
e.g., 40-base strands are separated from 20-base strands.
This property suggests us to conduct separation by gel elec-
trophoresis, not by extract. Gel electrophoresis is a well-
established biochemical method for ordering DNA strands
according to the length. Adleman [Ad1941 employed this op-
eration for detection and Lipton’s 3SAT algorithm [Lip951
uses it for separating legitimate truth assignments from
those that, are not. In addition to the separation by gel elec-
trophoresis, our algorithm assumes appending (by ligation),
cleavage (by restriction enzymes), detection, and amplifi-
cation as the necessary biochemical operations. We show
that, under the assumption that the above biochemical op-
erations are error-less, a semi-unbounded fan-in circuit of
depth d and size m can be simulated by a DNA computer
in time O(d log Y=) and space O(mF), where .?= denotes the
maximum fan-out (the number of the outgoing edges from a
gate) of the circuit. This is an improvement of the method
we obtain from Reif’s result. The time complexity has been
reduced from O(d log’ m) to O(dlog m) and the space com-
plexity has become O(m’). Our analysis may suggest that
the fan-out will play a crucial role when measuring the effi-
ciency of circuit simulations on DNA computers.

The result gives us an added bonus: a real-time simu-
lation of the class NC1 [Pip79]. NC’ is the class of prob-
lems solved by bounded fan-in circuits of O(log n) depth and
polynomial-size. Many fundamental computational prob-
lems from the integer arithmetic to sorting are known to be-
long to this class [BCH86, AKS83]. We show that an NC’
circuit of depth d can be simulated on a DNA computer in
3d steps assuming only appending, cleavage, detection, and
separation by size.

We have performed an actual biochemical experiment
wherein we have attempted to compute the output of a cir-
cuit with four Boolean inputs, two OR gates, and one AND
gate. Preliminary results of this experiment are encouraging
but not yet unambiguous. Confirmatory experiments are in
progress.

2 Simulating Semi-unbounded Fan-in Circuits

2.1 Semi-unbounded Fan-in Circuits

A semi-unbounded fan-in Boolean circuit of n inputs is a
directed ac,yclic graph with labeled nodes. There are exactly
2n nodes with indegree 0. These nodes are called input gates
and are labeled ~1, , z,,, :cl, , K. Other nodes are
labeled by one of A and V. The nodes with label A compute
the AND of at most two Boolean values while those with V
compute the OR. of an arbit,rary numljer of Boolean values.
Nodes with outdegree 0 are called output gates. On an input
5 = :I’1 ..’ z,, E {0,1)“, the gates of t,he circuits evaluate to
0 or 1 according to the following rules:

. If gate 9 is an input gate with label z,, 9 evaluates to
1 if LL‘* = 1 and 0 otherwise.

l If ga.te y is an input gate with label z, $1 evaluates to
1 if c; = 0 and 1 otherwise.

l If gate 9 is labeled V with incoming edges from gates
hl, ---, hm, y evaluates to 1 if /I; evaluates to I for
some i, 1 < i 5 m, and 0 otherwise.

l If gate y is labeled A with incoming edges from gates
ILL and hz, !/ evaluates to I if both hi and hz evaluate
to 1 and 0 otherwise.

There are two complexity measures for Boolean circuits, the
size and the depth. The size of a circuit C, denoted by
size(C), is the number of gates in it and the depth of C,
denoted by depth(C), is the length of the longest directed
path in it.

2.2 The Simulation

Let C be a circuit of depth d and size nz and z =
~1 zn an input to C. Let 91, , Q,,~ be the gates of C
and 3 the maximum outdegree of the gates in C. For sim-
plicity, we assume that C has only one output gate. Prior to
the actual run of the simulation, we fix for each i, 1 < i 5 m,
a pattern u[i] of DNA. The presence of u[i] will indicate that
9% evaluates to 1. These patterns will be designed so that
they satisfy the following conditions:

. All of these patterns consist of a fixed number C of
DNA molecules.

l z every i # j, I 5 i, j 1. m, o[i] and o[j] as well as

CT[Z] and o[j] agree at less than one fourth positions.

Also, we select a restriction enzyme & together with its cleav-
age pattern LY J- /3, and demand the following be satisfied:

l For all i, a[i] starts with 01 and ends with /I but has
neither of these patterns in the middle.

One may use results from the theory of error-correcting
codes [vL91] to discover the patterns to satisfy all these con-
ditions. The determination may be computationally inten-
sive, but once the patterns are fixed, they can be used for
all other length n inputs. We introduce one more parameter
P, which is an upper bound on the population size of the
DNA synthesis.

Our simulation proceeds from level 0 toward level (1. We
assume for every Ic, that the following conditions hold after
processing the gates at level Ic:

227

For every gate g; at level /c, the test tube contains u[i]
if and only if g; evaluates to 1, and the number of
copies of a[i] present is at most P.

For every gate 9; at level k - 1, at most F P copies
of ~[i] are present.

For every gate gi at level either greater than /c or less
than k - I, no copies of a[i] are present.

All the strands contained in the test tubes are of length
L.

Now we describe how the gates are simul&ted. In the
description below, it should be understood that by “pouring
a[;]” we mean pouring a population of the strand. We begin
with the description of the simulation of the gates at level 0,
the input gates. We create a test tube so that the conditions
(1) through (4) are all satisfied. For each gate g; at level 0,
we do the following:

l If y; computes the positive form of some xj, then we
will pour in the test tube o[i] if and only xj = 1.

l If gi computes the negative form of some x3, then we
will pour in the test tube a[i] if and only ~j = 0.

This requires only one step.
Next consider the gates at level Ic > 0. The simulation

of the OR gates are different from that of the AND gates.
Let il, , i, be the indices of the gates at level Ic - 1 and
~1, , j, those of the gates at level k. We first describe the
OR case.

In the first step, we amplify the existing a[&] to the
amplitude of at least F. P. One amplification step doubles
the number of copies of any strand present in the test tube.
Thus, we have only to run (log F+log P) amplification steps
to achieve the desired amplitude, where the logarithm is base
2.

In the second step, we execute appending. For each
s, 1 5 s < b, we pour o[js] into the test tube. Also, for
each pair <ir, js) such that there is an edge from g;,. to gj, ,
we pour a “linker” for binding o[i,.] after o[js]. Then we
allow ligation. By condition (l), for every s, 1 5 s 5 b, gj,”
evaluates to 1 if and only if some a[&] such that gi, is an
input to gj, is present. This implies that gj, evaluates to 1 if
and only if there exists some T such that o[ir] and the linker
between 0[1:,] and a[js] are both present when the ligation
takes place. We have already amplified any existing g*,, to
the amplitude of F.7’ in the first step. The output of g;, is
plugged into at most 3 distinct gj,“. We have poured into at
most P copies of gj, Thus, for each gj, that evaluates to 1,
regardless of the combinations of the strands that are when
ligation takes place, at least one copy of o[j.] is appended
to some a[;,], thereby yielding a length 2C strand. On the
other hand, for every g,, that evaluates to 0, there exist no
such strands to which the linkers can bound a[j,]. Thus, no
strands of length 2C ending with o[j.] are created. Further-
more, no strands of length greater than 2L are created.

In the third step, we separate length 2C strands from
length C strands. We use denaturing polyacrylamide gel
electrophoresis [SFM89] for that purpose. The strands of
length 2& correspond to the gates that evaluate to 1.

In the fourth step, we cleave the length 2C strands at
cy .j, fl by restriction enzyme E. This step produces all the
strands o[j.] such that gj. evaluates to 1.

We estimate the number of strands that are present when
the fourth step has been finished. As to a gate g3* at level
k, we have poured at most P copies of a[j,], so at most P
copies of u[js] should be present. As to a gate g;,. at level
k-l, the copies of a[i,] are linked to at most 3 different u[&]
and there are at most P copies of such a a[~‘,], so at most
3. P copies of g;,, should be present. As to the strands for
the gates at level below k - 1 level, even if they may have
existed prior to the processing of the gates at level k, no
linkers have been added to bind them to other strands, so
none of them will remain after the third step. Finally, as
to the strands for the gates at higher levels, we have not
poured them yet. Hence, all the loop invariant conditions
are met.

Next we consider the AND case. The first step is iden-
tical to that of the OR case. We amplify the strands from
the previous level to the amplitude of 3. 7J. In the second
step, we execute appending. For each AND gate gj, at this
level, we pour into the test tube Q[J’~]. Also, for each triple

(j s, i,, ir) such that 4 < T and that gj,” takes as an input
both gi, and g;,,, we pour the “linker” for appending o[j.]
after a[i,] and the one for appending o[&] after g[js]. Then
we allow ligation. By an argument similar to that of the
ligation step for the OR case, we observe that a length 3C
strand with o[js] in the middle is created if and only if gJ,”
outputs 1 and that the other strands are of length either 2C
or C. In the third step, we use electrophoresis to separate
the strands of length 3f from those of length at most 2C.
In the fourth step, we cleave at 01 4 /3 using the restriction
enzyme E. Then, from cr[i,]~[j~]cr[i~], o[j.] is produced. By
following the discussion similar to the OR case, we observe
that the loop invariant conditions are all met.

At the end of the computation, namely when processing
the level d (i.e., the output) gate, instead of the last two
steps we execute gel electrophoresis to find the output of
the circuit. If the output gate is an OR gate, the output is
1 if and only if length 2L strands exist and if it is an AND
gate, the output is 1 if and only if length 3L: strands exist.

The complexity analysis

Here we analyze the complexity of the simulation de-
scribed above. Ligation and gel electrophoresis are executed
d times each. Cleavage is executed d - 1 times. amplificat,ion
is executed (log F + log P)d times and WE need one step for
setting up the strands for the gates at level 0. Thus, the
total number of steps is (3 + log F + log P)d. On the other
hand, the maximum number of DNA strands that remain in
the test tube after processing a single level is bounded by
m3P.

Thus, we have proven the following theorem.

Theorem 1 A semi-unboun,ded fan-in circuit C of size ‘rn,
depth d, the maximum fan-out 3 can be simulated by a
DNA computer in d log 3-t O(d) steps with, space complexzty
O(n13).

For a natural number k, SAC’” denotes the collection of
problems that are solvable by a family {C,},,, of semi-
unbounded fan-in circuits such that srze(C,,) = O(n,a) for
some fixed constant n and depth(G) = O(log” n,). SAC
without the superscript denotes the union of all SAC”, k 2
0. It is well-known that the class SAC’ coincides with the
problems that are logarithmic space transformable to CFL,

228

-5 x2 5 X4

Figure 1: The Depth-2 And-Or Circuit

Table 1: The Test Inputs

the context-free languages [VenSl]. Also, many combina-
torial and mathematical problems are known to belong to
SAC. Since the maximum fan-out 3 is bounded by the size
m, and m is a polynomial in n for SAC circuits, we have the
following corollary.

Corollary 2 For- every lc > 0, SAC” can be simulated by a
DNA computer in. time O(log”+’ n) and space polynomial in
n.

The above analysis gives us an added bonus. The class
NC [Pip791 is the counterpart of SAC in the bounded fan-in
circuit model. There is a vast literature on NC1 classes and
numerous problems from the integer arithmetic to sorting
are proven to belong to this class. NC’ circuits can be con-
verted to a tree, by allowing many copies of input gates to
exist. For a circuit in the form of a tree, the maximum fan-
out 3 is 1, and thus, the simulation of such a circuit does
not require the amplification step. This allows us to get rid
of the (log 3 + log P) factor in the running time and the 3
factor in the space complexity.

Corollary 3 Let k > 0 and {C,},,, be an NC” circuit
family. For every n, C, can be simulated by a DNA com-
puter in time 3 depth(C,) and space P size(C,), where
only appending, separation by size, detection, and cleavage
are assumed.

3 The Experiment

We have experimentally simulated a small instance of
a bounded fan-in Boolean circuit given in Figure 1. The
four input variables xi, i = 1, ,4, were encoded as four
Pl-mer oligonucleotides of unique sequences, each of whose
3’ terminus ends in the sequence 5’-GT-3’. These are des-
ignated 11,12,13, and 14, respectively. The two OR gates
were encoded as two 22-mer oligonucleotides each of whose
5’ and 3’ ends are 5’-AC.. GT-3’. In addition, a phos-
phate group was attached to each of these two oligonu-
cleotides at their 5’ end [SFM89]. These are identified as

5’ 3’ 5’ 3’
G7 ‘--y-‘::”

E7,6

5’ 3’ 5’ 3’
11 I?/-+ G5

3’M 5’
E 1,5

Figure 2: The Match of the Oligonucleotides

Gs and Gs, respectively. The AND gate (designated, G7)
was chosen as a 21-mer oligonucleotide of unique sequence
whose 5’ end was attached to a phosphate group with a
radioactive phosphorus atom. In addition, we synthesized
six 20-mer oligonucleotides corresponding to the six edges
(El+, E2,5, E3,6, &,6, E5.7, and E7.6). These edges are di-
rectional. For example, the 5’ half of edge El,5 is com-
plementary to 10 nucleotides in the 5’ half of Gs with the
reversed polarity, and the 3’ half of El,5 is complemen-
tary to the 3’ half of 11 with the reversed polarity. This
is shown in Figure 2. Thus, the edge oligonucleotide El,5
can hybridize to both G1 and Gs, but to no other sequence,
such that a DNA joining enzyme (ligase) [SFM89] can co-
valently join the 5’ phosphate of Gs to the 3’ hydroxyl
group of 11. This will make a 43 base long dimeric oligonu-
cleotide 5’-II-Gs-3’. Similarly, E2,5, E3,6, E4,6, and Es,7
make the dimeric oligonucleotides 5’-12-G5-3’, 5’-Z3-Gs-3’,
5’-14-Gs-3’, and 5’-15-G7-3’, respectively. Each such dimer
will contain in the middle of the molecule a 4-base se-
quence 5’-GTAC-3’. This is the target sequence of a single-
stranded DNA endonuclease RsaI. Finally, the sequence and
the polarity of the edge oligonucleot,ide E7,6 was so chosen
that it could make possible the synthesis of the molecule
5’-GT-Gs-3’. If oligonucleotides Gs, Gs, G7, J&,7, and l&,6
are all present in a test tube, a ligase reaction should pro-
duce the 65 nucleotide long trimer 5’-Gs-G7-G6-3’ which
should be radioactive. If either Gg or Gs is absent in the
tube, the 65 nucleotide long trimer cannot be formed.

We have begun to test the simulation by actual exper-
iments. The preliminary experiments have used three dif-
ferent input combinations two of which should generate the
output 1 and the other should produce the output 0 (Ta-
ble 1). Thus, test 1 contained in the tube inputs Il,1~, 13,
and 14; test 2 contained only 12 and Id; and test 3 con-
tained only 13 and 14. To implement the OR gate, we added
Gs, Gs, El,s, E2,5, E3,6, and E4,6, allowed annealing and lig-
ation, and separated the products by size on a denaturing
polyacrylamide gel by electrophoresis [SFM89]. Positions of

229

inputs

Figure 3: A Diagram for Automated Experiments

the gel corresponding to the dimer size band were cut out
and DNA, if any, was extracted. These solutions were then
treated with the enzyme RsaI to cleave any dimer DNA to
the monomer length. To each tube were then added the
oligonucleotides G?, l&,7, and E~,G. They were allowed to
anneal and ligate. The final products were again separated
according to size by electrophoresis on a denaturing poly-
acrylamide gel and visualized by autoradiography on an X-
ray film. Our initial results indicate that we could detect
the presence of the 65 base trimer in one of the two tubes
that should generate 1 (tube 2). The trimer could not be de-
tected in the tube that should generate 0 (tube 3). However,
the presence of the trimer in tube 1 with the expected out-
put of 1 could not be unambiguously detected. The dimer
bands, expected in all three outputs, were present in all
tubes. This allows us to narrow down the cause of the dis-
crepancy to pipetting error in tube 1. We are now repeating
these experiments with an improved version of the protocol.

Is molecular circuit analysis feasible for a large network
on which digital computes are inefficient? By a proof simi-
lar to that of the Gilbert-Varshamov Theorem (see [vL91]),
one can prove that there is a set of 1.6 x 101’ distinct 40
base oligonucleotide sequences such that (i) for any two se-
quences A and 8, A disagrees with B and its complement
at 10 positions and (ii) no sequence contains the pattern
that is cleaved by the restriction enzyme RsaI. So, we can
handle at least 1 trillion gates by encoding the gates as 40
base oligonucleotide sequences. The number 1 trillion is
far beyond the reach of digital computers. Artifactual an-
nealing between short stretches of homology in otherwise
noncomplementary oligonucleotides maybe avoided by en-
zymatic annealing catalyzed by the DNA strand transfer
protein RecA [KE94].

The runtime of digital computation for simulating
bounded fan-in circuits is proportional to the size while in
our DNA algorithm the runtime is a linear function of the
depth. Thus, for certain very large circuits, it is possible
that DNA computers may outperform digital computers in
computation time, too. The step time in DNA computation
can be significantly reduced by automated devices: the sep-
aration of oligonucleotides at each level can be accomplished
by robotically controlled electrophoresis in microcapillaries

and high performance liquid chromatography [WV931 pro-
grammed to achieve an optimum resolution between 20 and
70 nucleotides. The final output can be detected by fluores-
cence emission by wave guidance techniques [SHHf95]. Effi-
ciency of the cleavage reaction can be similarly monitored by
fluorescence measurements and the step levels extended by
feedback until a preset limit of cleavage is attained. When a
non-tree circuit is simulated, an amplification step needs to
be incorporated. This can be conveniently made by Ligase
Chain Reaction (LCR) [AM931 in which the new junctions
can be amplified by annealing and ligation of two half edge
molecules on the complementary dimer. This also can be
performed automatically on silicon microchips [CSM+96].
Since LCR does not contain a DNA synthesis step during
amplification, it is inherently less error-prone than amplifi-
cation by PCR.

4 Conclusion

We have shown that the DNA computer is a potential
tool for implementing standard computation models, in par-
ticular, for Boolean circuits. We have proven that the run-
time slowdown is proportional to the logarithm of the maxi-
mum fan-out of the Boolean circuit and the space complexity
is proportional to the product of the size and the maximum
fan-out. The implication is that DNA computers are capa-
ble of simulating circuits with 10 billion gates, which may
exceed the maximum number of parallel processing units in
digital computing devices.

References

[ABL+94] B. Alberts, D. Bray, J. Lewis, M. Raff,
K. Roberts, and J. Watson. Molecvlur biology
of the cell. Garland Publishing Inc., New York,
NY, 3rd edition, 1994.

[Ad1941 L. Adleman. Molecular computation of so-
lutions to combinatorial problems. Science,
266(11):1021-1024, 1994.

[Ad1951 L. Adleman. On constructing a molecular com-
puter. Manuscript, 1995.

[AK%31 M. Ajtai, J. Komlos, and E. Szemerddi. Sorting
in clog n parallel steps. Combinat.orica, 3(1):1-
19, 1983.

[AM931 R. D. Abramson and T. W. Myers. Nucleic acid
amplification technologies. Czlrrerenl Opinl.on 2n
Biotechnology, 4:41-47, 1993.

[BCH86] P. Beame, S. Cook, and H. Hoover. Log depth
circuits for division and related problems. SIA A4
Journal on Compzlting, 15(4):994-1003, 1986.

[BL95] D. Boneh and R. Lipton. Making DNA comput-
ers error resistant. Research Report CS-TR-491-
95, Department of Computer Science, Princeton
University, May 1995.

[CSM+96] .J. Chen, M. A. Shoffner, K. R. Mitchelson, I,. J.
Kricka, and P. Wilding. Analysis of ligase chain
reaction products amplified in a silicon glass chip
using capillary electrophoresis. Journal of ChTo-
matography, Series A, 732:151-158, 1996.

230

[KE94] S. C. Kowalczykowski and A. K. Eggleston. Ho-
mologous pairing and DNA strand-exchange pro-
teins. Annual Review of Biochemistry, 63:991-
1043, 1994.

[KKW96] R. Karp, C. Kenyon, and 0. Waarts. Error-
resilient DNA computation. In Proceedings of the
7th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 458-467. ACM Press/SIAM, 1996.

[Lip951 R. Lipton. DNA solutions of hard computational
problems. Science, 268(28):542-545, 1995.

[Pip791 N. Pippenger. On simultaneous resource bound.
In Proceedings of the 1 Ith Symposium on Theory
of Computing, pages 307-311. ACM Press, 1979.

[Rei95] J. Reif. Parallel molecular computation. In Pro-
ceedings of the 7th ACM Symposium on Paral-
lel Algorithms and Architecture, pages 213-223.
ACM Press, 1995.

[SFM89] J. Sambrook, E. F. Fritsch, and T. Maniatis.
Molecular Cloning: A Laboratory Manual. Cold
Spring Harbor Press, NY, 2nd edition, 1989.

[SHH+95] D. Simpson, J. Hoijer, W. Hsieh, C. Jou, J. Gor-
don, T. Theriault, R. Gamble, and J. Balde-
schwieler. Real-time detection of DNA hybridiza-
tion and melting on oligonucleotide arrays by us-
ing optical wave guides. Proceedings of the Na-
tional Academy of Science, 92:6379-63830, 1995.

[SV84]

[VenSl]

[vL91]

[WV931

L. Stockmeyer and U. Vishkin. Simulaiton
of parallel random access machines by circuits.
SIAM Journal on Computing, 13(2):409-422,
1984.

H. Venkateswaran. Properties that characterize
LOGCFL. Journal of Computer and System Sci-
ences, 43:380-404, 1991.

J. van Lint. Introduction to coding theory.
Springer-Verlag, 1991.

W. J. Warren and G. Vella. Analysis of synthetic
oligodeoxyribonucleotides by capillary gel elec-
trophoresis and anion-exchange HPLC. BioTech-
niques, 14:598-606, 1993.

231

