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Abstract
We present a new framework for simulating dynamic movements of complex hairstyles. The proposed framework,

which treats hair as a collection of wisps, includes new approaches to simulating dynamic wisp movements and

handling wisp-body collisions and wisp-wisp interactions. For the simulation of wisps, we introduce a new hair

dynamics model, a hybrid of the rigid multi-body serial chain and mass-spring models, to formulate the simulation

system using an implicit integration method. Consequently, the simulator can impose collision/contact constraints

systematically, allowing it to handle wisp-body collisions efficiently without the need for backtracking or sub-

timestepping. In addition, the simulator handles wisp-wisp collisions based on impulses while taking into account

viscous damping and cohesive forces. Experimental results show that the proposed technique can stably simulate

hair with intricate geometries while robustly handling wisp-body collisions and wisp-wisp interactions.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

The synthesis of hair has been a key stumbling block in gen-
erating realistic humans in computer graphics. The modeling
of diverse hairstyles by controlling individual hair strands
is a difficult problem. Moreover, simulating such hairstyles
during dynamic movements in the presence of gravity, wind,
and head motion is even more complicated.

An approach that has proved successful in generating a
wide range of human hairstyles is to treat the hair as a col-
lection of wisps rather than as individual strands [WS92].
This simplification makes the hairstyling process interac-
tive and manageable because the simulator needs only to
compute the behavior of a collection of interacting wisps
rather than that of tens of thousands of individual strands
[CK05a, KN00, KN02, XY01]. In this paper, we develop a
new simulation algorithm based on the wisp concept. In de-
veloping this wisp-based hair simulator, we address the fol-
lowing three major problems: (1) simulating dynamic move-
ments of wisps; (2) handling collisions between wisps and
the body; and (3) modeling hair-hair interactions, which are
treated in terms of wisp-wisp interactions.

A model that has been widely used to simulate hair strands
is the mass-spring-hinge system pioneered by Rosenblum
et al. [RCT91]. This model cannot, however, properly rep-
resent torsional motions of a strand. The two-dimensional

projection method, introduced by Anjyo et al. [AUK92], has
been another popular technique in hair simulation [DTKT93,
LK01, WL03, WGL04]. However, this method also does not
provide a true representation of three-dimensional motions.
One method that can properly represent three-dimensional
motions is the rigid multi-body serial chain model, employed
by Hadap and Magnenet-Thalmann [HMT01]. In this model,
high bending and torsional stiffness is required to maintain
the curved rest shape under high gravity, and it calls for the
use of implicit integration for stability. However, implicit in-
tegration is difficult to realize using conventional articulated
rigid body dynamics, as described in [Had03]. To resolve
this problem, here we introduce a new hair dynamics model
that is a hybrid of the rigid multi-body serial chain and mass-
spring models. In the proposed model, a linear spring and an
angular spring are used between each pair of links instead
of a hard-constrained joint. This model allows implicit in-
tegration, and thus it can rapidly and stably simulate hair
structures with intricate geometries.

In most previous hair simulations, hair-body collision re-
sponse has been implemented using a penalty method. How-
ever, penalty methods can give rise to instabilities in sys-
tems undergoing complex motions because they do not en-
force constraints exactly and increase the stiffness of the sys-
tem [BW98, Had03]. To accurately and robustly enforce the
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hair-body collision/contact, we employ a constraint-based
method (instead of a penalty method) by incorporating ve-
locity constraints into the implicit integration scheme. This
constraint-based method also enables us to develop a com-
pact algorithm that systematically handles collisions without
sub-timestepping or backtracking.

Handling hair-hair interactions has been recognized as
a critical issue in simulating hair. To handle hair-hair col-
lisions efficiently, Lee and Ko [LK01] proposed the use
of head-hull layers, and Chang et al. [CJY02] used trian-
gle strips. Hadap and Magnenat-Thalmann [HMT01] for-
mulated a continuum model to solve hair-hair collisions as
well as hair-body and hair-air interactions within a single
framework. In contrast to the above methods, Plante et al.
[PCP02] and Bertails et al. [BKCN03] handled hair-hair col-
lisions at the wisp level. Here we also handle hair-hair col-
lisions through the modeling of wisp-wisp collisions. How-
ever, to more realistically model wisp interactions without
undesired oscillations, we exploit the impulse (due to colli-
sion) through a phenomenological use of the coefficient of
restitution. In addition, we take into account a viscous drag
proportional to the hair density and a cohesive force to pre-
serve the initial hairstyle.

Putting it all together, our framework for hair simula-
tion is comprised of the following three components: the
hybrid hair dynamics model, wisp-body collision response
using constrained dynamics, and hair-hair interactions cal-
culated using an empirical impulse model. The significance
of this paper lies in our adaptation/generalization of well-
established techniques for simulating solids and cloth to
the simulation of hair, all within the existing concept of
wisp-based hair simulation. This enables us to establish a
powerful framework for simulating long complex hair. The
new framework is based on backward Euler integration, and
hence is stable in the simulation of the dynamic movements
of complex hair. Moreover, it exhibits robust collision han-
dling, owing to the use of a well-established constraint solver
that computes global system states in accordance with com-
plex collision situations.

2. Dynamic Simulation of a Wisp

Typical mass-spring models used in hair simulations are easy
to implement and computationally efficient; however, they
are ill-suited to representing torsional motions, which are
intrinsic motions in the restoration of hair to its rest shape.
On the other hand, rigid multi-body serial chain models can
support torsional motions, but it is difficult to impose con-
straints such as contact with an object. Furthermore, the re-
sulting systems are stiff due to the hard constraints at the
joints, which precludes the use of large time steps.

Here we propose a new physically based technique for dy-
namic simulation of a thin flexible structure, represented as
a rigid multi-body serial chain (See Figure 1). Instead of im-
posing hard constraints that require reduced coordinate for-
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Figure 1: The wisp model.

mulations [Fea87] or Lagrange multipliers [Bar96], we im-
pose soft constraints by attaching a linear spring and an an-
gular spring between each pair of links. This hybrid scheme
significantly improves simulation speed while supporting
torsional motions because the resulting system of equations
can be solved by an implicit backward Euler method.

In the present work, the above model is used only for sim-
ulating wisps (or more precisely, their skeletons); it could,
however, be adapted to the simulation of individual strands
by appropriate tuning of the dynamic parameters such as the
mass and stiffness. Once we obtain the dynamic movement
of a wisp skeleton, we generate the motion of the individual
strands constituting the wisp using the statistical model pro-
posed by Choe and Ko [CK05a], with a minor modification
in Section 2.5.

2.1. Linear Springs

For the position constraint at the joint, we attach a linear
spring between each pair of links. Let xi and Ri be the cen-
ter of mass (COM) and the rotation matrix of Link i, respec-
tively. For simplicity, we assume that the COM lies at the
center of the link, and denote the vector from the COM to
the next joint by ri, as shown in Figure 1. Then, Link i is in-
fluenced by the two linear spring forces (except for the two
extreme links):

f−i = kL{(xi−1 +Ri−1ri−1 − (xi −Riri)},

f+i = kL{(xi+1 −Ri+1ri+1 − (xi +Riri)},

where kL is a linear stiffness coefficient, f−i is the elastic
force due to the spring connected to Link (i− 1), and f+i is
the elastic force due to the spring connected to Link (i+1).
As a consequence, Link i experiences the force,

Fi = f−i + f+i ,

and also the accompanying torque,

τ L
i = (Riri)× (f+i − f−i ). (1)

2.2. Angular Springs

For torsional restitution we attach an angular spring between
each pair of links, which produces a torque proportional to
the angular difference. Let qi be the quaternion representa-
tion of the rotation matrix Ri. Then, Link i experiences the
elastic torque

τ A
i = kARi{log(q−1

i qi−1)+ log(q−1
i qi+1)}, (2)
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where kA is an angular stiffness coefficient, and log(·) is the
logarithm map of the quaternion. Therefore, the total torque
τi exerted on Link i is given by τi = τ L

i + τ A
i from Equa-

tions (1) and (2).

2.3. Governing Equations

To achieve numerical stability and increase the simulation
speed, we adopt an implicit scheme by employing an in-
cremental formulation of orientational changes, qi(t + h) =
qi(t)exp(ui/2), which corresponds to the positional coun-
terpart, xi(t + h) = xi(t)+ ∆xi. Let Mi and Hi be the mass
matrix and the inertia matrix of Link i, respectively. Then,
the governing equations for Link i can be written as

Miv̇i = Fi +∑
j

[∂Fi

∂x j
∆x j +

∂Fi

∂u j
∆u j

]

, (3)

Hiω̇i = τi +∑
j

[ ∂τi

∂x j
∆x j +

∂τi

∂u j
∆u j

]

+Li ×ωi, (4)

where ∆xi = h(vi + ∆vi) and ∆ui = hR−1
i (ωi + ∆ωi). For

brevity, we have omitted damping terms proportional to the
linear velocity vi of Link i and its angular velocity wi. Refer
to [CK05b] for the detailed derivation of the system equa-
tions. Equations (3) and (4) are implicit forms of Ṗi = Fi

and L̇i = τ , respectively, where Pi = Mivi and Li = Hiωi.

By manipulating the above equations, we obtain the fol-
lowing governing equation:

Ay = b, (5)

where yi =
[

∆vT
i ∆ωT

i

]T
,

Ai j =

[

I−h2M−1
i

∂Fi

∂x j
−h2M−1

i
∂Fi

∂u j
R−1

i

−h2H−1
i

∂τi

∂x j
I−h2H−1

i
∂τi

∂u j
R−1

i

]

, and

bi = h∑
j

[

M−1
i (Fi +h ∂Fi

∂x j
v j +h ∂Fi

∂u j
R−1

i ωj)

H−1
i (τi +Li ×ωi +h ∂τi

∂x j
v j +h ∂τi

∂u j
R−1

i ωj)

]

.

Note that the (6×6) block matrix Ai j is non-zero if and only
if j ∈ [i− 1, i + 1]. As a consequence, the linear system is
(6×6) block tri-diagonal, and hence it can be solved directly
in O(n), where n is the number of links. The computation of
jacobian matrices is addressed in Appendix A.

2.4. Constraints

In our implicit formulation, incorporation of linear and an-
gular velocity constraints is straightforward. To impose the

velocity change of Link i to be zi =
[

∆vT
i ∆ωT

i

]T
, we mod-

ify the inverses mass matrix M−1
i and the inverse inertia

matrix H−1
i following the approach of Barafff and Witkin;

refer to [BW98] for the details of the modifications. The lin-
ear system that incorporates the constraints can ultimately
be written as

Ây = b̂+ z, (6)

v
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(a) cross sections (b) w/o modification (c) w/ modification

Figure 2: Modification of the wisp shape according to the

velocity.

where Â and b̂ are the modified system matrix and vector,
respectively, from Equation (5).

2.5. Shape of the Wisp in Motion

In forming a static wisp, Choe and Ko [CK05a] generated in-
dividual strands by replicating the shape of the master strand
with some statistical variations. A moving wisp obviously
calls for further variations, without which the results do not
look acceptable. Generating such motions should, in princi-
ple, be based on physically based approaches—e.g., com-
puting hair-air interactions [HMT01]. However, such ap-
proaches are incompatible with the use of wisps; hence in
the present work we resort to a simple method.

We account for the effect of the velocity by making the
wisp occupy an expanded volume as shown in Figure 2. We
use the formula γv = (1 + σ |v|)γ0 for the radius γv of the
cross section of a wisp moving at velocity v, where γ0 is the
radius at the rest state, and σ is a user-controlled function
increasing monotonically towards the tip of the wisp. We
also move back the center of the cross section using cv =
c0 − (γv − γ0)v/|v|, so that the two circles coincide at the
front.

3. Hair-Body Collision Handling

We propose a compact hair-body collision handling method
that exploits the simple nature of hair, compared to solids or
cloth [GBF03, BFA02, BWK03]. Distinctive features of our
method are that (1) it does not employ sub-timestepping, (2)
it does not involve any backtracking, and (3) it executes ei-
ther a collision (colliding contact) response step or a contact
(resting contact) response step but not both.

Our collision handling algorithm is designed so that inter-
penetrations do not occur in principle. To achieve this, we
predict whether the collisions occur in the next time step,
and resolve them by running the constrained dynamics pro-
posed by Baraff and Witkin [BW98] when computing the
system states of the next time step. In contrast to the penalty
method, our approach finds the next system state by solv-
ing the constrained dynamics globally; therefore, we obtain
more accurate and stable behavior. As a result, unexpected
interpenetrations occur only in truly exceptional situations,
as is evident in the results obtained during the production of
the accompanying animations (see Table 1).

c© The Eurographics Association 2005.



B. Choe, M. G. Choi, and H.-S. Ko / Simulating Complex Hair with Robust Collision Handling

Animation #1 #2 #3 #4

#segments 2,687 3,136 3,583 5,672
N1 8.8 5.6 10.0 7.3

(0.33%) (0.18%) (0.28%) (0.13%)
N2 2.9 0.6 3.2 2.2

(0.11%) (0.02%) (0.09%) (0.04%)

Table 1: Summary of interpenetrations that occurred dur-

ing the production of the accompanying animations: N1 is

the average number of segments that undergo unexpected in-

terpenetrations; N2 is the average number of segments that

undergo interpenetrations of depth > 0.2 cm.

Given the rarity of such interpenetrations, the fact that in
most cases the interpenetration depth is sufficiently shallow
(< 0.2 cm; see Table 1) that the interpenetration cannot be
discerned by the viewer, and that unexpected interpenetra-
tions are mostly hidden by the hair stacked above them, we
chose to handle the unexpected interpenetrations at the ren-

dering stage by drawing the wisps somewhat squashed. This
approach removes the complications associated with inter-
penetration from the collision handling procedures, and thus
allows us to achieve the distinctive features outlined at the
beginning of this section. Moreover, those interpenetrations
are resolved when processing the next time step without
causing any further trouble by the above collision handling
algorithm based on the constrained dynamics.

3.1. Overview

We assume that the gross body motion is already given, and
treat hair movement as a secondary motion. The algorithm
starts by first moving the gross body to the pose of the next
time step.

To check whether the wisp segment will be involved in
collisions in the next time step, we first predict the velocity
and position of the wisp segments by a simplified dynamics:

ṽ1
i =

h

mi
F0

total +v0
i , x̃1

i = hṽ1
i +x0

i

where F0
total is the summation of all the forces acting on Seg-

ment i, and mi is the mass of Segment i.† In this system state
estimation for collision handling, Equation (4) is disregarded
and the torque is not considered. The result of this estima-
tion is used to identify imminently occurring collisions or
contacts in the next time step, thus determining the collision
mode as one of Free, Colliding, or Contacting.

† In this paper we use the following notational convention when it
is applicable. A boldface letter as in p∗

i represents a vector in which
the subscript represents the segment number and the superscript rep-
resents the time steps (0 means the current and 1 means the next time
step). A non-boldface letter as in p∗i represents a scalar, usually the
normal component of p∗

i . A bar on a scalar as in p̄ indicates that it
is the threshold value.

Free

CollidingContacting

dd <

dd ≥

dd ≥

dd <

rel
vv <

rel
vv ≥

Figure 3: Three collision modes and their transitions.

Based on the current collision mode and the relative po-
sition/velocity of the wisp segment with respect to the body,
we determine the next collision mode. The transitions among
the modes are illustrated in Figure 3, in which d and vrel are
the proximity distance and the relative velocity, respectively;
both are measured along the direction normal to the body
surface, for example vrel = (ṽ1 − v1

ob j) · n, where v1
ob j and

n are the velocity and normal at the body contact point. d

and v are the user-specified threshold values of d and vrel ,
respectively. To find the proximity distance, we measure the
distance by coupling the efficient use of distance fields and
the accurate computation of the distance to the mesh surface.
If the next mode turns out to be either Colliding or Contact-
ing, then the collision handling procedure (Section 3.2) or
the contact handling procedure (Section 3.3) is executed.

3.2. Wisp-Body Collision

When a segment is in Colliding mode, we resolve it by ap-
plying an impulse to the center of the segment. When the
coefficient of restitution is ε , the effect of an impulse in the
normal direction is described by

v+
rel = −εv−

rel
, (7)

where v−
rel

and v+
rel

are the relative velocities before and af-
ter the collision. Ideally the velocity should be changed at
the exact moment of collision, which can only be achieved
by taking sub-timesteps. Instead of using sub-timesteps, we
make the approximations

v−
rel

= v0 − v0
ob j

v+
rel

= v1 − v1
ob j

, (8)

where all the variables are normal components of the veloc-
ities. Substituting Equation (8) into Equation (7), we obtain
the recommendation for the normal velocity change ∆vA that
accounts for the collision that will occur by

∆vA = v1 − v0 = ε(v0
ob j − v0)+ v1

ob j − v0.

The above collision response does not guarantee that the seg-
ment evolves to a collision free location at the next time step.
In the backward Euler scheme, we can guarantee it by setting
∆v as

∆v = max{∆vA,∆vB},
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where ∆vB is the minimum velocity update for the segment
to lie outside of the surface and is computed by

∆vB =
d −d

h
− v0. (9)

Finally, we realize the above velocity change ∆v by setting
zi = ∆v ·n and making appropriate modifications to M−1

i in
Equation (6). By these arrangements, the normal movements
occur as constrained while the movements along the other
unconstrained directions are in accordance with the current
dynamic situation.

3.3. Wisp-Body Contact

To resolve the Contacting mode, we use the same procedure
as is used for resolving the Colliding mode, with the differ-
ence that in this case we directly compute ∆v using Equa-
tion (9) to make the segment maintain contact with the body
surface. This constraint is realized using the same procedure
as that described in the previous section.

In the Contacting mode, we must additionally consider
friction. We formulate the friction by a damping force pro-
portional to the tangential component of the velocity:

F f riction = −µ (vrel − (vrel ·n)n) ,

where µ is the friction coefficient. Note that the effect of
the friction force is realized by adding this force and its Ja-
cobians to Equation (3). The Coulomb friction force would
be the most physically reasonable force to use, but the Jaco-
bians of this force cannot be obtained analytically. Thus, we
opt instead for the damping force to ensure stability.

4. Hair-Hair Interactions

Hair strands undergoing dynamic movements are constantly
interacting with each other. Thus, if this behavior is not cor-
rectly modeled, the result of the simulation will not look like
real hair. Modeling the individual strand-strand interactions
is obviously intractable. In this paper, we model only wisp-
level collisions. Plante et al. [PCP02] also proposed a wisp-
based collision handling technique using a deformable wisp
envelope; however their method gave rise to instabilities in
the mass-spring system used to model the wisp envelope. In-
stead, we introduce the admissive cylinder model, and han-
dle the collisions based on impulses. We also introduce a
viscous drag force related to the density of the hair medium
involved in the collisions and a cohesive force to preserve
the initial configuration.

4.1. Wisp-Wisp Collisions

Collisions occurring between two objects can be viewed as
a conflict to occupy the same location in space. In rigid bod-
ies, the conflict is resolved by moving them away from each
other. In deformable solids, the conflict is momentarily re-
solved by deforming the shape. For the case of two colliding
wisps, we propose the admissive cylinder model that handles

Segment i Segment j

ijδ
ijδ

Figure 4: The admissive cylinder model.

the collision by allowing the colliding segments to overlap
rather than by deforming them, as shown in Figure 4.

In the admissive cylinder model, we must decide upon
the permitted interference depth δi j between Segments i

and j. It has been observed that the interference is deeper
when the two colliding wisps are in a parallel rather than
a perpendicular configuration with respect to one another
[PCP02, CJY02]. In fact, making δi j a function of the rel-
ative orientations of the segments produces visually better
results than setting it to a constant value. Here we use

δi j =
(

1+g|ti · t j|
)

λ , (10)

where ti and t j are the tangential directions of the interfering
segments, and g and λ are user-provided coefficients.

When a set S of segments is overlapping Segment i, we
resolve the situation by applying penalty forces. Let δi j be
the current interpenetration depth of Segment j with Seg-
ment i. According to δi j , we partition S into S1 and S2 and
compute the penalty forces in different ways, where S1 con-
sists of the segments such that δi j ≤ δi j (within the permitted
threshold), and S2 consists of the remaining segments (caus-
ing undesired collisions to be resolved immediately).

For each Segment j in S1, we calculate the penalty force
FWW

i j , which will be applied to Segment i, utilizing col-

lision impulses; more precisely, we first compute the ve-
locity change based on the collision impulse then compute
the force from the velocity change. Let the normal vector
be ni j = di j/|di j| where di j is the vector from the center
of Segment j to the center of Segment i. Then using the
same assumptions in Equations (7) and (8), we can obtain
v1

i −v1
j =−ε(v0

i −v0
j) along the normal direction. If we sup-

pose that the masses of the Segments i and j are the same,
we can get v1

i + v1
j = v0

i + v0
j from the law of momentum

conservation. Derived from the above two equations, we can
compute ∆vWW

i j the velocity change of Segment i due to Seg-
ment j by

∆vWW
i j = v1

i − v0
i =

1
2

(1+ ε)(v0
j − v0

i ).

Here, we use an empirical coefficient of restitution ε =
δi j/δi j − 1 that varies according to the current overlapping
depth. The negative ε value gradually decreases the veloc-
ity of the interpenetrating segment as δi j approaches to δi j .
Finally, we convert ∆vWW

i j into the form of a force using

FWW
i j = (mi/h)∆vWW

i j ·ni j. Guendelman et al. [GBF03] pre-
viously used a varying restitution coefficient to handle con-
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tact between rigid bodies; however, whereas they used it to
prevent incorrect rattling, here we use it to make the sim-
ulated hair appear non-rigid rather than to ensure conver-
gence.

For the segments in S2, the interpenetrations are deeper
than the threshold δi j , and they should be resolved immedi-
ately. To achieve this, we use

FWW
i j =

mi

2

δi j −δi j

h2 ni j.

Then, the overall penalty force, which will be applied to
Segment i, is computed by summing up all the forces from
the overlapping segments by FWW

i = ∑ j∈S FWW
i j .

4.2. Viscous Drag

Although segment overlap is permitted, the movements of
the mutually overlapping segments should not be as free as
in the non-overlap case. This can be modeled by introducing
viscous drag into the movement of the wisp. An object mov-
ing at a velocity v is known to experience a viscosity that is
proportional to ρv, where ρ is the density of the medium. In
our case, we consider that the segments in S create a dense
medium that dampens the movement of Segment i. We apply
the following viscous force

Fvis = −kvis(ρa +ρh)vi, (11)

where ρa is the density of air, and ρh is the density created by
the hair medium. We compute ρh (influencing the Segment i)
using the approximation of

ρh = ∑
j∈S

ρ j

4

(

δi j

ri

)2

,

where ρ j is the density of Segment j at the initial state and ri

is the radius of the Segment i. Again, the effect of this force
is implemented by putting the force and its Jacobians into
Equation (3).

4.3. Cohesive Force

Human hair has a tendency to return to its initial configura-
tion, due to factors such as static charge or hair spray. This
tendency can be incorporated into the model by including a
cohesive force between wisp segments. Based on the work of
Chang et al. [CJY02], we apply a cohesive force that is pro-
portional to the lateral distance of two wisps up to a thresh-
old distance. As the distance increases beyond the threshold,
the cohesive force starts to decrease linearly until it com-
pletely vanishes to zero.

5. Results

We implemented the technique presented in this paper on a
computer with a 3.0 GHz Pentium IV processor and 1 GB
of RAM. We performed simulations of straight, wavy, and
curly hair undergoing various motions. In producing the ac-
companying animations (Animations #1∼#4 in Figure 5),

Animation #1 #2 #3 #4
#(wisps) 142 142 274 274

#(segments) 2,687 3,136 3,583 5,672
#(triangles) 8,257 8,057 7,816 15,801
sec./frame 1.57 2.01 4.00 5.13

(wisp-body) 11.1% 13.5% 12.92% 7.97%
(wisp-wisp) 52.9% 58.9% 63.44% 70.58%

(solving) 21.5% 18.9% 14.55% 12.75%
(etc.) 14.5% 8.7% 9.09% 8.70%

Table 2: Performance statistics: #(segments) = the total

number of segments, #(triangles) = the number of triangles

of the body; the lower part summarizes the amount of com-

putation taken for each sub-task: wisp-body and wisp-wisp

collision handling, solving equations, and other tasks such

as updating the states.

we used a fixed simulation time step of 10 milliseconds.
Final images were rendered using the method described in
[CK05a]. Table 2 summarizes the performance statistics col-
lected while producing the animations.

Animation #1 demonstrates that the technique produces
natural movements of long wavy hair in a walking motion.
To generate smooth interference of wisps, we set λ = 0.5 in
Equation (10) and kvis = 2.5 in Equation (11). Animation #2
is the result of simulating curly hair during a dancing mo-
tion. Because curly hair looks more natural when high cur-
vature wisps are less intrusive, we set λ = 0.1 and kvis = 0.5
for this simulation. For both animations, we used g = 0.5
in Equation (10). Animation #3 demonstrates that our hair
simulation technique can robustly handle the collisions even
when all of the wisps undergo a sudden and large configura-
tion change. Animation #4 shows the result of a simulation
in which the front part of the hair is fixed by a headband.
The effects of accessories can be easily incorporated into
the proposed simulation framework; all that is required is
that additional constraints be imposed to fix the position and
orientation of some wisp segments with respect to the head.

6. Conclusions

We have presented a new framework for simulating dynamic
movements of human hair. Our framework, which treats the
hair system as a collection of wisps, is a physically based
technique that can simulate free motion of wisps as well
as their constrained movements when they collide with the
body while interacting with other wisps. By imposing soft
constraints to a rigid multi-body serial chain, we have devel-
oped a new dynamic simulation system that can be formu-
lated with an implicit integration method. The system is sta-
ble and fast while solving the dynamics of complex hair by
accounting for the bending and torsional components. The
implicit integration also enables wisp-body collision/contact
constraints to be incorporated into the system equations so
that the collisions can be handled systematically and ro-
bustly. Finally, by introducing an impulse-based collision
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force calculation as well as a viscous damping and cohesive
force, the hair-hair interactions in the proposed framework
are more stable than in previous methods.

In the proposed method, wisp-wisp collision handling is
not as robust as wisp-body collision handling because the
dynamics system is solved separately for each wisp. An-
other limitation of the proposed technique is that it may
not properly simulate the movements of hairstyles in which
wisp boundaries are not clear or strands shift between wisps
over time. This drawback (inherent in wisp-based simula-
tors) could potentially be rectified by employing the concept
of the adaptive wisp tree [BKCN03] or level-of-detail repre-
sentations [WLL∗03]. Finally, we are actively searching for
an algorithm to more efficiently handle wisp-wisp collision
detection, which accounts for more than half of the simula-
tion time in the current method (see Table 2). If significant
computational savings could be made in this algorithm, it
could potentially make possible the realtime simulation of
hair [BCN03, BMC05, KH01, VMT04].
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Appendix A: Computation of Jacobian Matrices

The implicit scheme described in Section 2.3 requires Jaco-
bian matrices. The Jacobian matrices ∂Fi/∂x j and ∂τi/∂x j

can be obtained analytically in a straightforward manner.
For the Jacobian matrices ∂Fi/∂u j and ∂τ L

i /∂u j, we need
to compute only ∂ (Riri)/∂ui (all other terms are zero be-
cause the local change of the j-th orientation has no ef-
fect on the i-th orientation when i 6= j). Its analytic form is
∂ (Riri)/∂ui = Ri∂ (R(ui)ri)/∂ui = −Riri×, where R(·)
is Rodrigues’ formula that converts a rotation vector into its
matrix form and ri× denotes the standard skew symmetric
matrix of vector ri. However, it is difficult to analytically
obtain the Jacobian of the torque given in Equation (2) with
respect to u j. Thus, we calculate ∂τ A

i /∂u j numerically.
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