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Abstract An optimization approach applied to mechanical
linkage models is used to simulate human arm movements.
Predicted arm trajectories are the result of minimizing
a nonlinear performance index that depends on kinematic
or dynamic variables of the movement. A robust optimiza-
tion algorithm is presented that computes trajectories which
satisfy the necessary conditions with high accuracy. It is espe-
cially adapted to the analysis of discrete and rhythmic move-
ments. The optimization problem is solved by parameterizing
each generalized coordinate (e.g., joint angular displacement)
in terms of Jacobi polynomials and Fourier series, depending
on whether discrete or rhythmic movements are considered,
combined with a multiple shooting algorithm. The parameter-
ization of coordinates has two advantages. First, it provides an
initial guess for the multiple shooting algorithm which solves
the optimization problem with high accuracy. Second, it leads
to a low dimensional representation of discrete and rhythmic
movements in terms of expansion coefficients. The selec-
tion of a suitable feature space is an important prerequisite
for comparison, recognition and classification of movements.
In addition, the separate computational analysis of discrete
and rhythmic movements is motivated by their distinct neu-
rophysiological realizations in the cortex. By investigating
different performance indices subject to different boundary
conditions, the approach can be used to examine possible
strategies that humans adopt in selecting specific arm motions
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for the performance of different tasks in a plane and in three-
dimensional space.

1 Introduction

The planning and control of human arm movements is of
major interest in motor control research. In any motor task,
such as pointing, grasping, holding or writing, the repertoire
of movements that is used represents a subset of those that are
admissible. The physical structure of the human body, such
as the kinematic restrictions at the joints, preclude certain
motions. The muscles (actuators), the visual and propriocep-
tive systems (sensors), and the signaling and information pro-
cessing by neurons within the central nervous system (CNS;
the controller) impose further constraints on the movements.
It is presumed that among a wide choice of possibilities the
CNS implements certain planning strategies leading to the
arm movements that are ultimately observed.

Human arm movement planning and control strategies
can be investigated by analyzing and measuring the kinematic
and dynamic features of arm movements under various con-
ditions and then inferring a general motor strategy from the
observed data. A popular approach to investigate the strat-
egies underlying the generation of human arm movements
is based on optimization and optimal control theories. The
underlying assumption is that the CNS optimizes the perfor-
mance that can be expressed mathematically in terms of a
cost, or a performance index.

Existing optimization principles can be divided into deter-
ministic and stochastic approaches. In a deterministic descrip-
tion the cost is typically expressed as the integral of some
deterministic function over the movement time. The mini-
mization of a performance index subject to a set of dynamic
equations and suitable boundary conditions leads to the opti-
mal solution which defines the outcome of the theoretical
model. Deterministic models can account for the mean prop-
erties of the movements and thus constitute a first approxi-
mation to the observed motor behavior. The minimum-jerk
model (Flash and Hogan 1985) and the minimum torque
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change model (Nakano et al. 1999; Uno et al. 1989) are two
popular representations.

In a stochastic description, random disturbances (noise)
are included in the description and only the expected value
of the cost function can be minimized. The minimization of
such costs, subject to dynamic equations and suitable bound-
ary conditions, is the subject of stochastic optimal control
theory. The minimum-variance model (Harris and Wolpert
1998) and the minimum-intervention model (Todorov and
Jordan 2002) are examples of stochastic models.

In this paper, we focus exclusively on models derived
from a deterministic cost function. The dominant challeng-
ing research question is how to posit a performance index that
faithfully predicts the main kinematic and dynamic features
of the movement. Many of the indices suggested for study-
ing human motor control problems are nonlinear and their
minimization poses a difficult problem. Methods for calcu-
lating optimal trajectories in a robust and precise way are
indispensable.

This paper presents a method that can be used for the
minimization of nonlinear performance indices and the inves-
tigation of plausible human motion planning strategies in
two- and three-dimensional space. The main goal of the study
consists in the development of an algorithm that computes tra-
jectories which satisfy the necessary conditions of optimal-
ity with high accuracy. Many previous studies have ignored
this problem or not addressed it sufficiently, implying that
the derived solutions are not guaranteed to be optimal. It is
well known that the solution of the necessary conditions is
not guaranteed to be optimal and further conditions have to
be specified. Sufficient conditions can be specified but their
(numerical) analysis is beyond this scope of the paper.

The computational method proposed here is developed
for the study of discrete (point-to-point) and rhythmic move-
ments. As part of the algorithm, a low dimensional represen-
tation of discrete and rhythmic movements in terms of a set
of expansion coefficients is presented. It is a well-known fact
that the selection of a suitable feature space is a necessary
prerequisite for the comparison, recognition and classifica-
tion of movements (Bishop 1995).

Many existing models of human arm movements are based
on the minimization of nonlinear cost functions. Uno et al.
(1989) applied a Newton-like method to the minimization
of the performance index defined by the minimum torque
change criterion. A steepest descent method combined with
a penalty method for the minimization of the performance
index defined by the minimum torque change criterion was
used by Nakano et al. (1999). However, these minimization
algorithms often diverge and are unstable.

Wada et al. (2001) emphasized the difficulty in comput-
ing optimal trajectories and proposed a method to calculate
the optimal trajectory for the minimum commanded torque
change criteria in a robust way which ensured that the neces-
sary conditions of optimality are satisfied with high accuracy.
In that work and a subsequent paper by Kaneko et al. (2005),
the joint angles were expanded in terms of orthogonal poly-
nomials and the coefficients were determined by iteratively

solving a linearized set of Euler–Lagrange equations. The
main drawbacks of that method consist of the tedious task of
linearization and the unspecified convergence conditions of
the method.

Todorov and Jordan (1998) optimized the minimum-jerk
functional along arbitrary given paths by introducing fixed
points along the path and solving the resulting nonlinear
equations with a Simplex method.

A method for predicting trajectories of a two-link pla-
nar robot model that minimized the sum of the square of
joint torques was presented by Yen and Nagurka (1988). In
their method the angular displacement of each robot joint was
approximated by the sum of a polynomial and a finite-term
Fourier series. The optimal control problem was thus cast as a
parameter optimization problem which was then solved via a
Simplex algorithm. In a subsequent paper, Nagurka and Yen
(1990) used that approach to generate trajectories of general
dynamic systems. In their work, the interest was in determin-
ing near optimal trajectories of the generalized coordinates
(or state variables) without consideration of the higher time
derivatives of the position coordinates nor of the need to sat-
isfy the Euler–Lagrange equations.

Previous studies, with the exception of Wada et al. (2001)
and Kaneko et al. (2005), have not addressed the optimization
problem sufficiently to ensure that the necessary conditions
of optimality are satisfied. This may affect the accuracy of the
optimal solution found as the outcome of the computational
model.

This work presents a general method for the computation
of the optimal solution derived from a performance index that
satisfies the necessary condition of optimality to high accu-
racy. Moreover, the parameterization of coordinates, as part
of the algorithm, leads to a novel compact vector representa-
tion of discrete and rhythmic movements, which may be used
for the definition of motor primitives and may be important
for the comparison, recognition and classification of human
movements.

2 Methods

Consider a variational problem with a cost functional (per-
formance index) of the form

C =

T
∫

0

F
[

q(t), q̇(t), q̈(t), . . . , q(m)(t), t
]

dt, (1)

where q(m)(t) denotes the m-th derivative of the general-
ized coordinate vector q(t) = [q1(t), q2(t), . . . , qn(t)]

T with
respect to time for an n degree-of-freedom (DOF) system, and
T denotes the total movement time, or in the case of rhyth-
mic movements, the period of the movement. For a human
arm, modeled as a mechanical linkage system consisting of
serial rigid links, these generalized coordinates are typically
chosen to be the angular displacements at the joints or the
end-effector coordinates. It is assumed in the following that
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the highest derivative appearing in the Lagrangian, F , is qua-
dratic. A large number of cost functionals used in the mod-
eling of human arm movements falls into this class.

A necessary condition to obtain an extremum of the cost
functional (1) is given by the Euler–Lagrange equations:

Ei =
∂F

∂qi

−
d

dt

∂F

∂q̇i

+ · · · + (−1)m dm

dtm

∂F

∂q
(m)
i

= 0, (2)

(i = 1, 2, . . . , n), which, in general, represent a coupled sys-
tem of nonlinear, ordinary differential equations (ODEs) of
order 2m. Ei denotes the residual of the i th Euler–Lagrange
equation. The 2mn constants of integration can be specified
by the requirements to satisfy certain boundary conditions.
For discrete (point-to-point) movements the boundary condi-
tions are specified at the endpoints of the integration interval:

q(0) = q0, q(T ) = qf

q̇(0) = q̇0, q̇(T ) = q̇f
...

...

q(m−1)(0) = q
(m−1)
0 , q(m−1)(T ) = q

(m−1)
f



















. (3)

In the case of rhythmic arm movements of the end-effector,
periodic boundary conditions for the generalized velocities
and higher derivatives of the form

q(0) = q0

q(T ) = qf

q̇(0) = q̇(T )
...

q(2m−2)(0) = q(2m−2)(T )























(4)

can be applied in order to determine the 2mn constants.
The existence of a unique solution to the two-point bound-

ary value problem (TPBVP), specified by (2) and (3) or (4),
is not guaranteed in general. It depends significantly on the
structure of the differential equations and boundary condi-
tions. Under certain conditions, existence and uniqueness
proofs can be derived (Keller 1968). Assuming that a solu-
tion exists, its determination is, in general, not a trivial task.
Several methods, such as shooting or discretization methods,
have been developed to solve the TPBVP (Keller 1968).

In this work, it is assumed that (i) an optimal trajectory
exists and is unique, and (ii) the i th generalized coordinate,
q∗

i (t), corresponding to the optimal solution is (at least) a
2m-time continuously differentiable function in the interval
[0, T ], where m denotes the order of the highest derivative
appearing in the functional (1).

An outline of the suggested algorithm for the numeri-
cal solution of the optimization problem is shown in Fig. 1.
By expanding the generalized coordinates into a set of basis
function the cost functional (1) is transformed into a scalar
function of expansion coefficients and is then subjected to a
parameter optimization method. The parameter optimization
method does not solve the optimization problem with high
accuracy but leads to an approximate (suboptimal) solution
that can be used as an initial guess for the multiple shooting
algorithm. This combination of methods leads to trajecto-
ries that satisfy the necessary condition of optimality with

Fig. 1 Hybrid algorithm consisting of a parameter optimization method
and a multiple shooting algorithm. The solution of the parameter opti-
mization method is used as an initial guess for the multiple shooting
algorithm. The solution of the multiple shooting algorithm defines the
prediction of the model and can be projected onto the set of basic func-
tions (feature space) for further analysis

high accuracy and thus defines the outcome of the model.
Although such a hybrid method was previously developed
for optimal control problems of an industrial robot by von
Stryk and Schlemmer (1994), it has not been applied to opti-
mization problems that arise in the theory of human motor
control. As will be shown in the following section, the param-
eterization of the generalized coordinates is problem specific
and leads to different parameterization schemes depending
on the type of boundary conditions being imposed.

Once the optimal solution is determined using the hybrid
method, it can be projected onto the set of basis functions
resulting in a discrete representation of the optimal solution
in terms of expansion coefficients (feature space) that can
be used for further analysis. The parameterization and the
shooting algorithm are presented in detail in the following
sections.

2.1 Parameterization of generalized coordinates

Each generalized coordinate is parameterized in order to con-
vert the nonlinear cost functional (1) into a nonlinear cost
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function of expansion coefficients. The set of functions used
in the expansion of the generalized coordinates is chosen
to be a complete set of orthogonal functions in the interval
[0, T ] that satisfy the imposed boundary conditions (3) or
(4). The completeness of the set of functions guarantees that
any function that is square integrable in the interval [0, T ]
can be represented uniquely in terms of expansion coeffi-
cients (in the mean square limit). Each generalized coordinate
can thus be assigned a discrete vector of expansion coeffi-
cients. The objective consists of finding a complete set of
functions that is compatible with the imposed boundary con-
ditions. The expansion scheme depends therefore on the type
of movements. Two types of movements which are of partic-
ular interest in motor control research are considered in this
work: discrete and rhythmic movements.

2.1.1 Discrete movements

In the case of discrete point-to-point movements with bound-
ary conditions specified by (3), the generalized coordinates
are expanded as

qi,N (τ ) =

2m−1
∑

k=0

pikτ
k +

N
∑

k=0

cikφ
(m)

k (τ ), i = 1, . . . , n,

(5)

where τ = t/T is movement time normalized with respect to
the total movement duration and N denotes the order of the
expansion. In these equations, the i th generalized coordinate
is represented by the sum of a polynomial of order 2m − 1
with coefficients pik, (k = 0, 1, . . . , 2m −1), corresponding
to the number of free parameters per DOF, augmented by a
series built of a set of basis functions {φ

(m)

k (τ ), k = 0, 1, . . .}
over the normalized time interval [0,1]. The coefficients, pik ,
are chosen such that the polynomial satisfies the inhomoge-
neous boundary condition (3), whereas the series consisting
of the set of basis functions satisfies homogeneous boundary
conditions for any choice of expansion coefficients.

The explicit expressions for the polynomial coefficients
are given in the Appendix A for m = 1, 2, 3 and the explicit
form of the basis functions is derived in the following.

The basis functions, {φ
(m)

k (τ ), k = 0, 1, . . .}, are defined

in terms of Jacobi polynomials P
(α,β)
n (x), which can be rep-

resented as

P(α,β)
n (x) =

1

2n

n
∑

k=0

(

n + α

k

)(

n + β

n − k

)

(x − 1)n−k(x + 1)k

(6)

for x ∈ [−1, 1] and α, β > −1 (Abramowitz and Stegun
1972). The Jacobi polynomials form a complete set of orthog-
onal functions in the interval [−1, 1] with respect to the
weighting function

w(x) = (1 − x)α(1 + x)β . (7)

Thus

(

P
(α,β)

i , P
(α,β)

j

)

w
:=

1
∫

−1

P
(α,β)

i (x)w(x)P
(α,β)

j (x)dx

= δi, j h
(α,β)

i (8)

where δi, j is the Kronecker-delta and the constant h
(α,β)

i is
given by

h
(α,β)

i =
2α+β+1

2i + α + β + 1

Ŵ(i + α + 1)Ŵ(i + β + 1)

i !Ŵ(i + α + β + 1)
, (9)

with the Gamma function Ŵ.
The Jacobi polynomials in combination with the weight-

ing function are selected for the description of point-to-point
movements since the boundary conditions (3) can be satisfied
by the product of the square root of the weighting function
and the Jacobi polynomial, evaluated for α = β = 2m at the
shifted argument x = 2τ − 1. The basis functions appearing
in (5) are therefore defined as

φ
(m)

k (τ ) = Ck,m

√

w(x)P
(2m,2m)
k (x)∣

∣

x = 2τ − 1

= Ck,m22mτm(1 − τ)m P
(2m,2m)
k (2τ − 1), (10)

with a normalization factor

Ck,m =
1

√

h
(2m,2m)
k

(11)

and m denotes the order of the highest derivative appearing
in the cost functional (1). Wada et al. (2001) proposed the
expansion scheme (10) in terms of shifted Jacobi polynomi-
als for m = 3 and used it for the numerical computation of
the minimum commanded torque change trajectories. In this
work, we will use the expansion scheme for different values
of m = 1, 2, 3 and use it as a novel tool to derive a discrete
representation of point-to-point movements.

The basis functions satisfy an orthogonality relation in
the interval [0, 1]:

1
∫

0

φ
(m)

i (τ )φ
(m)

j (τ )dτ =
1

2
δi, j . (12)

Figure 2 shows the first four basis functions with m = 3.
Once the optimal solution, q∗

i (τ ), is determined, the solu-
tion can be projected onto the orthogonal basis and thus
be represented in terms of expansion coefficients which are
given with (5) and (12) as

cik = 2

1
∫

0

Q∗
i (τ )φ

(m)

k (τ )dτ (13)

where

Q∗
i (τ ) = q∗

i (τ ) −

2m−1
∑

k=0

pikτ
k . (14)
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Fig. 2 The first four basis functions of the expansion scheme m = 3
used in the description of discrete (point-to-point) movements

2.1.2 Rhythmic movements

In the case of rhythmic movements with periodic bound-
ary conditions of the form (4), Fourier series are selected to
approximate the generalized coordinates due to their intrinsic
periodicity (Richardson and Flash 2002). Since the function
is periodic in its first and all higher derivatives, a Fourier
expansion is assumed for the first derivative, i.e.,

q̇i,N (t) =
a0i

2T

+
1

T

N
∑

k=1

[

aik cos

(

2πkt

T

)

+ bik sin

(

2πkt

T

)]

,

(15)

Integration of (15) in the interval [0, T ] leads to

qi,N (t) = Ci +
a0i t

2T
+

N
∑

k=1

[

aik

2πk
sin

(

2πkt

T

)

−
bik

2πk
cos

(

2πkt

T

)]

. (16)

The constants a0i and Ci are determined such that the bound-
ary conditions (3) are satisfied leading to

qi,N (τ ) = qi0 + (qif − qi0)τ +

N
∑

k=1

[ aik

2πk
sin(2πkτ)

+
bik

2πk
(1 − cos (2πkτ))

]

, (17)

where τ = t/T is the normalized time with respect to the
period of the movement T . The Fourier coefficients are deter-
mined by the well-known expressions

aik = 2

1
∫

0

R∗
i (τ ) cos(2πkτ)dτ, (18)

bik = 2

1
∫

0

R∗
i (τ ) sin(2πkτ)dτ , (19)

where, with q̇∗
i (τ ) denoting the first derivative of the optimal

solution,

R∗
i (τ ) = T q̇∗

i (τ ) − (qif − qi0). (20)

Finally it is noted that if periodic boundary conditions are
imposed on the generalized coordinates, i.e., q(0) = q(T ),
the polynomial part in the expansion is not required and the
coordinates are simply expressed by a Fourier series.

2.1.3 Representation

The parameterization of generalized coordinates leads to a
discrete representation of movements. The different bound-
ary conditions for point-to-point and rhythmic movements
enforce different expansion schemes for the generalized coor-
dinates resulting in the different representations (13) and (18),
(19) for discrete and rhythmic movements, respectively.

A fundamental property of voluntary movements lies in
the smoothness of geometrical and kinematic variables that
characterize the movement, such as path and speed. The space
of expansion coefficients defines, therefore, for real move-
ments a low dimensional feature space, since high frequency
contributions are suppressed. It is a well-know fact that the
reduction of degrees of freedom is a necessary prerequisite
for comparison, recognition and classification of movements.

In this representation, every generalized coordinate,
qi (τ ), can be expressed as a point in the space spanned by
the basis functions:

ui =

{

(ci1, ci2, ci3, . . . , ci N )T, (discrete)

(ai1, bi1, . . . , ai N , bi N )T, (rhythmic).
(21)

The expansion order, N , can be chosen such that the max-
imal absolute distance between the generalized coordinate
expanded up to order N and the same coordinate expanded
up to order N + 1 falls below a user-defined threshold. A
distance measure, dAB, can be defined between the gener-
alized coordinates, qi (τ ), resulting from the predictions of
two models A and B (or a model A and the experimental
data B), as the Euclidean distance in the space of expansion
coefficients:

dAB =

√

[

u
(A)
i − u

(B)
i

]2
. (22)

The relation (22) defines a metric in the space spanned by
the basis functions (feature space) that can be used for com-
parison of movements. Whether the set of expansion coeffi-
cients defines a set of informative features which can be used
for recognition and classification of movements or whether
informative features can be constructed out of the discrete
representation is still an open question and requires further
research.
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2.2 Parameter optimization method

The functional (1) can be transformed into a scalar function
by inserting the expansion of the generalized coordinates,
leading to

C(u1, . . . , un)

=

T
∫

0

F
[

qN (t), q̇N (t), . . . , q
(m)
N (t), t

]

dt. (23)

Several techniques for the parameter optimization of con-
tinuous, nonlinear, unconstrained functions are available. Gra-
dient methods like nonlinear conjugate gradient (CG) and
Newton methods, namely Quasi-Newton (QN) and truncated
Newton (TN) schemes, are effective methods for finding a lo-
cal minimum of a multivariate function. They have been stud-
ied extensively and an overview of the methods can be found
in textbooks (Fletcher 2000; Nocedal and Wright 1999). Sev-
eral software packages for optimization (e.g., NAG, MAT-
LAB) are available. In this work, a parameter optimization
method based on a QN method as implemented in MATLAB
is applied.

The minimization of the cost function (23) is accom-
plished by successively applying a parameter optimization
while increasing the expansion order N . The initial guess for

the expansion coefficients u
(0)
i , (i = 1, . . . , n) with expan-

sion order N = 1 consists of small random perturbations
around zero (one coefficient per DOF for discrete move-
ments and two per DOF for rhythmic movements). This pro-
vides a set of optimal coefficients for expansion order N = 1
which are used as an initial guess (with the other unknown
coefficients initialized to zero) for the expansion order with
N = 2. This iteration scheme is applied successively un-
til convergence is obtained for expansion order N = Nmax
with expansion coefficients ũ1, . . . , ũn .

The expansion of the generalized coordinates in terms of
the expansion coefficients, ũ1, . . . , ũn , defines the solution of
the parameter optimization method, denoted by q̃(t). Higher

derivatives of order k, q̃(k)(t), follow then by k-times term-
by-term differentiation of the series q̃(t). The iterative deter-
mination of the optimal expansion coefficients works well in
all presented examples, as shown later. However, based on
extensive simulation studies using different parameter opti-
mization algorithms, it was found that the solution obtained
from the parameter optimization method does not satisfy the
Euler–Lagrange equation with high accuracy and only pro-
vides an approximate solution of the TPBVP.

2.3 Shooting methods

Shooting algorithms are another widely used technique to
solve a TPBVP. For the application of a shooting algorithm
the Euler-Lagrange equations, (2), are first written as an ex-
plicit linear n dimensional system of ODEs of order 2m,

q(2m)(t) = f(t, q(t), q′(t), . . . , q(2m−1)(t)), (24)

where it was assumed that the Lagrangian F in Eq. (1) is
quadratic in its highest derivative.

For a numerical solution, (24) is further transformed into
a first-order system of ODEs of dimension D = 2mn by
defining the 2m n-dimensional vectors y1(t) = q(t),

y2(t) = q̇(t), . . . , y2m(t) = q(2m−1)(t) resulting in

y′
1 = y2

y′
2 = y3

...

y′
2m−1 = y2m

y′
2m = f(t, y1, y2, . . . , y2m)























. (25)

Introducing the D dimensional vectors

Y =









y1

y2

...

y2m









, G =









y2

...

y2m

f









, (26)

leads to the form of the Euler–Lagrange equations used in
the shooting algorithm

Y′(t) = G(t, Y(t)). (27)

(The transformation of the Euler–Lagrange equation, (2), into
the system (27) can be easily performed by using a symbolic
mathematics software package such as MATHEMATICA or
MAPLE.)

The D boundary conditions for discrete and rhythmic
movements can be written in the general form as

R(Y(0), Y(T )) = 0, (28)

where R consists of 2m vector functions ri , i = 1, . . . , 2m,

of dimension n, i.e.,

R =









r1

r2

...

r2m









. (29)

In the case of discrete movements it is

ri = Yi (0) − ai , i = 1, . . . , m, (30)

ri+m = Yi (T ) − bi , i = 1, . . . , m, (31)

with

a =











q0

q̇0
...

q
(m−1)
0











, b =











qf

q̇f
...

q
(m−1)
f

,











(32)

whereas for rhythmic movements

r1 = Y1(0) − q0, (33)

r2 = Y1(T ) − qf , (34)

ri+2 = Yi+1(T ) − Yi+1(0), i = 1, . . . , 2m − 2. (35)

In a single shooting algorithm the TPBVP is solved by
finding a solution of the initial value problem of the form

Y′(t) = G(t, Y(t)) (36)
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with initial condition

Y(0) = s (37)

where the vector s is a D dimensional starting vector. If Y =
Y(t; s) denotes the solution of the initial value problem, (36)
and (37), the TPBVP is solved if it is possible to find a set
of D parameters s∗ such that the boundary conditions are
satisfied, i.e.,

R(Y(0, s∗), Y(T, s∗)) ≡ R(s∗, Y(T, s∗)) = 0. (38)

This is equivalent to finding the roots of a system of D

nonlinear equations

H(s) = 0 with H(s) = R (s, Y(T, s)) , (39)

which can be solved iteratively using a Newton method
(Fig. 3).

Two main difficulties appear in using single shooting
methods. First, the Newton method only converges if an
appropriate initial guess for the missing parameters is pro-
vided. Second, the achievable accuracy of the solution in a
single shooting method grows exponentially with the length
of the integration interval (Keller 1968).

The latter can be improved in a multiple shooting algo-
rithm by dividing the integration interval into several subin-
tervals,

0 = t0 < t1 < · · · < tp = T, (40)

and applying a single shooting method in each subinter-
val separately (Stoer and Bulirsch 1980). Multiple shooting
algorithms are thus much more robust than single shoot-
ing methods. The improved robustness of a multiple shooting

Fig. 3 Single shooting algorithm for the solution of a two-point bound-
ary value problem (TPBVP) of the form y′′ = f (t, y, y′) with bound-
ary conditions y(0) = a and y(T ) = b. The transformation to a first
order system is obtained by setting y1 = y and y2 = y′ resulting in

Y = (y1, y2)
T and G = (y2, f (t, y1, y2))

T. The solution is determined
by solving the corresponding initial value problem with the initial condi-

tion Y = (s1, s2)
T. The unknown parameters (s1, s2) are determined by

the D = 2 boundary conditions H(s1, s2) = (y1(0, s1)−a, y1(T, s2)−

b)T ≡ (s1 − a, y1(T, s2) − b)T = 0, which can be solved iteratively
using a Newton method. The parameter s = s2 corresponds in this
example to the slope of the trajectory at the starting point. The solution,
y = y(t, s∗), and trajectories corresponding to two iterations of the
parameter s are shown

algorithm results in an increased complexity since the solu-
tion, pieced together by the partial solutions in each subinter-
vals, must not only satisfy the boundary conditions but also
be continuous at the partition points. The main parts of the
multiple shooting algorithm are summarized briefly. Further
details can be found in Stoer and Bulirsch (1980).

Let Y(t; tk, sk) be the solution of the initial value prob-
lem Y′ = G(t, Y) with Y(tk) = sk in the interval [tk, tk+1),
where k = 0, 1, . . . , p − 1. The problem now consists of the
computation of p + 1 vectors sk , k = 0, 1, . . . , p, of dimen-
sion D in such a way that the piecewise defined function

Y(t) := Y(t; tk, sk), for t ∈ [tk, tk+1) (41)

Y(T ) := sp (42)

is continuous and satisfies the boundary conditions
R(Y(0), Y(T )) = 0. This leads to the following conditions

Y(tk+1; tk, sk) = sk+1, k = 0, 1, . . . , p − 1, (43)

R(s0, sp) = 0. (44)

These conditions are equivalent to solving the system of
D(p + 1) equations

H(s0, s1, . . . , sp) =













Y(t1; t0, s0) − s1

Y(t2; t1, s1) − s2

...

Y(tp; tp−1, sp−1) − sp

R(s0, sp)













= 0 (45)

for the D(p+1) unknowns s0, s1, . . . , sp which can be com-
puted iteratively using a Newton method (Fig. 4). The initial

guess for the iterative solution, (s
(0)
0 , s

(0)
1 , . . . , s

(0)
p ), of system

(45) is provided by the solution of the parameter optimization
method, i.e., it is set to

s
(0)
k =











q̃(tk)
˙̃q(tk)
...

q̃(2m−1)(tk)











, k = 0, 1, . . . , p. (46)

The outcome of the multiple shooting algorithm initial-
ized with the solution of the parameter optimization method
gives the optimal solution, which defines the predictions of
the model. The solution can be projected onto the basis func-
tions (feature space), as described in Sect. 2.1, leading to
a discrete representation in terms of expansion coefficients,
u∗

i , i = 1, . . . , n.
In this work, a multiple shooting algorithm in the form

of the software package MUMUS (Munich Multiple Shoot-
ing) with p = 100 subintervals is used. Further details about
the MUMUS algorithm and the actual implementation are
available in the documentation (Bulirsch 1971).

In the following sections, results from simulations of hu-
man arm movements based on the minimization of different
nonlinear performance indices are presented and the robust-
ness of the suggested computational method is demonstrated.
Models of planar point-to-point movements involving non-
linear costs are considered first, followed by models of planar
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Fig. 4 Multiple shooting algorithm for the solution of a TPBVP of
the form y′′ = f (t, y, y′) with boundary conditions y(0) = a and
y(T ) = b. The transformation to a first-order system is performed as in
the single shooting method. For the numerical solution the integration
interval is first divided into p subintervals 0 = t0 < t1 < · · · < tp = T .
The solution is determined by solving the initial value problem in each
subinterval with the initial condition Y(tk) = sk , k = 0, 1 . . . , p − 1,

where the vector sk = (sk,1, sk,2)
T consists of D = 2 components.

The D(p + 1) unknown parameters, s0, s1, . . . , sp , are determined by
the boundary conditions and the continuity conditions at the partition
points. The solution of the TPBVP, y = y(t, s∗

0, s∗
1, . . . , s∗

p), is deter-

mined iteratively using a Newton method. A set of partial solutions of
the initial value problem in each subinterval is shown (dashed lines)
resulting from one iteration of the Newton method

rhythmic movements derived from a nonlinear optimization
criterion. Finally, point-to-point movements of a four DOF
arm in three-dimensional space are analyzed assuming that
the paths follow geodesics in configuration space.

The first problems within the class of planar point-to-
point movements are defined by ones treated with respect to
the one-parameter family of mean-squared derivative (MSD)
costs of the end-effector. They define a set of test problems
with known analytical solutions, whereas for all the other
presented examples no analytical results are available.

The test problems which include the minimum-jerk model
(Flash and Hogan 1985) are analyzed in joint-angular space
where the cost function is nonlinear. The minimum com-
manded torque change model (Nakano et al. 1999; Wada
et al. 2001; Kaneko et al. 2005), as the dynamical analog to
the kinematic minimum-jerk model, is considered next. The
latter does not have an analytical solution and thus provides
a challenging test to the method. Moreover, the simulation
results are analyzed in the low dimensional feature space of
expansion coefficients. This allows, for example, a quanti-
tative comparison of the hand paths derived from different
optimization criteria.

Rhythmic movements in the form of repeatedly tracing a
given path in the form of an ellipse or a cloverleaf are consid-
ered in the following. The derived speed-curvature relations
are of special interest due to the implications they have in
relation to motor segmentation. It will be shown that these
movements have a low dimensional representation in Fourier
space.

The optimization method can also be applied to move-
ments in three-dimensional space as demonstrated in the last
simulation example, where the geodesics of a four DOF arm
in configuration space with respect to a metric defined by the
manipulator inertia matrix are computed.

2.4 Test problems

In the test problems, point-to-point movements of the end-
effector of a two DOF planar arm with upper arm length
l1 and forearm length l2 are analyzed (Fig. 5). The perfor-
mance index is taken from the one parameter family of MSD
costs defined by the squared mth-derivative of the end-effec-
tor position vector x = (x, y)T integrated over the movement
time (Harris 1998; Richardson and Flash 2002):

Cm =

T
∫

0

[

(

dmx

dtm

)T

·

(

dmx

dtm

)

]

dt, (47)

(m = 1, 2, . . .), subject to the boundary conditions

x(0) = x0, x(T ) = xf ,

ẋ(0) = 0, ẋ(T ) = 0,
...

...

x(m−1)(0) = 0, x(m−1)(T ) = 0,















(48)

where the total movement time is T and x0 and xf denote the
initial and final hand location, respectively.

This family of cost functionals consists of inner products
of derivatives of the hand vector and thus defines a measure
of smoothness. Experimental findings by Flash and Hogan
(1985) suggest that minimal mean-squared jerk trajectories
(m = 3) provide a suitable description of planar point-to
point human arm movements. This is not the case for minimal

X

θ2

θ1

Y

l2

(x, y)

l1

Fig. 5 Planar two degree-of-freedom (DOF) manipulator used to study
the minimum-jerk model (MJ) and the minimum commanded torque
change model (MCTC)
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mean-squared velocity (m = 1) and minimal mean-squared
acceleration (m = 2), whereas the predictions of the mini-
mal mean-squared change of rate of jerk (m = 4), sometimes
called snap, also provide a reasonable fit to the experimental
data.

The problem of minimizing (47) subject to the boundary
conditions of (48) can be solved analytically (Richardson and
Flash 2002). The optimal solution has the form

x∗(t) = x0 + fm(τ )(xf − x0), (49)

where τ = t/T is the normalized time and

fm(τ ) =
(2m − 1)!τm

(m − 1)!2m
2F1(m; 1 − m; 1 + m; τ), (50)

with the generalized hypergeometric function 2F1. In partic-
ular, for m = 1, 2, 3:

f1(τ ) = τ, (51)

f2(τ ) = −2τ 3 + 3τ 2, (52)

f3(τ ) = 6τ 5 − 15τ 4 + 10τ 3. (53)

Since an analytical solution is available, it can be used
for comparison to the predictions of the method. In order to
make the computational problem more challenging the com-
parison is performed in configuration space. It involves first
transforming the optimization problem, (47), (48), into joint
angle space, θ = (θ1, θ2)

T, where the cost is a nonlinear func-
tion and therefore serves as a challenging test of the method.
The results are compared to the known Cartesian solution
projected into joint space. It should be noted that the pro-
jected solution is a solution of the corresponding variational
problem formulated in joint space due to the invariance of the
Euler-Lagrange equation under coordinate transformation.

The projection of the cost (47) into joint-space is given
by the forward kinematic equations, yielding

x = l1 cos(θ1) + l2 cos(θ1 + θ2), (54)

y = l1 sin(θ1) + l2 sin(θ1 + θ2). (55)

The inverse kinematic relations can be written as

θ1 = arctan2(y, x) − arccos

(

r2 + l2
1 − l2

2

2l1r

)

, (56)

θ2 = π − arccos

(

l2
1 + l2

2 − r2

2l1l2

)

(57)

with r =
√

x2 + y2 and arctan2(y, x) = arctan(y/x) +
sign(y)(1−sign(x))π/2. The optimal solution in joint space,
θ

∗(τ ) = (θ∗
1 (τ ), θ∗

2 (τ ))T, follows then by inserting (49) into
(56) and (57).

For the numerical solution of the optimization problem
the joint angles are first expanded according to (5) and in-
serted into the cost function. A QN method is used for the
parameter optimization (e.g., as implemented in MATLAB).
The boundary conditions were set to θ0 = (0, π/6)Trad,
θ f = (2π/3, π/3)T rad and the total movement duration was
chosen to be T = 1 s. The arm length of the upper and fore-
arm were set to l1 = 0.30 m and l1 = 0.32 m, respectively.

A measure of how close the necessary condition of opti-
mality is satisfied is derived from the residual of the Euler–
Lagrange equation defined in (2). This error is defined by the
maximum value of the sum of absolute residuals (Wada et al.
2001), i.e.,

Emax = max
0≤t≤T

2
∑

i=1

|Ei (t)|. (58)

If the solution for the trajectory leads to an error Emax = 0
the trajectory satisfies the Euler–Lagrange equations and thus
the necessary conditions of optimality are fulfilled.

Table 1 shows the results of the parameter optimization
method applied to the MSD cost for m = 1, 2, 3. Although
the optimal value of the cost was recovered well in all test
problems, there remains a large error of the Euler–Lagrange
equation using the parameter optimization method. This is
related to the fact the higher derivatives converge slowly (if
at all) to the optimal solution, in particular, at the bound-
aries. Figure 6 shows the comparison of (a) the exact optimal
joint angular positions, (b) accelerations and (c) the fourth
derivatives of joint angular positions of the minimum-jerk
model with the results obtained using a parameter optimiza-
tion method. Whereas the joint angular positions and joint
angular accelerations are recovered reasonably well, large
deviations occur for the joint angular snaps, in particular at
the boundaries, resulting in a large residual of the Euler–
Lagrange equations (Table 1).

The error resulting from the multiple shooting algorithm
is several order smaller than the error obtained with the param-
eter optimization method. The solution obtained by the param-
eter optimization method is thus not optimal.

A method which worked well in practice consisted of
combining the parameter optimization method with a multi-
ple shooting algorithm. The solution of the parameterization
method was used as an initial guess for the multiple shoot-
ing algorithm. In this way the residual of the Euler–Lagrange
equations was significantly reduced and the necessary con-
dition of optimality was satisfied with high accuracy.

The results of the multiple shooting algorithm initialized
with the solution of the parameter optimization method are
shown in Table 1. Figure 7 shows the difference in joint trajec-
tories, 
θi (τ ) = θi (τ ) − θ∗

i (τ ), i = 1, 2, between the ana-
lytical and the numerical solution computed with the hybrid
method for all three test problems m = 1, 2, 3. The optimal

Table 1 Results of the parameter optimization method and the multiple
shooting algorithm for the mean-squared derivative costs with m =
1, 2, 3

Exact Parameter optimization Multiple shooting

m C∗ N C Emax C Emax

1 1.1064 20 1.1064 2.3e + 0 1.10644 6.3e − 14
2 13.2773 40 13.2773 4.2e + 5 13.2773 3.8e − 12
3 796.646 50 804.572 1.5e + 10 796.646 1.5e − 8

The exact value of the cost is given by C∗. N is the expansion order
used in the parameter optimization and C is the numerically obtained
value for the minimal cost
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Fig. 6 Comparison of the exact optimal joint a angular positions, b
accelerations, c snaps of the MJ (dash-dotted) for the two DOF (i =
1, 2) and the approximate results derived from the minimization of the
cost function using the parameter optimization method (solid). Large
deviations from the exact solution occur for the joint angular snaps,
in particular near the boundaries which are magnified in the inserts.

Simulation parameters: θ0 = (0, π/6)T rad, θ f = (2π/3, π/3)T rad,
T = 1 s, l1 = 0.30 m and l2 = 0.32 m
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Fig. 7 Errors in joint trajectories, 
θi (τ ) = θi (τ ) − θ∗
i (τ ), i = 1, 2,

between the analytical and numerical solutions computed with the hy-
brid method for all three test problems m = 1, 2, 3, where m denotes
the highest derivative appearing in the cost functional

solution can be recovered with high accuracy as shown by
the small error, |
θi (τ )| < 10e − 9, i = 1, 2.

Once the optimal solution is determined it can be repre-
sented in terms of basis functions. For example, the optimal
joint angular trajectories for the MSD cost with m = 3 ,
computed above, have the following representation (up to
expansion order N = 10):

u∗
θ1

=
[

−0.7625, 0.2475, 0.0494,−0.0648,−0.0309,

0.0300, 0.0164,−0.0146,−0.0084, 0.0070, 0.0049
]

,

u∗
θ2

=
[

1.3017,−0.0457,−0.0309,−0.0211, 0.0253,

0.0046,−0.0119,−0.0017, 0.0043, 0.0016,−0.0022
]

.

As expected, the magnitude of the expansion coefficients is
decreasing with increasing expansion order.

2.5 Minimum commanded torque change model

The minimum torque change model (Uno et al. 1989) and the
minimum commanded torque change model (Nakano et al.
1999; Wada et al. 2001; Kaneko et al. 2005) applied to move-
ments in a horizontal or vertical plane can be considered as the
dynamic analog to the kinematic minimum-jerk model. The
cost function for the minimum commanded torque change
model is defined by

C =

T
∫

0

(

dτ

dt

)T (
dτ

dt

)

dt, (59)

where the torques, τ = (τ1, τ2)
T, around the shoulder and

the elbow are specified by

τ = M(θ)θ̈ + C(θ , θ̇)θ̇ + Bθ̇ + N(θ) (60)
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and the joint angular vector is defined as for the minimum-
jerk model.

The manipulator inertia matrix M , the Coriolis and cen-
trifugal matrix C , the viscosity matrix B and the gravitational
torques N are given by

M(θ) =

[

α + 2β cos θ2 δ + β cos θ2

δ + β cos θ2 δ

]

, (61)

C(θ , θ̇) =

[

−βθ̇2 sin θ2 −β(θ̇1 + θ̇2) sin θ2

βθ̇1 sin θ2 0

]

, (62)

N(θ) = g

[

γ cos θ1 + ρ cos(θ1 + θ2)

ρ cos(θ1 + θ2)

]

, (63)

B =

[

b11 b12

b12 b22

]

(64)

with the constants

α = I1 + I2 + m1r2
1 + m2(l

2
1 + r2

2 ) (65)

β = m2l1r2 (66)

δ = I2 + m2r2
2 (67)

γ = m1r1 + m2l1 (68)

ρ = m2r2 (69)

and the experimentally determined numerical constants of the
viscosity matrix b11, b12, b22. For movements in the horizon-
tal plane, where the gravitational torque vanishes, the cost is
denoted with Ch, whereas for movements in the vertical plane
the cost is Cv.

The physical parameters used in the simulation are shown
in Table 2 and the numerical values of the components of the
viscosity matrix for movements in the horizontal plane are
given by

Bh =

[

0.74 0.10
0.10 0.82

]

(kg m2/s), (70)

whereas for movements in the vertical plane

Bv =

[

0.90 0.27
0.27 1.0

]

(kg m2/s). (71)

(Nakano et al. 1999).
The optimal solution for the joint angular trajectories is

determined by first expanding the joint angles, θ = (θ1, θ2)
T,

according to expansion scheme (5) with m = 3. Inserting
these expansions into the cost function (59) followed by a
parameter optimization leads to the initial guess for the mul-
tiple shooting method. The results of the parameter optimiza-
tion method and the multiple shooting algorithm are shown

Table 2 Parameters for the arm model used in the simulation of the
minimum commanded torque change (MCTC) model (Nakano et al.
1999)

Parameter Shoulder Elbow
joint (i = 1) joint (i = 2)

Mass: mi (kg) 1.50 1.11
Length: li (m) 0.345 0.30
Distance to center of mass: ri (m) 0.11 0.17

Moment of inertia: Ii (kg m2) 0.029 0.047

Table 3 Results of optimization for the minimum commanded torque
change model describing movements in the horizontal and vertical
plane between different targets in the workspace (in m)

Targets Parameter optimization Multiple shooting

x0 → xf N Ch Emax Ch Emax

T1 → T2 15 22.223 1.9e + 4 22.416 3.4e − 10
T1 → T4 15 35.327 2.5e + 4 35.791 9.2e − 10
T1 → T6 15 31.119 6.4e + 4 31.311 1.8e − 10
T3 → T6 15 68.824 1.3e + 5 68.950 9.7e − 11
T5 → T4 15 65.337 1.2e + 5 65.963 1.5e − 9
x0 → xf N Cv Emax Cv Emax
T1 → T2 15 36.419 1.8e + 4 36.637 9.1e − 10
T1 → T4 15 59.368 2.8e + 4 60.179 3.6e − 9
T1 → T6 15 70.291 9.3e + 4 70.383 4.2e − 10
T3 → T6 15 167.457 1.7e + 5 167.527 2.2e − 10
T5 → T4 15 132.303 8.5e + 4 134.025 4.8e − 9

T1 = (0, 0.3)T, T2 = (0, 0.6)T, T3 = (0.2, 0.4)T, T4 =
(0.2, 0.6)T, T5 = (−0.2, 0.35)T, T6 = (−0.2, 0.55)T

in Table 3 for movements between a set of targets T1, . . . , T6

within a horizontal plane and for movements within a vertical
plane against the direction of the gravitational field. The hand
paths are shown in Fig. 8 for the (a) horizontal and (b) vertical
condition. The shoulder joint is located at the position (0, 0).

The difference in hand paths resulting from the mini-
mum commanded torque change model and the minimum-
jerk model is analyzed in the space of expansion coefficients.
It should be noted that the suggested expansion scheme is not
only applicable for the trajectories but also for the geomet-
ric hand path in the workspace. A hand path, given by y =
y(x), with boundary conditions specified by y(x0) = y0 and
y(xf) = yf , can be analyzed using an expansion scheme of
the form (10) with m = 1 when expressing the path in terms
of a nondimensional parameter λ = (x − x0)/(xf − x0) ∈
[0, 1]1. The expansion for the hand path is then given by

ỹ(λ) = y0 + (yf − y0)λ +

N
∑

k=0

ckφ
(1)
k (λ). (72)

Relation (72) implies that minimum-jerk hand paths, de-
fined by straight lines in the workspace, are represented as
the null-vector in the space of expansion coefficients. The
distance between two hand paths resulting from two models
A and B is, following (22), defined by

dAB =

√

√

√

√

N
∑

k=0

[

c
(A)
k − c

(B)
k

]2
(73)

with a user-defined expansion order N .
Table 4 shows the results for the distances of hand paths

in expansion coefficient space between the minimum-jerk
model (MJ) and the minimum commanded torque change
model in the horizontal plane (MCTC(h)). The right column
shows the distances between the hand paths derived from the
minimum commanded torque change model in the horizontal
and the vertical condition (MCTC(v)). No significant influ-
ence of the gravitational torque on the hand paths is observed.

1 If x0 = xf , the x and y axes can be interchanged.
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Fig. 8 Hand paths of movements in a horizontal plane and in b vertical
plane resulting from the MCTC and the MJ models. In condition b, the
subject is lying on his back performing movements against the direc-
tion of the gravitational field g. No significant difference in hand paths
between conditions a and b can be observed

Table 4 Distance of hand paths in feature space between the MCTC
model in the horizontal plane (MTCT(h)) and the minimum-jerk model
(MJ) and the distance between hand paths derived from the MTCT
model in the horizontal and vertical (MCTC(v)) conditions

Targets Distance Distance
x0 → xf MJ – MCTC(h) MCTC(h) – MCTC(v)

T1 → T2 0.0030 0.0000
T1 → T4 0.0605 0.0090
T1 → T6 0.0216 0.0100
T3 → T6 0.0437 0.0115
T5 → T4 0.0656 0.0197

Another application of the discrete representation con-
sists of the low dimensional representation of movements.
Figure 9a shows a set of experimentally measured hand paths
in the horizontal plane between an initial and a final target.
Figure 9b shows the hand paths between the same targets
resulting from an expansion into a set of basis functions up
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Fig. 9 a Experimentally measured hand paths between an initial target

located at x0 = (0, 0)T m and a final target located at xf = (0.2, 0)Tm.
b Hand paths as they result from an expansion into a set of basis func-
tions up to order N = 10 between the same targets as in a. The hand
paths are recovered well in the low dimensional feature space

to order N = 10. The original paths are recovered well in
the low dimensional feature space.

2.6 Periodic tracing of planar shapes

This section presents two problems widely used in the study
of human motor behavior involving periodic arm movements
for which either no analytical solution or only asymptotics
of solutions are known. First, a periodic tracing problem,
in which the end-effector moves along an elliptical path, is
considered.

2.6.1 Ellipse

The end-effector (hand) of a two-link planar arm tracks a
given path in the shape of an ellipse (Fig. 10). Due to its
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Fig. 10 Movement of an end-effector along an elliptical path

significance to human motor control the cost function is taken
as the squared jerk of the end-effector integrated over the
movement time (Flash and Hogan 1985). Periodic boundary
conditions are imposed, corresponding to experimental set-
tings, where the subject is instructed to trace the elliptical
figures continuously without stopping.

The transformation of the end-effector from the ellipse-
centered frame with coordinates x′ = (x ′, y′) to the shoulder
frame with coordinates x = (x, y) is given by a rigid trans-
formation

x = Rx′ + d (74)

with the rotation matrix R, RRT = I , and the translation
vector d.

The goal is to minimize

C =

T
∫

0

(

...
x

2
+

...
y

2
)

dt (75)

subject to the constraint
(

x′

a

)2

+

(

y′

b

)2

= 1. (76)

The parameters a and b denote the semi-major and semi-
minor axes of the ellipse, respectively, and the (squared)
eccentricity of the ellipse is defined as ε = (1 − b2/a2).

It is useful to express the functional (75) in the ellipse-
centered coordinate system. It can easily be verified that the
functional is invariant under the rigid transformation (74),
leading to

C =

T
∫

0

(

...
x

2
+

...
y

2
)

dt =

T
∫

0

(

...
x ′2+

...
y ′2
)

dt . (77)

By parameterizing the ellipse as

x′ = a cos ϕ, (78)

y′ = b sin ϕ, (79)

where ϕ is the rotation angle (0 ≤ ϕ ≤ 2π), the constraint
(76) is identically satisfied.

Substituting (78) and (79) into the cost functional (77)
gives

C =
a2

T 5

∫ 1

0

(

[

− ϕ′3 sin ϕ + 3ϕ′ϕ′′ cos ϕ + ϕ(3) sin ϕ
]2

+(1−ε)

[

ϕ′3cos ϕ + 3ϕ′ϕ′′ sin ϕ − ϕ(3) cos ϕ

]2
)

dτ,

(80)

where the prime denotes the derivative with respect to nor-
malized time τ = t/T . The cost functional (80) is minimized
subject to the boundary conditions ϕ(0) = 0, ϕ(1) = 2π and
periodic boundary conditions in the derivatives as specified
in (4).

Applying a parameterization of the angle ϕ in the form
(17) transforms the cost function into a scalar function of
the expansion coefficients. The parameter optimization of the
cost yields the results shown in Table 5 for different values of
(squared) eccentricity ε with a semi-major axis of a = 0.15 m
and the period of the movement T = 1 s. The results of the
multiple shooting algorithm with an initial guess provided by
the solution of the parameter optimization method are shown
on the right side of Table 5. It should be noted that the minimal
value of the cost is identical for the two methods, indicating
that the function and its derivatives appearing in the cost are
recovered well with the parameterization method.

The analysis of handwriting and drawing movements of
humans shows a close relation between the hand speed

v(t) =

√

ẋ2 + ẏ2 (81)

and the instantaneous curvature of the path

κ(t) =
ẋ ÿ − ẏ ẍ
√

ẋ2 + ẏ2
3
. (82)

In several experimental studies (Viviani and Terzuolo 1982;
Laquaniti et al. 1983; Viviani and Flash 1995) it was found
that this phenomena could be expressed in terms of a power
law between absolute hand velocity and curvature (two-thirds
power law),

v = gκ−β , (83)

where the accepted value of the exponent β ≃ 0.33 and g

denotes the gain factor.

Table 5 Results of the optimization for movements along an elliptical
path

Parameter optimization Multiple shooting
ε N C Emax C Emax

0.1 20 1315.18 8.4e − 2 1315.18 3.1e − 14
0.2 20 1245.94 1.8e − 1 1245.94 6.1e − 14
0.5 20 1038.14 9.4e − 1 1038.14 1.6e − 13
0.7 20 899.50 4.5e + 1 899.50 2.5e − 13
0.9 20 760.70 7.3e + 2 760.70 1.1e − 12
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Figure 11a shows the optimal speed profile for different
values of (squared) eccentricity. The dependency of the speed
on the instantaneous curvature was analyzed by the influence
of the eccentricity on the exponent β. For a given eccentric-
ity, the optimal angle trajectory was determined and a linear
regression on the log(κ)− log(v) data was performed, giving
the exponent β as the slope of the fitted straight line.

For the case where the (squared) eccentricity of the el-
lipse is small, ε ≪ 1, an analytical solution to the minimiza-
tion of the cost, (77), under the constraint that a power law
of the form (83) holds, was determined by Richardson and
Flash (2002) using a perturbative approach. In this work, the
exponent β is not specified a priori but is an outcome of the
optimization. To a first-order approximation of the (squared)
eccentricity, the solution is given according to Richardson
and Flash (2002) by
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Fig. 11 a Optimal speed profiles for different values of (squared) eccen-
tricity ε. b Exponent β as a function of (squared) eccentricity ε using
a multiple shooting method for the optimization of the minimum-jerk
cost along the elliptical path and the results obtained by Viviani and
Terzuolo (1982) (β ≈ 0.33) and Richardson and Flash (2002) (β ≈

0.3297 + 0.000336ε2)

ϕ(τ) = 2πτ +
ε

8
(1 − 3β) sin(4πτ) (84)

with a value of β = 30/91 + 0.000336ε2 up to second-order
ε2. The analytically derived value for the exponent β is in
excellent agreement with simulation results in the asymp-
totic limit of small values of ε, as shown in Fig. 11b.

The Fourier analysis of the optimal rotation angle shows
that all coefficients vanish (< 10e − 7) except the coefficient
a2 which takes increasing values with increasing eccentricity
(e.g., a2 = 0.0017 for ε = 0.1, a2 = 0.0188 for ε = 0.7).
The periodic tracing of the ellipse can thus be represented
as a one dimensional vector in Fourier space. This result is
already expressed in the asymptotic limit ε ≪ 1 given by
(84).

In closing, the proposed approach verifies the known two-
thirds power law result observed as humans trace elliptical
paths. This result was obtained by applying the minimum-
jerk model to an elliptical path for a wide range of elliptical
shapes without additionally enforcing a power law of the form
(83).

2.6.2 Cloverleaf

The tracing of a cloverleaf path, as shown in Fig. 12, defines
another interesting problem in motor control research that
has been measured experimentally (Viviani and Flash 1995).
As in the case of an elliptical path we analyze the predic-
tions of the minimum-jerk model when tracing periodically
the shape of a cloverleaf. A cloverleaf can be represented as
follows (Richardson and Flash 2000, 2002)

x ′ =
a

2
(cos 3ϕ − cos ϕ) , (85)

y′ =
a

2
(sin 3ϕ + sin ϕ) , (86)

where ϕ is the rotation angle (0 ≤ ϕ ≤ 2π) and a defines
the size of the leaf.

Fig. 12 Movement of an end-effector along a cloverleaf path
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As in the case of an elliptical path the squared jerk cost is
minimized along the cloverleaf path for a period of T = 3 s
and radius a = 0.15 m. The error of the optimal rotation angle
is Emax = 1.6e − 13 with minimal cost C = 1039.0. The
resulting optimal speed profile of the end-effector is shown
in Fig. 13a.

To estimate the exponent of a possible power law, relat-
ing the speed v and the curvature κ , a linear regression on the
log κ versus log v graph was applied. The value of the expo-
nent derived from this curve was β = 0.4252 (Fig. 13b). This
result does not agree well with the experimental findings by
Viviani and Flash (1995). Cloverleafs that were traced with
periods of 2.5 and 3 s were found to have average values of
β of 0.35 ± 0.03 and 0.36 ± 0.03, respectively. Richardson
and Flash (2002, 2000) determined a β coefficient of 0.4214
using the same perturbative approach as in the case of an
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Fig. 13 a An optimal speed profile resulting from minimization of the
squared jerk minimization along the cloverleaf path with movement
period of T = 3 s. b The log(curvature) versus log(speed) curve as
derived from the minimum-jerk theory and the power law fit. The value
of the exponent obtained from this curve is β = 0.4252

elliptical path. However, this result was considered to be inac-
curate since it was obtained in a limit where the perturba-
tion approach fails. A numerical method was applied instead,
leading to an exponent β = 0.36 ± 0.01, which compares
favorably with the experiments, but is in disagreement with
the findings here.

The Fourier analysis of the optimal rotation angle shows
that only two expansion coefficients differ significantly from
zero, namely a4 = −0.0349 and a8 = 0.0017. The periodic
tracing of the cloverleaf path using a minimum-jerk crite-
rion can thus be represented as a two-dimensional vector in
Fourier space.

2.7 Geodesics in configuration space of a four DOF arm

In this section, models related to point-to-point movements
of a four DOF arm in three-dimensional space are presented.
The joint angular paths of the movement are assumed to be
geodesics in configuration space with respect to a metric de-
fined by the manipulator inertia matrix. The geodesic paths
correspond to arm movements without external forces. Such
an approach is motivated by the experimental findings that
inertial properties of the arm are important in the control of
arm movements (Soechting et al. 1995; Flanders et al. 2003).
Moreover, Shin and McKay (1986) proved that geodesics
with respect to the manipulator matrix define minimum time
paths, provided that the driving actuator torques follow a
bang-bang control strategy.

It should be noted that geodesic paths only determine the
geometrical properties of the movement (e.g., path, posture)
and do not include the temporal aspects of the movement
(e.g., speed). An additional model for the latter has to be
defined in order to define the spatiotemporal properties of
the movement. However, an approach based on the separa-
tion of temporal and geometrical properties of the movement
is supported by experimental studies (Nishikawa et al. 1999;
Flanders et al. 2003; Torres and Zipser 2002, 2004; Sosnik
et al. 2004). Behavioral studies of point-to-point movements
demonstrate that the hand path and arm postures chosen dur-
ing movement do not significantly depend on hand speed
suggesting that the geometrical and kinematic properties are
decoupled. In addition, neurophysiological studies of reach-
ing movements in monkeys showed that geometrical and tem-
poral attributes in terms of the movement direction and the
movement speed, respectively, are represented in the corti-
cal activity (Georgopoulus et al. 1986; Moran and Schwartz
1999).

Geodesics in configuration space with respect to a metric
defined by the manipulator inertia matrix are closely related
to the kinetic energy which is computed first. For this pur-
pose, an arm configuration is parameterized as in the work of
Soechting et al. (1995) and defined by the four joint angles
θ := (θ, η, ζ, φ)T. The first three angles describe the rota-
tion around the spherical shoulder joint, namely the eleva-
tion angle θ , the azimuthal angle η and the humeral angle ζ ,
whereas the flexion angle φ determines the rotation around
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the revolute elbow joint (Fig. 14). It should be noted that the
three DOF at the wrist can be neglected for pointing move-
ments, but play a significant role in grasping studies. Two
body-fixed coordinate systems are attached to the upper and
forearm at the center of mass of each limb, such that the z

axis is pointing along the longitudinal limb axis and the x

and y axes are in transverse directions.
The kinetic energy of the arm with this choice of coordi-

nates can then be expressed as (Biess et al. 2001)

T =
1

2

[

I1(ω
2
1,x + ω2

1,y) + I2ω
2
1,z

+I3

(

(

ω1,y cos φ + ω1,z sin φ
)2

+ (ω1,x + φ̇)2
)

+I4

(

ω1,z cos φ − ω1,y sin φ
)2

+2A(ω2
1,y cos φ + ω2

1,x cos φ + ω1,yω1,z sin φ

+ω1,x φ̇ cos φ)
]

, (87)

where the angular velocity components of the upper arm with
respect to the upper arm body coordinate system are

ω1,x = η̇ sin ζ sin θ + θ̇ cos ζ, (88)

ω1,y = η̇ cos ζ sin θ − θ̇ sin ζ, (89)

ω1,z = η̇ cos θ + ζ̇ . (90)

The constants are defined by

I1 = I1,x + m1r2
1 + m2l2

1 , (91)

I2 = I1,z, (92)

I3 = I2,x + m2r2
2 , (93)

I4 = I2,z, (94)

A = m2l1r2, (95)

where mi , Ii,x , Ii,y, Ii,z, li , ri , (i = 1, 2), denote mass,
principal moments of inertia around the x, y, z axes of the

Fig. 14 A mechanical linkage model of a four DOF arm

body-fixed coordinate systems, length and distance to the
center of mass of the upper and forearm, respectively. It is
assumed that the principal moments of inertia around axes
transverse to the limbs are identical, i.e., I1,x = I1,y and
I2,x = I2,y .

The kinetic energy is a quadratic form in the joint veloc-
ities and can be written as

T (θ , θ̇) =
1

2
θ̇

T M(θ)θ̇ , (96)

where M ∈ R
4×4 is the manipulator inertia matrix with com-

ponents given in Appendix B. The manipulator inertia ma-
trix depends on the current configuration and represents the
instantaneous composite mass distribution of the whole arm
linkage at the current arm configuration (Asada and Slotine
1986).

Geodesics with respect to a metric defined by the manip-
ulator matrix can be derived as extremals of the functional
given by

C =
1

2

1
∫

0

θ
′T(λ)M(θ(λ))θ ′(λ)dλ (97)

with boundary conditions

θ(0) = θ0, θ(1) = θ f , (98)

where θ0 and θ f denote the initial and final joint configu-
ration, respectively, and the prime denotes derivative with
respect to the path parameter, λ, in configuration space. The
path in configuration space, θ = θ(λ), satisfies the Euler–
Lagrange equations which have the form of geodesic
equations,

M(θ)θ ′′ + C(θ , θ ′)θ ′ = 0, (99)

where the components of the Coriolis matrix are given by

Ci j (θ , θ ′) =
1

2

4
∑

k=1

(

∂Mi j

∂θk

+
∂Mik

∂θ j

−
∂Mk j

∂θi

)

θ ′
k . (100)

The influence of a gravity field g can be modeled by con-
sidering the potential energy of the arm. The potential energy
of the arm is given by the sum of the potential energies of the
upper arm and forearm

V = V1 + V2 = m1gh1 + m2gh2, (101)

where h1 and h2 are the heights of the center of mass of the
upper and forearm, respectively. Expressing the heights in
terms of the joint angles and the limb lengths, the potential
energy is

V (θ) = gm1r1 − gm1r1 cos θ + gm2(l1 + r2)

−gm2 [l1 cos θ + r2(cos φ cos θ

− cos ζ sin φ sin θ)] , (102)

where a constant term was added such that the zero level of
the potential energy corresponds to the zero configuration
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(θ = η = ζ = φ = 0) of the arm. To model the influence of
gravity the functional (97) is increased by the potential term

Cw =

1
∫

0

[

1

2
θ

′T(λ)M(θ(λ))θ ′(λ)dλ + wV (θ(λ))

]

dλ

(103)

The parameter w is a weighting factor between 0 and 1 that
accounts for the influence of the gravitational field.

The physical parameters of the arm that are used in the
simulation studies are given in Table 6. An expansion of
the form m = 1 is assumed for the joint angular paths. The
optimization results are shown in Table 7. The joint angular
paths between two configurations as a function of the path
parameter λ are shown in Fig. 15.

The end-effector path can be determined from the joint
trajectories via the forward kinematics

x = −l1 sin η sin θ − l2[cos φ sin η sin θ

+ sin φ (cos ζ sin η cos θ + sin ζ cos η)], (104)

y = l1 cos η sin θ + l2[cos φ cos η sin θ

+ sin φ (cos ζ cos η cos θ − sin ζ sin η)], (105)

z = −l1 cos θ + l2 [sin φ cos ζ sin θ − cos φ cos θ ] . (106)

The comparison of the predictions of the geodesics model
with the experimental data can be found in Biess (2004)

Table 6 Parameters for the arm model used in the simulation of geo-
desics

Parameter Shoulder Elbow
joint (i = 1) joint (i = 2)

Mass: mi (kg) 2.185 1.64
Length: li (m) 0.30 0.32
Distance to center of mass: ri (m) 0.15 0.16
Moment of inertia 0.0983 0.0840

around x axis: Ii,x (kg m2)
Moment of inertia around 0.0164 0.0140

z axis: Ii,z (kg m2)

Table 7 Results of the optimization for the cost C and Cw=1 in config-
uration space between different arm configurations (in rad)

Config Parameter Optimization Multiple Shooting
θ0 → θ f N C Emax C Emax

θ1 → θ2 10 0.1265 9.4e − 3 0.1265 1.1e − 16
θ1 → θ3 10 0.4537 4.0e − 2 0.4537 3.3e − 16
θ1 → θ4 10 0.4235 5.1e − 2 0.4235 3.6e − 16
θ2 → θ3 10 0.4592 9.2e − 2 0.4592 2.2e − 16
θ2 → θ4 10 0.1085 2.0e − 2 0.1085 8.3e − 17
θ3 → θ4 10 0.7770 9.9e − 2 0.7770 2.1e − 16
θ0 → θ f N Cw=1 Emax Cw=1 Emax
θ1 → θ2 15 4.827 2.1e − 1 4.827 4.6e − 15
θ1 → θ3 15 9.228 2.6e − 1 9.228 6.2e − 15
θ1 → θ4 15 3.897 6.3e − 1 3.897 4.4e − 15
θ2 → θ3 15 8.059 2.3e + 0 8.059 6.2e − 17
θ2 → θ4 15 2.793 2.0e − 1 2.793 4.6e − 15
θ3 → θ4 15 7.109 1.1e + 0 7.109 6.8e − 15

θ1 = (π/2, −π/4, π/4, π/12)T, θ2 = (π/3, −π/12, π/8, π/4)T,

θ3 = (3π/4, π/12, π/12, π/6)T, θ4 = (π/4, π/12, π/6, π/12)T
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Fig. 15 Optimal joint trajectories θ = (θ, η, ζ, φ)T as a function of the
path parameter λ resulting from the minimization of the cost C (solid
line) and Cw=1 (dashed line), respectively, with initial arm configura-

tion θ0 = (π/3, −π/12, π/8, π/4)Trad and final arm configuration

θ f = (3π/4, π/12, π/12, π/6)Trad

and will be reported in detail in a subsequent paper. In this
work, we focused on the computational methods involved in
the derivation of the optimal solution. Nevertheless, several
examples of the wrist path for four different subjects and a
comparsion with the predictions of the geodesics model are
presented in Fig. 16a.

Finally, Fig. 17 shows several examples for which the
gravitational potential with a weighting coefficient w = 1
is included into the cost function. The predicted paths are
strongly curved in the direction of the gravitational field and
therefore do not provide a good description of the experi-
mental data.

2.7.1 Redundancy resolution at the final target

The previously computed geodesics were completely speci-
fied in configuration space. However, a pointing task is gener-
ally expressed in work-space by three Cartesian coordinates
of the final target location xf . In the following section, we
derive the hand path and the final arm configuration simul-
taneously from geodesics by specifying only the final hand
location, i.e., by replacing the boundary condition (98) with

θ(0) = θ0, xh(1) = xf , (107)

where xh denotes the hand location. Due to the excess of one
DOF in configuration space a given hand location does not
determine an arm configuration completely (redundancy). In-
deed, for a fixed hand location the arm can still rotate around
an axis going to the shoulder and the hand location, imply-
ing that the elbow location is constrained to a circle around
this axis. The redundancy at the final target can be resolved
using geodesics. For this purpose, the set of arm configura-
tions that is compatible with the given hand location is deter-
mined (inverse kinematic map). The inverse kinematic map
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Fig. 16 a Examples of predicted three-dimensional wrist paths (solid) as derived from geodesics in configuration space and the measured wrist
paths (dotted) in units of mm. The projections of the predicted (solid) and measured (dotted) paths in the xy, xz and yz plane are shown for
visualization purposes. Each row represents a different subject. b Examples of predicted three-dimensional wrist paths (solid) as derived from
the cost function including the gravitational potential, Cw=1, and the measured wrist paths (dotted) in units of mm
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Fig. 17 Computation of the one-dimensional family of geodesics between the initial configuration θ0 and the final configurations θ f (α, xf ), α ∈
I (xf ), that are compatible with the given final target location xf . The configuration space (left) is represented as a two-dimensional surface. Each
point in configuration space corresponds to an arm configuration. The cirle C in workspace (right) contains the final elbow locations inside (closed
circle) and outside (open circle) of the bio-mechanical admissible joint range. The optimal geodesic (for α = α∗) in configuration space has the
minimal cost over all accessible final arm configurations and leads in workspace to an optimal hand path and an optimal final arm posture

has the form θ = θ(α, xh), where α ∈ [0, 2π) denotes the
rotation angle of elbow locations on the circle, and is com-
puted in two steps. First, the elbow locations are expressed
as xe = xe(α, xh) by noting that the circle of elbow locations
for a given hand location is determined by the intersection
of the sphere S1 : x2 = l2

1 around the origin with radius l1

and the sphere S2 : (x − xh)
2 = l2

2 around the hand location
xh with radius l2. Second, an arm configuration is uniquely
determined by a given elbow and hand location, i.e., there
exists a relation of the form θ = θ(xe, xh) or explicitly for
our choice of coordinates (|xe × xh| 
= 0 and |ze| < lu):

θ = arccos

(

−ze

lu

)

(108)

η = arctan2 (−xe, ye) (109)

ζ = arctan2
(

lu(xe yh − xh ye),

ye(yezh − yhze) − xe(zexh − zhxe)
)

(110)

φ = arccos

(

x2
h + y2

h + z2
h − l2

u − l2
f

2lulf

)

, (111)

where xe = (xe, ye, ze)
T and xh = (xh, yh, zh)

T.
The inverse kinematic map follows then as θ(xe, xh) =

θ(xe(α, xh), xh) =: θ(α, xh), defining a one-parameter fam-
ily of arm configurations for a given hand location. Obvi-
ously not every rotation angle α ∈ [0, 2π) leads to a realistic
arm posture. We determine next the subset of rotation angles
that leads to postures inside the biomechanically admissi-
ble joint-range of the arm. We assume that only joint angles
which satisfy the following inequalities lead to admissible
arm configurations

0 ≤ θ(α) ≤ π, (112)

−
3

4
π ≤ η(α) ≤

π

3
, (113)

ζext(θ, η) ≤ ζ(α) ≤ ζint(θ, η), (114)

0 < φ < π, (115)

where the external and internal humeral rotation of the upper
arm, ζext and ζint, are experimentally determined functions
(Wang et al. 1998). The external and internal humeral rota-
tions describe the minimal and maximal measured value of
the humeral angle for a given upper arm direction. These
constraints define for each hand location in space, xh, the
interval of possible rotations angles, I (xh) ⊃ α. The corre-
sponding joint angular vector associated with realistic arm
postures at the final hand location xf is thus specified by the
one-parameter family of vectors θ(α) = θ(α, xf), α ∈ I (xf).

For the resolution of the redundancy at the final target
location, the geodesics between the given initial arm con-
figuration and the set of final arm configurations compatible
with the given target location are computed. As a result, a
one-parameter family of geodesics is obtained and the opti-
mal path in configuration space is chosen as the geodesic with
minimal length over all accessible final arm configurations.
The optimal geodesic leads in workspace to an optimal hand
path and an optimal final arm posture (Fig. 17). Figure 18
shows the results of the comparison between the predicted
and the measured final arm configurations. The model pre-
diction of the final arm postures provides a good fit for the
experimental data as indicated by the r2 values.

3 Discussion

The description of human arm behavior in terms of concise
mathematical models is an important step toward a more
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complete understanding of the human motor control sys-
tem. Optimization principles based on deterministic perfor-
mance indices have been proven to be useful tools in
formulating coarse models of the motor behavior. The com-
putation of the optimal solution is an essential part of any
optimization model, and can be challenging depending on
the complexity and order of the model. The representation
of movements in the motor system is another open ques-
tion. It is assumed that the observed motor patterns can be
decomposed into simpler units. However, it is still unclear
whether such motor primitives exist and how they can be
defined.

In this work, these problems were addressed as follows.
First, a robust, numerical method for the minimization of
nonlinear performance indices was presented and applied
to several problems in motor control theory. Second, a low
dimensional representation of discrete (point-to-point) and
rhythmic movements in terms of expansion coefficients of
suitable sets of basis functions was introduced. The presented
method can be used to explore the trajectories corresponding
to different performance indices in order to test alternative
hypotheses about movements. Results of simulation studies
demonstrate the utility of the approach for studying the kine-
matics and dynamics of human arm movements.

The optimal solutions of the minimization of nonlinear
cost functions were computed by a hybrid method consisting
of a parameter optimization method combined with a mul-
tiple shooting algorithm. A series expansion of the general-
ized coordinates in terms of Jacobi polynomials was selected
for the description of discrete (point-to-point) movements
due to their compatibility with the imposed boundary condi-
tions. Other complete sets of orthogonal polynomials, such
as Chebyshev, Laguerre or Hermite polynomials, do not sat-
isfy the boundary conditions. For rhythmic movements with
periodic boundary conditions, a Fourier series expansion was
used.

The two distinct expansion schemes – one for rhythmic
and one for discrete movements – are mathematically a result
of the different boundary conditions imposed. It is interesting
to observe that the different settings at the boundaries cor-
respond to biological differences in brain activity as shown
in fMRI studies (Schaal et al. 2004). The movement initia-
tion and termination in discrete movements is associated with
an increase in cerebral brain activity compared to rhythmic
movements. It was claimed that this difference may indicate
that discrete movements invoke higher planning areas and
thus require cognitive control whereas rhythmic movements
are characterized by automatic control involving mainly pri-
mary motor circuits (Schaal et al. 2004).

It is important to note that an algorithm based exclusively
on a parameter optimization method did not lead to trajecto-
ries that satisfied the necessary condition with high accuracy.
This was related to the fact that higher derivatives of the
series converged slowly (if at all) to the exact solution. If the
objective is to determine the optimal solution for the position
and velocity only, the results of the parameter optimization
method may provide a sufficient approximation.

All presented examples resulted in solutions that satisfy
the necessary condition of optimality to high accuracy. The
analysis of the minimum commanded torque change model
has led to results similar to those obtained by Wada et al.
(2001), but did not require the tedious linearization of the
Euler–Lagrange equations. Similar results for the hand paths
were obtained for movements with and without the influence
of gravity, suggesting that the minimum commanded torque
change model is insensitive to the gravitational field.

The numerical analysis of movements involving the con-
tinuous tracing of an elliptical path while obeying a mini-
mum-jerk criteria reproduced the analytical results obtained
by Richardson and Flash (2002) in the asymptotic limit of
small eccentricity. Moreover, it could be shown that the
asymptotic results can be extended in good approximation
to large eccentricities. A two-third power law could not be
recovered for the tracing of a cloverleaf path using a min-
imum-jerk criteria which is in contrast to the findings of
Richardson and Flash (2002). A Fourier analysis of the opti-
mal solution showed that the periodic tracing of an elliptical
path can be represented by only one expansion coefficient,
whereas the tracing of a cloverleaf path required two coeffi-
cients. These movements can thus be generated by activat-
ing different frequency modes. It remains an open question
whether the motor system makes use of such a representation
and whether these expansion coefficients can be related to a
set of motor primitives.

An important application of the feature space to the anal-
ysis of human movements consisted of the definition of a
distance measure that allowed the quantitative comparison
between the predictions (optimal solutions) of different mod-
els or the comparison between predictions and experimental
data. For example, it is still debated whether the minimum-
jerk model or the minimum commanded torque change model
provides a better description for planar point-to-point move-
ments. A comparison based on the suggested quantitative
distant measure might finally resolve this ambiguity.

The presented algorithm has several limitations. The fact
that the optimal solution satisfies the necessary conditions
of optimality with high accuracy does not guarantee that the
solution minimizes the performance index. It can be shown
that the optimal solution is a minimum if the second varia-
tion of the cost functional is strictly positive (Gelfand and
Fomin 1963). However, the numerical analysis of the second
variation is not a trivial task (Galicki 1995) and was thus not
considered in this work. Equality constraints were only incor-
porated in the case where they could be removed by rewriting
the cost function in terms of a new set of coordinates without
constraints. Inequality constraints appear naturally in model-
ing limb systems due to the limitations of the biomechanical
joint range, but were not considered here.

The trajectory planning and control of artificial systems,
such as humanoid robots, may benefit from the analysis of the
movements in the low dimensional feature space of expansion
coefficients. The successful recognition and classification
of movements depend significantly on the selected feature
space.
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Fig. 18 Comparison of the model predictions for the elevation, azimuth and torsion angle (θmod, ηmod, ζmod) with the experimental data

(θexp, ηexp, ζexp). Each row represents a different subject. A good fit is obtained as indicated by the r2-values
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In future work, the proposed approach will be applied to
the study of human behavior by comparing real human move-
ment data with the outcome of a theoretical model, defined
by different performance indices.
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Appendix A

Polynomial expansion

The coefficients of the polynomial appearing in the expan-
sion schemes (5) for m = 1, 2, 3 are given by 2n, 4n and 6n
parameters, respectively, as follows:

m = 1:

pi0 = qi0

pi1 = qif − qi0

}

, (116)

m = 2 :

pi0 = qi0

pi1 = q̇i0T
pi2 = 3(qif − qi0) − T (2q̇i0 + q̇if)

pi3 = −2(qif − qi0) + T (q̇i0 + q̇if)











, (117)

m = 3:

pi0 = qi0

pi1 = q̇i0T

pi2 = 1
2
q̈i0T 2

pi3 = 1
2

[

20(qif − qi0) − 4(2q̇if + 3q̇i0)T

+(q̈if − 3q̈i0)T
2
]

pi4 = 1
2

[

− 30(qif − qi0) + 2(7q̇if + 8q̇i0)T

−(2q̈if − 3q̈i0)T
2
]

pi5 = 1
2

[

12(qif − qi0) − 6(q̇if + q̇i0)T

+(q̈if − q̈i0)T
2
]























































, (118)

where i = 1, . . . , n and qi0, qif , q̇i0, q̇if , q̈i0, q̈if denote the
generalized coordinates, velocities and accelerations at the
beginning and the end of the movement, respectively, and T

is the total movement time.

Appendix B

Manipulator inertia matrix

The components of the manipulator inertia matrix M =
(Mi j ) in the coordinates θ = (θ, η, ζ, φ)T are given by

M11 = I1 + 2A cos φ + I3 cos2 ζ + I3 cos2 φ sin2 ζ

+I4 sin2 φ sin2 ζ

M12 = −
[

(A + (I3 − I4) cos φ) cos θ

+(−I3 + I4) cos ζ sin φ sin θ
]

sin ζ sin φ

M13 = −(A + (I3 − I4) cos φ) sin φ sin ζ

M14 = (I3 + A cos φ) cos ζ

M22 =
I1

2
−

I1

2
cos(2θ) + (I2 + I3 sin2 φ) cos2 θ

+I4 cos2 ζ sin2 φ sin2 θ

+(I4 cos2 θ + I3 cos2 ζ sin2 θ) cos2 φ

+A cos ζ sin φ sin(2θ)

+(A − A cos2 θ + A sin2 θ

+(I3 − I4) cos ζ sin φ sin(2θ)) cos φ

+I3 sin2 θ sin2 ζ

M23 = (I2 + I4 cos2 φ + I3 sin2 φ) cos θ

+(A + (I3 − I4) cos φ) cos ζ sin φ sin θ

M24 = (I3 + A cos φ) sin θ sin ζ

M33 = I2 + I4 cos2 φ + I3 sin2 φ

M34 = 0

M44 = I3

and Mi j = M j i . The constants I1, I2, I3, A are defined in
the text.
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