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Abstract—Compute requirements are increasing rapidly in
systems ranging from mobile devices to servers. These, often
massively parallel architectures, put increasing requirements on
memory bandwidth and latency. The memory system greatly
impacts both system performance and power, and it is key to
capture the complex behaviour of the DRAM controller when
evaluating CPU and GPU performance. By using full-system
simulation, the interactions between the system components is
captured. However, traditional DRAM controller models focus
on modelling interactions between the controller and the DRAM
rather than the interactions with the system. Moreover, the
DRAM interactions are modelled on a cycle-by-cycle basis,
leading to inflexibility and poor simulation performance.

In this work, we present a high-level memory controller
model, specifically designed for full-system exploration of future
system architectures. Our event-based model is tailored to match
a contemporary controller architecture, and captures the most
important DRAM timing constraints for current and emerging
DRAM interfaces, e.g. DDR3, LPDDR3 and WidelO. We show
how our controller leverages the open-source gemS simulation
framework, and compare it to a state-of-the-art DRAM controller
simulator. Our results show that our model is 7x faster on average,
while maintaining the fidelity of the simulation. To highlight the
capabilities of our model, we show that it can be used to evaluate
a multi-processor memory system.

I. INTRODUCTION

More complex algorithms, coupled with larger data sets,
lead to a sharp growth in computational requirements in
domains ranging from embedded systems to servers. To meet
the computational demands, increasingly parallel architectures
are being used, e.g. many-core CPUs and GPUs. The power
and performance of these emerging systems is tightly coupled
to the characteristics of the memory system [1]-[5]. Simu-
lation studies using overly simplistic memory models, e.g.
based on fixed latency or throughput, may mislead the design
space exploration and architectural trade-offs [6]-[8]. Thus,
having a representative memory-controller performance model
is crucial [9]. However, building an accurate DRAM controller
model is non-trivial, due to a wide range of timing-related
constraints and optimisation goals [10].

The behaviour of a contemporary DRAM controller is
heavily dependent on the interplay between the memory access
pattern, various DRAM timing parameters and the underlying
DRAM architecture [6], [7], [10]. The access pattern, in turn, is
determined by complex CPU and GPU architectures, running
elaborate software stacks, with feedback loops between the
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hardware and software [11]. Traces fail to capture these
inter-dependencies [8]. By using full-system simulation, the
complex interactions between the CPUs, GPUs, I/O devices,
and the DRAM controllers are captured [2]. For future system
exploration, the model must also offer enough flexibility to
capture emerging memory technologies, e.g. stacked WidelO
DRAM [1], [5], and non-conventional DRAM organisations
such as Hybrid Memory Cube (HMC) [12]. The simulation
performance is also critical as workloads routinely involve sim-
ulating millions, or even billions of cycles [13]. These issues
are only partially addressed by current cycle-based DRAM
models [9], [14], [15] that sacrifice speed and are tailored for
a narrow set of memory technologies, thus restricting their
applicability to future system architecture exploration.

As the major contribution of this work we present a
fast, accurate and modular DRAM controller model, readily
available as part of the open-source full-system simulator
gemS [16]. First, we show how focusing on the controller
rather than the memory allows us to build a high-performance
event-based model. We demonstrate how DRAM behaviour
is captured with high accuracy by only modelling the state
transitions of the banks and the busses, thus enabling a fast, yet
accurate model. Second, we compare the simulated behaviour
and performance with a state-of-the-art DRAM simulator. For
a large number of benchmarks, we show that our model
correlates well in terms of bandwidth and latency trends, and
does so with a much-improved simulation performance and
scalability. Lastly, we demonstrate how the proposed controller
model is used as a valuable tool to study the impact of various
future DRAMs on system performance.

The rest of this work is organised as follows. First we
discuss the rationale behind our model and its design in
Section II. Then, in Section III, we validate the behaviour of
the model and its impact on system performance. Next, we
exemplify how the model is used for system-level exploration
in Section IV. Related work is reviewed in Section V, and we
conclude and outline directions for future work in Section VI.

II. RATIONALE AND DESIGN

DRAMs have a complex architecture to allow increasing
bandwidths with a fairly constant internal clock speed. As
elaborated on in [10], and depicted in Figure 1, they are
organised in cell arrays, where rows (or pages) are read or
written through a series of data movements. The DRAM



provides parallelism through a number of banks that operate
concurrently. The banks all share the same data, address and
command bus (with the latter two being combined in mobile
DRAMs). In addition, a number of DRAM devices can be
connected to the same busses in ranks, offering additional
parallelism. The complex internal organisation of DRAMs
leads to a wide array of timing constraints governing the
DRAM behaviour.

To study DRAM’s impact on system power and perfor-
mance, we need a controller model that is representative with
respect to the controller architecture (Section II-A) and how the
controller balances the many timing constraints of the memory
(Section II-B) and the optimisation goals and constraints of
the transactions (Section II-C). The performance of the model
itself is also important as we need to evaluate billions of
cycles, and our event-based modelling technique gives us high
simulation performance with good accuracy (Section II-D). In
addition to the controller itself, the overall system performance
is affected by the transactions issued by the CPUs, GPUs and
I/O devices in the system (Section II-E), and how transac-
tions are distributed across the memory controllers and routed
through the interconnect (Section II-F).

Next we describe how our model solves the aforementioned
challenges, and how it captures the performance and power im-
pact (Section II-G) of the DRAM controller without modelling
the DRAM itself.

A. Controller architecture

Our model captures a generic modern DRAM controller
architecture, with split read and write queues, and a shared
response queue. We perform all buffering per controller in-
stance, rather than per rank or bank. Our choices reflect what
we believe is most representative for a contemporary DRAM
controller [17], [18]. The queue sizes are parameters of each
controller instance, as shown in Table 1.

To express the memory organisation, the controller model
has parameters determining the bus width, burst length, row-
buffer size, as well as the number of devices per rank,
ranks and banks. Address decoding into rank, bank, row and
column is done by each controller independently, based on
one of the address decoding schemes enumerated in Table I.
Channel interleaving, on the other hand, takes place outside
the controller in a separate crossbar (Section II-E). Thus, when
instantiating a multi-channel DRAM controller, as illustrated
in Figure 1, gem5 takes care of configuring the crossbars with
the appropriate interleaving granularity.

To enable modelling of mobile DRAMs like LPDDR3, our
model does not place any assumptions on the relation between
requests made by the CPU and I/O devices, and the burst length
(and thus burst size) of the DRAM. Thus, a cache line may
be chopped into a number of DRAM bursts, depending on the
interface width and the burst length of the DRAM. In contrast
to [9], these sub-cache-line accesses are properly merged and
dealt with by our controller, leaving the rest of the memory
system oblivious to the DRAM burst size. This functionality
removes the need to add complexity in other parts of the
memory system, and, as shown in Section IV, also allows the
controller to benefit from sequential sub-accesses.

TABLE 1. DRAM CONTROLLER PARAMETERS

[ Parameter [ Description (unit)

Write buffer size Number of write queue entries

Read buffer size Number of read queue entries

Write high/low threshold | High/low watermark for write queue
Scheduling policy FCFS or FR-FCFS

Address mapping RoRaBaCoCh, RoRaBaChCo, RoCoRaBaCh!
Page policy Open or closed (adaptive or not)

Frontend latency Static frontend latency (ns)

Backend latency Static backend latency (ns)

Data bus with per DRAM device (bits)
Burst length DRAM burst length (beats)
Row-buffer size Device row buffer size (bytes)

Devices per rank -
Ranks per channel -
Banks per rank -

Device bus width

Channels Channel count for the address decoding
tRCD Row to column delay (ns)

tRAS Row access strobe (ns)

tRP Row precharge time (ns)

tCL Column access latency (ns)
tBURST Burst duration (ns)

tRFC Refresh cycle time (ns)

tREFI Refresh command interval (ns)
tWTR Write to read switching time (ns)
tRRD Row to row activation delay (ns)
XAW Activation window (ns)

Activation limit Number of activates in window

Our controller model responds to writes as soon as the
request is placed in the write queue. The early write response
gives a lower latency than waiting for the DRAM to complete
the transaction. Incoming reads snoop in, and are potentially
satisfied by the write queue. Furthermore, write transactions
smaller than the DRAM burst size are merged if possible.
These techniques are also used in [17]-[19]. The early re-
sponse enables us to buffer (and delay) writes without incurring
any performance impact on the system level.

Note that we do not model any separate command queues,
in contrast to DRAMSIm2 [9]. Thus, both our page policy
and arbitration scheme (Section II-C) operate directly on the
read and write request queue. Capturing the split request and
command queues adds unnecessary cost and detail to the
model, and, as we shall see in Section III, does not affect the
system-level performance. Next we look at how we capture
the DRAM state and timings in more detail.

B. DRAM timings

Similar to an actual controller implementation (and existing
models [9]), our model tracks the state of all the banks,
potentially distributed over a number of ranks. A simplified
DRAM state machine [20] is thus implicitly encoded in the
controller code. As we shall see, this information is needed
to make scheduling decisions, and to adhere to the DRAM
timings. We use the same timing information to determine the
state transitions of our event-based model (Section II-D).

A contemporary DRAM is governed by a few dozens
of timing constraints, and exhaustively modelling them is
merely adding unnecessary detail, and does not contribute
(significantly) to the system-level performance. Instead, we
choose to model the most important timings, summarised in
Table I. As discussed in [6], [7], these include the time required
to open and close a row (tRCD, tRAS and tRP), and the

IChannel (Ch), Rank (Ra), Bank (Ba), Row (Ro), Column (Co)



1/O ctrl
CPU | _cache —
cluster
— mem ctrl
xbar —cache —
— mem ctrl
xbar
__cache — — memctrl
GPU —
— mem ctrl

Fig. 1.

time spent accessing the specific column (tCL and tBURST,
where the former captures tWR and the latter implicitly models
tCCD). Choi et al [6] do not model inter-bank interference, but
highlight its importance. Indeed, we also model tTAW/tFAW
(as a more generic tXAW) and tRRD. Moreover, we model
the refresh timings, tREFI and tRFC, as they cause big latency
spikes [9], and also capture the timing impact of read write
switching (tWTR). Notable timings that are not currently
modelled are the rank-to-rank switching constraints, and the
differences caused by the introduction of bank groups.

Most DRAM timings do not scale with the interface fre-
quency increase, and this makes the bus busy time a dominant
factor in the DRAM performance [6]. We therefore model the
data bus contention by tracking its availability in the controller.
We do not model the command and address bus, as they are
typically designed to not constitute a bottleneck (offering fea-
tures like posted commands with additive latency [20]). Thus,
the difference between LPDDR and DDR is only distinguished
by their timings and DRAM organisations. Similarly, we do
not explicitly distinguish single and double data rate (SDR and
DDR) memories, and instead rely on the tBURST parameter
to reflect the duration of the data transfer. We choose not to
support Rambus-like memories with shared data and address
bus as no emerging DRAMs are organised that way.

In addition to the DRAM timings, the model also has two
timing parameters to capture the static frontend and backend
latency. The frontend latency captures the pipeline stages of
the controller, allowing us to reflect the controller design
complexity. The backend latency, in turn, captures the PHY
and IO, thus allowing us to study the impact of different
interconnection options, e.g. Package-on-Package, Dual Inline
Memory Module and Through Silicon Vias [1]. Next, we
elaborate on how the state and timing information is used by
the scheduler.

C. Scheduling

The memory controller schedules requests based on the
Quality-of-Service requirements of the requesting CPUs and
I/0O devices (if any), and the aforementioned timing constraints,
with the goal to maximise the efficiency, and thus the available
bandwidth of the DRAM [3], [11]. The scheduling is also
closely coupled to the page policy. Next, we discuss the page
policy, read/write switching policy and scheduling in turn.

The controller model offers two basic row buffer policies
(and two variations of each), similar to [9], [19]. First, the
closed page policy, opens the row for every column access and
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Architecture overview depicting a system with a multi-channel DRAM controller.

then closes it by means of an auto precharge. The improved
adaptive closed page keeps the row open if there are already
queued accesses to the open row, as suggested in [19]. Second,
the open page policy, leaves a row open until a bank conflict
occurs, in which case the previous row is closed and the new
row opened. The open adaptive page policy does not wait until
the conflict occurs, but instead closes the page in advance if
there are accesses to a different row in the same bank (bank
conflict), and no queued accesses to the open row [9], [19]. The
schemes provided serve as a starting point, and more elaborate
schemes can easily be added thanks to the model extensibility.

The first level of scheduling that takes place in our model is
the choice between reads and writes. We choose to implement
a write drain mode similar to what is proposed in [19] to
minimise the cost of read/write switching (tWTR). A high
water mark is used to determine when to forcefully switch
to writes, and a minimum number of writes are allowed to be
issued before switching back (unless the write queue is empty).
If no reads are present, a low water mark determines when to
start draining writes. The low water mark allows us to control
how much write data is kept on chip.

The second level of scheduling involves selecting a request
either from the read or write queue, depending on the current
direction and page policy. We implement two basic (and very
popular) scheduling algorithms, FCFS and FR-FCFS [21].
The former is merely included for comparison, whereas the
latter provides a good baseline scheduler, achieving good
performance, even compared to very advanced schedulers [3],
[11], [22]. The FR-FCFS scheduler picks the access that is first
ready, which in the case of an open-page policy prioritises row
hits, and if no row-hits are available (or when using a closed-
page policy) targets the first available bank.

Our goal is not to provide an exhaustive set of schedulers,
but rather a representative baseline, and a framework in which
more elaborate schedulers [3], [11], [22], can be evaluated.

D. Modelling technique

Cycle-based models are easily portable as they do not
depend on any particular event semantics or simulation frame-
work. However, as they need to be updated on a cycle-by-
cycle basis they reduce simulation speed, sometimes by several
orders of magnitude [13]. An event-based model, as proposed
in this work, only executes when something changes, and thus
skips ahead to the next event, as illustrated in Figure 2. Event-
based models are, by necessity, tied to particular simulation
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Fig. 2. Timing diagram illustrating the technique employed by our model.

frameworks, in this case gem5. However, our proposed tech-
nique is not unique to gemS5, and can be applied to any discrete-
event simulator with minimal effort. The speed benefit of an
event-based model is impressive, as we shall see in Section III.
The key challenge is to identify and capture only the relevant
events.

Our model captures a (carefully chosen) subset of the
DRAM bank state changes, along with the data bus occupancy,
and the return of DRAM read data. The events are illustrated
on a time line in Figure 2, along with the arcs that embody
the timing constraints of the memory. First, we track when
a bank is ready to execute a new command (possibly with
auto precharge). Second, we record when a bank is able to
precharge, i.e. when tRAS has been satisfied. Third, we track
the earliest possible time a bank is allowed to be activated.
With this information, we can approximate the DRAM state
machine and respect the timings presented in Section II-B.
In addition to the bank state, the model tracks the busy
periods of the data bus, and knows when the bus becomes
available. The model also tracks when a refresh is due. With
the aforementioned information, we determine the earliest time
the next scheduling decision must be made to not introduce
any idle cycles on the data bus. Subsequently, we determine
what latency an access incurs. Upon scheduling an access,
we determine the time when response data is returned, and
update the bank and data bus availability. As illustrated in the
figure, most simulated cycles do not cause any state change and
can be skipped. In addition, compared to cycle-based memory-
centric models, our event-based controller-centric model is
easily tuned to model new DRAM architectures, simply by
changing model parameters. No code changes are necessary.

Next, we describe how our event-based controller is
integrated in full-system simulator to form a complete
architectural-exploration framework.

E. Integration

Our DRAM controller model is available as part of the
open-source simulator gem5 [16], that already has a wide
range of models for CPUs and devices. As such, gem5 boots
unmodified Linux or Android, and runs full-system workloads
for a variety of ISAs. In addition, gem5 has a range of models
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for on-chip interconnects, caches (Section II-F) and storage
devices, similar to the environment described in [2].

Configuration of the memory controller and structural
assembly of the system configurations is done using gemS5’s
Python framework. Thus, the controller architecture parameters
in Table I are specified like for any other gem5 component.
Through the integration with gem5 we also re-use the elaborate
statistics framework, allowing us to initialise, reset and output
a large selection of performance-related numbers at arbitrary
points in time. Together with existing performance visualisa-
tion tools [23], this enable us to study CPU, cache and DRAM
behaviour on a common time line, combined with information
about the OS and the running threads.

F. Interconnect

Our controller model uses the normal (transaction-level)
gemS5 port interface, with appropriate flow control to model
blocking and back pressure. Thus, it can be connected to
arbitrary locations in the memory system, e.g. to a crossbar
or directly to a Last Level Cache (LLC). Moreover, the cache
model in gem5 allows arbitrary configurations with a complex
cache hierarchy, also offering a range of prefetchers. Together
with a generic on-chip crossbar, this enables an extensive
memory-system design space to be explored, much like [2].

We choose to use independent controllers for each channel,
similar to actual controller implementations [17], and use
gem5’s crossbar model to do the address interleaving, as
illustrated in Figure 1. The interleaving is done on arbitrary
granularity, but by default uses either cache line or DRAM
page granularity, depending on the address mapping scheme.
The modularity and configurability makes it possible to model
multi-channel UMA and NUMA configurations, or emerging
heterogeneous memory systems. For example, a tiered memory
is easily created by instantiating a WideIO and LPDDR3
DRAM, and a model of HMC [12] is only a matter of com-
bining the crossbar model with 16 instances of our controller
model (with the appropriate DRAM timing). Thanks to our
fast event-based model, even a 16-channel memory system has
limited impact of simulation performance.



G. Power modelling

To evaluate DRAM power, we use Micron’s power
model [24], in combination with simulation statistics (Sec-
tion II-E). Our model collects information about the page hit
rate, data bus utilisation for reads and writes, and tracks the
time when all banks are precharged. This information is then
used to calculate the DRAM power off-line. In combination
with the Micron model, these statistics give us the power
distribution for the specific DRAM.

Currently, we do not model the low-power states and
associated timing constraints. Moreover, our model, similar to
DRAMSim?2 [9], does not model the DLL/PLL lock and wake
up times which can be in the order of 500 cycles [1]. We
plan to extend our framework with more detailed (and more
generic) DRAM power models as power budget is an important
design point for future memory architectures. Moreover, with
the ongoing efforts to add power-modelling capabilities to
gem5 [25], we hope to eventually add the ability to capture
how the refresh rate varies with temperature.

III. MODEL VALIDATION

To validate our memory controller model, we compare
its performance to DRAMSim2 [9] for a wide range of
traffic scenarios. For a fair comparison we configure our
model to match the timing parameters and scheduling policies
of DRAMSim2. We use the same underlying DDR3 device
(2 GBit, 8x8, 666 MHz) in a single rank and single channel
organisation. As discussed in Section II-A, the read write
queues in our architecture are distributed unlike the unified
structure in DRAMSim?2. To be fair on the queuing latencies,
we match the queue sizes depending on the experiment, i.e.
depending on the ratio between reads and writes. We set the
frontend and backend latencies (see Table II-A) to zero to
match DRAMSim?2.

Our validation does not seek to ensure that our model
captures every aspect of DRAM timing, or that it is exactly
equivalent in behaviour to DRAMSim2. Rather, we seek
to ensure that the system-level performance impacts of our
(faster) model match those of the more detailed (and much
slower) DRAMSim2 model. As already mentioned, the two
controller models have intentional differences in architecture
and policies, and differences in the results are therefore to be
expected.

Next we describe how the controller is exercised, and
explore the resulting timing behaviour and simulation speed.

A. Synthetic traffic generator

The gem5 simulation framework offers a number of traffic
generators, either based on statistical behaviours or traces.
Each synthetic traffic generator has a configurable read/write
mix. In this study we use three types of generators: linear,
random and DRAM aware. The linear generator produces
bursts with a sequential address stream, while the random
generator uniformly picks a random address for each burst,
similar to [26]. The DRAM-aware traffic generator is created
as part of this work, and is designed specifically for DRAM
controller sensitivity studies.

The DRAM-aware traffic generator knows about the in-
ternal organisation of the DRAM, that is page size, number
of banks and address mapping. As a result, it is possible to
tailor the row-buffer hit rate to expose specific behaviours and
timing constraints, e.g. tRCD, tCL, tRP, as well as targeting
a particular number of banks enables to study bank utilisation
and tRRD/tFAW timing implications. Additionally, by varying
the read to write ratio, we see the impact of tWTR timing and
various read/write switching schemes.

B. Test case formulation

To test the controller model, we generate different test
cases by varying the access pattern, page policy, and read/write
mix. For the (non-adaptive) open-page policy, we use the
RoRaBaCoCh address mapping, as described in Table 1. This
mapping maximises page hits for sequential addresses. Corre-
spondingly, for the (non-adaptive) closed-page policy, we use
RoCoRaBaCh that maximises bank parallelism.

Next we show validation experiments done based on these
test cases and the differences between DRAMSim2 and our
memory controller.

C. Validation results

We compare bandwidth, latency, power and model perfor-
mance for a range of test cases, as these are the key system-
level metrics.

1) Bandwidth: We use our DRAM-aware traffic generator
to sweep the sequential stride size from burst size to page
size in steps of the burst size. The increment in stride size
should increase the bus utilisation for the open-page policy, as
it enables more row buffer hits. However, for the closed-page
policy we expect a decrease in bus utilisation, as a longer stride
inevitably leads to additional bank conflicts (accessing a row
we just closed). In addition to the stride size, we also sweep
the number of banks targeted by the generator. As the number
of banks increase, the available parallelism should result in
increased bus utilisation. We also expect the bank parallelism
to be limited by tRRD and tFAW for smaller sequential strides.

We expect the results to be similar for the two models,
and as shown in Figures 3 through 5, they are to a first order
the same. Looking in detail at the results, Figure 3 shows that
with an open-page policy and only read traffic, both models
achieve around 90% utilisation. The slope of the curve is close
to identical for the two models, highlighting the impact of
page hit rate and bank parallelism on DRAM utilisation. As
expected, we observe similar trends for write traffic (left out
for space reasons).

Figure 4 shows a mixed traffic pattern with 1:1 read to write
ratio. Once again the difference in utilisation is very minor.
For this case, the result is not so obvious, as DRAMSim?2
intersperses the reads and writes to the same page, where as
our model buffers the writes and drains them at a later point.
The result highlights that the benefit from an increased row
hit rate is removed by increased read/write switching.

Next we study the impact of closed-page policy on these
traffic patterns. Figure 5 shows a write-only traffic pattern.
The utilisation in our model decreases with increasing stride
size, in agreement with DRAMSim?2. This trend highlights
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how unsuitable the non-adaptive closed-page policy is for the
sequential traffic pattern. Bank-level parallelism improves the
utilisation for both the models. It is interesting to note that
DRAMSim?2 has around 15% lower utilisation than our model
as the number of banks utilised increases. This low utilisation
is attributed to the way we handle writes in our model. We wait
for the number of outstanding writes to hit a threshold before
servicing them, which gives us a wider window to reschedule
the writes to leverage parallelism in the memory system.

Note that for read-only and mixed traffic patterns using a
closed-page policy, bandwidth utilisation correlates well with
DRAMSim2. We omit these results due to space constraints.

2) Latency: We use linear and random traffic generators to
study the variation in latency that the two models offer. Note
that latency plots are only shown for read latencies as in both
the controller models, write requests are immediately acknowl-
edged and are later handled internally by the controller. The
latency is measured from the traffic generator, and includes the
on-chip memory system and any queuing and serialisation.

Figure 6 shows the latency distribution for read-only linear
traffic using an open-page policy. As expected, the latency
distributions correlate well between the two models. We again

omit results for the closed-page policy, which also correlate
well. Figure 7 shows an interesting distribution for mixed
read/write linear traffic pattern using a closed-page policy. The
distribution for our model is bimodal in contrast to that of
DRAMSim2. We observe this bimodal behaviour because of
the difference in read/write scheduling policy we employ. In
our model we reorder reads and writes with respect to each
other. Writes are buffered and are only issued once the write
queue fills beyond its high-water mark, after which a minimum
number of writes are drained. This policy leads to the bimodal
read latency distribution seen for our model; some reads are
delayed while the write queue drains while others are serviced
immediately. As DRAMSim2 does not reorder writes in this
way, it does not exhibit this bimodal latency distribution.

Overall, for all synthetic workloads we observed the ex-
pected behaviour from our model. The distribution in latencies
averages out and the difference in average latency we see is
within 1% of that of DRAMSim?2.

3) Power: For all the tests we expect power numbers
from both the models to correlate well as both of them use
the Micron power model. Indeed, we observe a maximum
difference of 8% and an average of 3% while comparing the
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Fig. 7. Access latency distribution for linear read/write traffic with an closed-page policy for (a) our model and (b) DRAMSim2.

power numbers for all test cases. These minor differences
are because of the differences in the controller architecture
and scheduling policies as discussed in Section II-A and II-C
respectively.

D. Model performance

State-of-the art DRAM controller models are based on
cycle-by-cycle modelling of the DRAM. A key insight to our
work is that by selecting only critical timing parameters, we
build an accurate DRAM controller model, while eliminating
most of the unnecessary state transitions. This technique results

in a faster and simpler DRAM controller model. For the
synthetic traffic studies, we see as much as 10x improvement
in simulation speed with an average improvement of 7x across
all synthetic workloads.

It is important to note that, even though our model is
significantly faster than DRAMSim?2, similar simulation speed
ups cannot be expected for full-system simulations, as most of
the time is spent simulating complex out-of-order cores. How-
ever, for a faster CPU simulator, e.g. a trace-based simulator,
the difference is much bigger [13]. Similarly, for a modern
16-channel DRAM sub-system like HMC, we are seeing an



TABLE II. CPU CONFIGURATION
2 GHz 00O
Core 6-wide Dispatch, 8-wide Commit
40-entry ROB
_, 32 kByte, 2-way, 64 Byte
I-Cache 1 ns cycle hit latency, 2 MSHRs
64 kByte, 2-way, 64 Byte
D-Cache 2 s hit latency, 6 MSHRs
L2-Cache 512 kByte, 8-way, 64 Byte

12 ns hit latency, 16 MSHRs
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Fig. 8. Comparison between our model and DRAMSim2.

order of magnitude difference even with the detailed CPU core
model. This clearly demonstrates the value of our approach,
making it essential for future system exploration.

E. Summary

Our experimental results validate that the proposed model
gives the expected behaviour under different traffic patterns
and controller policies. The comparison with DRAMSim?2
showcases the similarities and differences in the controller
organisation. The first order correlation with DRAMSim2
validates our hypothesis of pruning the unnecessary details and
concentrating on the important events in the controller model.
We also show that our controller model works together with
the Micron power model and can be further extended to plug
in other models like DRAMPower [27].

IV. CASE STUDIES

In this section, we first validate the fidelity of our model
against DRAMSim?2 using full-system simulations of work-
loads from the PARSEC benchmark suite [28]. Next, we
demonstrate the flexibility of the model by evaluating a range
of memory systems for a server workload. The CPU configu-
ration used for the simulations is shown in Table II.

A. Comparison with DRAMSim2

Similar to Section III, we use a DDR3 memory configura-
tion that is matched between the two models, and both employ
a closed-page policy. Figure 8 shows the comparison for a
range of different metrics, including high-level metrics like
simulation time, IPC and also DRAM-centric low-level metrics
like average L2 miss latency and DRAM bus utilisation. Each
bar in the graph shows the ratio of values observed with
DRAMSim2 and our model for each of the four metrics. A
ratio of 1 indicates that the two models correlate perfectly,
while any deviations show that the models vary.

TABLE III. CONTROLLER CONFIGURATION

Write Buffer size 20
Read Buffer size 20
Write Buffer High/Low threshold 70%/50%
Scheduling Policy FR-FCFS
Address Mapping RoRaBaChCo
Page Policy Open
TABLE IV. DRAM TIMING PARAMETERS
Timing Parameters DDR3 | LPDDR3 WidelO
Device Bus Width (bits) 64 32 128
Burst Length 8 8 4
Row Buffer Size (kByte) 1 1 4
Devices per Rank 8 1 1
Ranks per Channel 1 1 1
Banks per Rank 8 8 4
tRCD (ns) 13.75 15 18
tCL (ns) 13.75 15 18
tRP (ns) 13.75 15 18
tRAS (ns) 35 42 42
tBURST (ns) 5 5 20
tRFC (ns) 300 130 210
tREFI (us) 7.8 3.9 3.9
tWTR (ns) 7.5 7.5 15
tRRD (ns) 6.25 10 10
tXAW (ns) 40 50 50
Activation Limit 4 4 2

As evident from the figure, both the models correlate
well with each other over the different metrics. However, the
results show that our model reduces the overall simulation
time by as much as 20% and by 13% on average. The few
differences seen in Figure 8 are due to the different design
choices made by the two models (write handling, split read-
write queues, etc) explained in Section II. Overall, both the
models correlate almost perfectly, highlighting the fact that
our model significantly reduces simulation time without any
loss in the fidelity of the results.

B. Future System Exploration

In this section, we present a case study of how our model
can be used to analyse different memory technologies. One
of the key contributions of our model is that by moving to
a controller-centric approach, it allows for comparing dif-
ferent memory technologies without making changes to the
model. As a case study, we compare three different memory
technologies: DDR3 (1x 64-bit channel), LPDDR3 (2x 32-
bit channels) and WidelO (4x 128-bit channels), all offering
12.8 Gbyte/s for “canneal” running on 16 cores (each core is
configured in the same way as mentioned in Table II) with
a shared LLC (8 MByte). This configuration is tailored to
showcase the differences of the memory configurations. The
architectural parameters of the controller is in Table III, and
the various DRAM timing parameters for each of the memories
are presented in Table IV.

Figure 9(a) shows the execution times observed when
employing the different memory technologies. The difference
in execution time is entirely due the varying access latencies
of the three technologies. Figure 9(b) shows the breakdown of
DRAM access latency for each. WidelO’s high access latency
is due to its relatively high bank access timing parameters
(tRCD, tRP, etc from Table IV). Another interesting observa-
tion from the figure is the high queuing latency seen with the
LPDDR3. This is a result of its low device bus width, which
requires every DRAM request to be broken into two bursts.
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Fig. 9. Memory sensitivity and latency breakdown for a 16-core run of canneal.

Thus each request ends up seeing the queuing latency of two
accesses. This also implies that the second burst always ends
up causing a row buffer hit, reducing the average bank latency.

These case studies show that our model compares
favourably to DRAMSim2 in modelling memory system be-
haviour while reducing simulation time and being flexible
enough to model and reason about different memory technolo-
gies.

V. RELATED WORK

DRAMSs have large impact on system power and perfor-
mance [2], [4]. It is critical to study the entire memory system,
including caches, DRAM and storage [2]. Studying various
memory technologies and their differences is an important as-
pect in designing future system architectures [4], [1]. Previous
works [6], [8], [9] show that overly simplistic memory models
give misleading performance results, calling for more detailed
models than fixed-latency or queuing models. We address
all the aforementioned points with our accurate and flexible
DRAM model, available as part of a full-system simulator.

A vast body of research improves the system performance
and/or power through advanced DRAM scheduling [3], [11],
[22]. These works span a diverse set of use-cases and system
architectures, ranging from heterogeneous System on Chips to
Chip Multi-Processors. Furthermore, some studies take DRAM
optimisation one step further, and change either the physical
organisation [4], [29] or the interface [30]. Our extensible and
fast model serves as a starting point for future studies targeting
critical system design points.

A number of DRAM controller models, summarised in
Table V, span a large design space ranging from cycle-based
models [9], [14], [15] to purely analytical models [6], [7].
DRAMSiIm2 [9] is the most prominent related work and we
use it for our comparison studies. As already discussed, it is
a cycle-based model that captures the timing constraints of a
DDR2/DDR3 DRAM. DrSim [14] is similar in many aspects.
However, DRAMSim?2 stands out by offering the possibility to
verify the timing constraints against a Verilog DRAM model.
These cycle-based models inevitably add unnecessary detail
that is not needed to accurately capture the impact on system-
level performance. This trade-off negatively affects flexibility
and simulation speed.

A vast body of research improves the system performance
and/or power through advanced DRAM scheduling [3], [11],
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TABLE V. OVERVIEW OF DRAM CONTROLLER MODELS
Model Speed Full-system Power |License
[9] Cycle-based|gem5, MARSS |Micron|BSD
[14] Cycle-based|gem5 - BSD
[15] Cycle-based |- Micron| CRAPL
[6] Analytical |gem5 - -

7] Analytical |- - -

[5] Event based |- - -

This work|Event based|gem5 Micron|BSD

[22]. These works span a diverse set of use-cases and system
architectures, ranging from heterogeneous System on Chips to
Chip Multi-Processors. Furthermore, many works take DRAM
optimisation one step further, and change either the physical
organisation [4], [29] or the interface [30]. Our extensible and
fast model serves as a starting point for future studies pursuing
similar techniques.

The other extreme end is represented by the analytical
DRAM models in [6], [7]. These models completely abstract
from the controller architecture, and instead rely on timing
equations and address distributions to determine the (approx-
imate) performance impact for a given traffic stream. As we
have seen in Section II-B, these works provide good insight
into the relative importance of the DRAM timing constraints,
something we use as part of our modelling technique to create
a fast and accurate controller model. However, they fail to
capture the importance of complex decisions made in the
DRAM controller and their corresponding trade-offs.

The transaction-level model in [5] aims at a more abstract
model of the DRAM and the controller, adopting the concept
of an event-based model, similar to this work. However,
the events are based on actual and complex DRAM state
transitions which model low level details as compared to
the simplified but critical states transitions modelled in our
controller as explained in Section II. As a consequence, their
work is significantly slower than what is possible with a more
high-level abstract model. Furthermore, the model in [5] is
limited by the backend of the controller being tightly coupled
to the details of DRAM, not allowing for any exploration of
the actual memory controller or system architecture.

Our DRAM controller is an abstraction model between the
cycle-based detailed models and purely analytical models. In
our controller architecure we have split read and write queues
similar to [17], [18]. Our architecture is similar to the one



proposed in [19], but different from the shared transaction
queue in [9]. Our model combines an architectural model of
the high-level controller blocks with carefully chosen events
and delay calculations. As we have shown, this abstraction
enables an accurate, fast model, well suited for system-level
performance exploration. The integration with gemS5 brings
many benefits, including a full-system environment for mem-
ory system evaluation. However, the concepts are not tied to
gem3, and can easily be implemented in any arbitrary discrete-
event simulation framework, such as SystemC.

VI. CONCLUSIONS AND FUTURE WORK

DRAM is playing an increasingly important role in de-
termining system power and performance, whether used in
a mobile phone or a server. Therefore, it is key to consider
the impact of DRAM as part of future system architecture
exploration. Overly simplistic memory models may mislead
the design space exploration, whereas overly detailed models
lead to inflexibility and poor simulation performance.

We show that it possible to create a fast, accurate and
flexible model by capturing the key architectural building
blocks of the controller, along with a subset of the state
transitions of the DRAM. We compare our model to a state-of-
the-art DRAM controller simulator for a selection of synthetic
use-cases and a suit of full-system workloads. Our results show
that the proposed model delivers the same system-level effects,
while being 7x faster on average. We also demonstrate the
flexibility of our model by evaluating three different memory
systems for a multi-processor workload.

As part of our future work, we plan to add more detailed
power modelling, and look at the thermal effects on DRAM.
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