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Abstract: Elucidating how enzymes enhance the rates of the reactions that they catalyze is a major goal of
contemporary biochemistry, and it is an area in which computational and theoretical techniques can make a major
contribution. This article outlines some of the processes that need to be investigated if enzyme catalysis is to be
understood, reviews the current state-of-the-art in enzyme simulation work, and highlights challenges for the future.
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Introduction

Enzymes are remarkable catalysts1 that can provide, in those cases
where comparisons are possible, rate enhancements of many orders
of magnitude over the equivalent uncatalyzed reactions. Despite
having been the object of intense experimental and theoretical
scrutiny for over a century, Blow argued in a recent review article
that there is still no quantitative understanding of how enzymes
work. In particular, he blames the lack of progress upon the difficul-
ties of applying “rigorous quantum mechanical and thermodynamic
analyses” to the simulation of “active sites in huge molecules sur-
rounded by water.”2 Is this view justified and, if so, what is to be
done?

The aim of this article is to address these questions by review-
ing the current state of the enzyme simulation field. The outline
of the article is as follows. The next section recapitulates the basic
notions of enzyme catalysis, then the following section presents an
overview of techniques that are designed to simulate enzyme reac-
tions; the Recent Simulation Studies section examines examples of
recent simulation studies and the last section concludes.

Enzyme Catalysis

Macroscopic Equations

A fundamental feature of enzyme catalysis is that to effect the
reaction that it catalyzes the enzyme must bind the substrate. This is
enshrined in the Michaelis–Menten mechanism, which is the basic
model used to describe much of enzyme catalysis.1 It postulates the
following scheme:

E + S
KS� ES

kcat→ E + P (1)

where E denotes the enzyme and S and P are the substrate and
the product of the reaction, respectively. There are two steps in the

mechanism. First, there is a binding of the substrate to the enzyme
with an equilibrium constant of KS , which is defined as:

KS = [E][S]
[ES] (2)

and, second, there is the reaction of the substrate bound to the
enzyme with a rate constant of kcat. With this model, the initial
rate of formation of products v is kcat [ES], which can be rewritten
as:

v = kcat

KS
[E][S] (3)

= kcat[E]0[S]
KS + [S] (4)

using eq. (2) and defining the total enzyme concentration [E]0 as
[E] + [ES]. Equation (4) is appropriate for the simple scheme
outlined in eq. (1). An equation of the same form is often valid,
however, for more complex mechanisms but with a different de-
finition for the equilibrium constant KS . In the general case the
notation KM is used instead of KS , a convention that shall be ad-
hered to in the subsequent discussion.

It has been common to help interpret enzyme catalysis using
the framework of transition state theory (TST). TST assumes the
existence of a species, the transition state (TS), that is in thermo-
dynamic equilibrium with the reactant species and that decays at
a constant rate to products. The advantage of TST is that it intro-
duces the notion of an equilibrium, and so permits the stabilization
of the various species along the reaction pathway to be described
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with free energies. Thus, for the scheme of eq. (1), one obtains:

E + S
�Gbind→ ES

�G‡→ ES‡ → E + P (5)

where S‡ denotes the TS and the �Gs are the free-energy differ-
ences associated with the various steps of the reaction. The total
free-energy barrier is made up of two contributions—one due to
binding, and one due to the chemical step that occurs when the
substrate is bound to the enzyme.

In many cases, it is of interest to be able to compare the rate of
the enzyme reaction to the same reaction in solution. This can be
conveniently done with a simple cycle first introduced by Kurz,3

and which can be written in terms of free energies as:

E + S
�G

‡
non−→ E + S‡

�G=0 ↓ ↓ �Grel

E + S →
�Gbind

ES →
�G‡

ES‡
(6)

The rate of reaction in the enzyme will be faster than the noncat-
alyzed reaction if �Gbind +�G‡ is less than �Gnon. This implies
that �Grel is negative or that the TS S‡ is more stable when it is
bound to the enzyme than when it is in solution. Although the rate
of the enzyme reaction (≡ kcat/KM ) is maximized by having the
enzyme bind the TS as strongly as possible, this does not imply that
the enzyme must also bind the substrate strongly. Indeed, it can be
shown that it will in general be preferable if the substrate is bound
weakly (high KM ).1

Microscopic Mechanisms

A multitude of different mechanisms have been proposed to ex-
plain enzyme catalysis at a microscopic level, and while there may
be broad agreement over the general factors responsible there is
controversy over their relative importance. This diversity of views
is apparent from some recent reviews (refs. 4 – 13). The currently
favored theories will not be discussed separately here. Instead, the
list below considers the general events that occur during an enzyme
reaction, and some plausible explanations why they might lead to
rate-enhancing effects:

1. The enzyme must be catalytically ready. Simpler enzymes
will automatically be active, but for more complicated en-
zymes covalent modification, cofactor, or effector binding or
a conformational change may be required to attain the active
state.

2. The substrate or substrates and enzyme must approach each
other for binding. This will happen by diffusion, but the
probability of an encounter may be enhanced. One way of
doing this is by “channeling,” in which the free volume
available for the diffusion is reduced. Channeling can be
produced either structurally, as occurs in multisubunit com-
plexes, or virtually, in which case, for example, electrostatic
interactions are used to guide the substrate to the active site.

3. The substrate binds to the enzyme’s active site and, in the
process, the substrate is desolvated and water is forced out
of the active site. Binding has two principal effects. First,
it brings together the substrates, cofactors, and the catalytic

groups of the enzyme in an arrangement that is suitable for
reaction and, second, it provides an environment that is very
different from that in solution.
As emphasized by Page and Jencks,14, 15 the alignment of
the reacting groups in a specific orientation is entropically
unfavorable because it restricts the conformations available
to the substrate, but it means that the subsequent reaction
will be entropically more likely because the substrate will
have to explore fewer conformations to reach the TS. The
entropy loss on binding is compensated for by the enthalpy
of binding between the substrate and the enzyme and the
enthalpy and entropy coming from the liberation of water
from within the active site and around the substrate. This
entropy effect has been used to convincingly explain the rate
enhancements for certain reactions such as those observed
between uni- and bimolecular reactions in solution, but there
is less certainty about its role in enzyme reactions (see, e.g.,
ref. 16).
The active site can have very different dielectric properties
from those in solution. In general, proteins have dielectric
constants much lower than that of water, and so the further
the active site is buried within the protein the lower its dielec-
tric constant will become. This can significantly affect the
properties of the substrate, such as the pKas of its charged
groups. It should be noted that even though the active site
may have a low dielectric constant, it can still be highly po-
lar due to the presence of electric fields created by groups
within the protein.
Substrate binding may be accompanied by a conformational
change in the enzyme, which can significantly affect the sub-
strate’s environment. This conformational change requires
energy, but it may be necessary to exclude solvent from the
active site region or to bring groups that are catalytically ac-
tive or important for binding into contact with the substrate.

4. The reaction takes place to give products. The enzyme can
accelerate the reaction by stabilizing the TS for the reaction
more than that in solution (note that it is assumed that the
mechanisms are the same—it may be that the enzyme can
use an alternative mechanism, which is either less favorable
or simply not possible in solution). Stabilization is achieved
by the enzyme providing a “preorganized” environment that
is complementary to the TS or, in other words, the shape
and the interactions of the active site will be optimal for the
TS structure. It is probable that a variety of interactions aid
in stabilization of the TS, but Warshel has highlighted the
importance of electrostatic interactions.5, 10 A consequence
of preorganization is that the reorganization energy associ-
ated with the reaction in the enzyme is small. In contrast, in
solution, reorganization energies are often large because the
solvent must change its structure substantially to accommo-
date the TS structure. Preorganization is not free because it
stresses the enzyme structure, but this price is paid for by the
enzyme when it is synthesized and not during catalysis.17

Although the idea of TS stabilization is widely accepted,
some workers have argued that it is not the whole story.
Thus, for example, Bruice and Benkovic4 and Menger13

propose that formation of enzyme–substrate complexes in
which the substrate is in a conformation ready to react is crit-
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ical. These conformations, termed near-attack conformers
(NACs) by Bruice and coworkers, have the reacting groups
of both the substrate and enzyme in close contact and resem-
ble the TS structure. Experiments and calculations on series
of intramolecular reactions have shown that rates of reaction
are proportional to the probability of the reactant being in
a NAC. This data, together with the results of simulations
of several enzyme systems, has led to the suggestion that it
is the ability of enzymes to bind substrates in NACs that is
central to their catalytic ability.
Many other mechanisms have been put forward as playing
a role in catalysis. These include dynamical effects (although
the weight of evidence at the moment seems to indicate that
there is not a great diffference between enzyme and solu-
tion), quantum effects, such as tunneling, and low-barrier
hydrogen bonds (LBHBs). Some of these will be discussed
in more detail below.

The above scheme is by no means intended to be a comprehen-
sive survey of all the factors that are important for enzyme catalysis
but will serve to focus the discussion of later sections.

Simulation Techniques

It should be clear from the previous section that an understand-
ing of enzyme reactions requires the investigation of a variety of
processes occurring on a variety of scales of time and of distance. In
such circumstances, no single simulation technique will be appro-
priate for studying all the events occurring during the catalysis, and
it will be necessary to employ a range of theoretical approaches.
Most commonly-used protein-modeling tools can be fruitfully ap-
plied to looking at some aspect or other of the enzyme catalytic
cycle but, due to space limitations, the discussion in this section
will concentrate on recent developments in techniques specifically
designed for simulating reactions in complex systems.

Quantum Mechanical Methods

The chemical, bond-breaking and -forming steps lie at the heart
of the study of all enzyme reactions, whether these steps are rate-
limiting or not. To explain these events, it is crucial to have quantum
mechanical (QM) methods that can accurately predict the structures
and the energetics of reacting groups in large molecular systems.
Undoubtedly, the methods that currently best meet these require-
ments are those based upon density functional theory (DFT), which
have revolutionized quantum chemistry in the last decade or so.18

In contrast to methods that attempt to solve the Schrödinger equa-
tion and for which the wave function is the basic variable, DFT
methods express the electronic energy of the system as a functional
of the electron density. In principle, the advantages of this approach
are obvious because the wave function is a function of 3n space
variables, n being the number of electrons in the system, whereas
the electron density is a function of only three space variables.19 In
practice, the picture is a little more complicated as the quality of
the solutions of wave function-based methods can be improved in
a systematic way,20 whereas the accuracy of DFT methods lies in
a quantity called the exchange-correlation functional, whose ana-
lytic form is unknown.

DFT techniques can be implemented efficiently and are com-
parable in cost to molecular orbital (MO) Hartree–Fock (HF)
methods. They do, however, provide energetic and structural results
for ground and excited state systems that are often as precise as
much more expensive correlated MO-based methods. But there are
limitations to their accuracy, notably for applications to hydrogen-
bonded and weakly bound systems and for the determination of
the barrier heights for some reactions. These problems are likely
to become less marked though as better exchange-correlation func-
tionals are developed.18

Whereas DFT methods may be the choice for calculations on
large systems, wave function-based methods are still desirable, if
only to provide benchmark results against which the accuracy of
the DFT techniques can be compared. Thus, for example, a typi-
cal approach would be to obtain structures for the reactant, saddle
point, and product species in a reaction using a DFT method and
then perform single point calculations to get the relative energies
of the same structures at a higher level of theory. This is valid be-
cause DFT methods often predict geometries that are very close
to those obtained with the more accurate methods. Such a strategy
was adopted in a recent study of the reaction of cyclopentadiene
with atomic oxygen in its 3P state by Grossman et al.21 What was
notable in this article, though, was the use of the quantum Monte
Carlo (QMC) method, which has the ability to produce results of
very high accuracy at a much lower cost than methods of equivalent
precision such as the configuration-interaction and coupled-cluster
algorithms.22 Unfortunately, the use of this promising technique
has been limited due to the absence of any widely available general-
purpose QMC programs.

Although ab initio quantum chemistry methods are to be pre-
ferred when studying reactions, they are costly to apply, and there
are instances in which quicker, albeit cruder, QM methods are use-
ful. Thus, for example, it is often important to be able to carry out
calculations in the initial stages of an investigation rapidly so that
a range of different possible pathways can be examined. Equally,
extensive molecular dynamics (MD) or Monte Carlo (MC) calcu-
lations on systems of any reasonable size are currently impractical
with ab initio techniques and so the determination of free energies,
for example, requires other approaches.

The most popular alternatives to ab initio quantum chemical
methods are the semiempirical methods. There is definitely still
a need for such techniques although the most commonly used ones,
such as the AM1 and MNDO methods of Dewar et al.23 – 25 and the
PM3 parametrization of the AM1 Hamiltonian of Stewart26 are be-
coming dated. Even so, for many problems, these methods have a
precision comparable to or better than ab initio DFT or HF calcula-
tions performed with small basis sets (up to double-ζ ) despite being
substantially less expensive.27 As yet, there are no generally avail-
able replacements for the MNDO-like methods, which are based
upon the MO HF theory, but Thiel and coworkers have published
refinements to their formalism and preliminary parametrizations for
some elements.28, 29

There are, of course, other ways of formulating semiempirical
methods. A recently introduced approach that has been claimed to
give improvements over the Dewar methods is the self-consistent
charge tight-binding (SCCTB) method of Elstner, Porezag, Frauen-
heim, and coworkers.30 – 32 In this method, the energy of the
system, E, can be written as the sum of two terms. The first, E0, is
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the typical tight-binding energy expression:

E0 =
∑

i

ni〈ψi |Ĥ |ψi〉 + Erep (7)

where Ĥ is the tight-binding Hamiltonian for the system, ψi is the
ith orbital with occupation number ni , and Erep is the repulsion
energy between atomic cores. The second term, E1, is:

E1 = 1

2

∑

αβ

γαβqαqβ (8)

where qα is the partial charge on atom α and γαβ is a matrix ele-
ment for the interaction between two charges. The orbitals for the
system are expanded in terms of atom-centered basis functions and
the optimum orbitals are obtained by minimizing the total energy
expression with respect to the orbital expansion coefficients. As the
atomic charges are derived from a population analysis of the sys-
tem’s wave function, they depend upon the orbitals and so solution
of the equations must be performed in a self-consistent fashion.

An interesting aspect of tight-binding methods is that they can
be shown to arise from DFT by expanding the Kohn–Sham equa-
tions in terms of fluctuations in the atomic density.33 In addition
to providing a firm theoretical foundation, such a link gives ex-
pressions for many of the parameters appearing in the model in
terms of quantities that can be determined from ab initio DFT cal-
culations. This, in principle, greatly simplifies the parametrization
procedure. Finally, it is worth remarking that the tight-binding ap-
proaches, widely used in solid-state physics, are equivalent to the
Hückel methods of quantum chemistry and that the self-consistent
determination of charges has elements in common with the iterative
Hückel methods developed by Hoffmann and other workers.34, 35

As well as the general-purpose semiempirical methods dis-
cussed above, other more specific QM methods have been used to
represent the potential energy surfaces of reacting systems in sim-
ulation studies. These include the well-known empirical valence
bond (EVB) method of Warshel and coworkers,36 more recent re-
finements of this technique that use MO methods to calculate the
wave functions of the different valence bond resonant states37 and
approaches that reparametrize existing general-purpose semiem-
pirical methods to give results that are accurate for a particular
reacting system.38, 39 All these methods have their place and can
give useful results when carefully employed. Unfortunately, this of-
ten requires considerable experience, which has limited the routine
application of these methods to problems of arbitrary complexity,
although future work may change this.40

The cost of calculations with the general-purpose ab initio and
semiempirical methods mentioned above scale formally as the cube
or a higher power of the size of the system, i.e. ≥O(N3) where
N is the number of atoms in the system. Depending upon the
type of algorithm being employed, the two most common bot-
tlenecks in electronic structure calculations are the evaluation of
the interelectronic interaction terms and the diagonalization of
the Hamiltonian matrix to find the electronic orbitals. Thus, the
evaluation of the two-electron integrals in a Hartree–Fock calcu-
lation that uses Gaussian or Slater basis functions scales formally
as O(N4) [although it is relatively straightforward to reduce this

scaling to between O(N2) and O(N3)], whereas diagonalization
scales as O(N3).

It is evident that such scalings will limit substantially the types
of system to which electronic structure calculations can be applied
and so much effort has gone into developing algorithms whose
cost scales linearly with the size of the system. Much progress
has been made and linear-scaling approaches now exist for most
of the common ab initio and semiempirical DFT and HF meth-
ods. A nice review of this field has been given by Goedecker.41

Specific applications to protein systems have mostly been lim-
ited to semiempirical methods and include those by Yang, York,
and coworkers,42 by Merz and coworkers,43 and by Gready and
coworkers.44 Although linear-scaling algorithms permit extended
systems to be studied with QM methods, they have the disad-
vantage at present that they only become competitive with the
traditional methods for relatively large numbers of atoms. Thus,
calculations on such systems are expensive which means, for ex-
ample, that linear-scaling QM calculations of proteins can be used
for energy evaluations and restricted geometry optimizations but
not for prolonged molecular dynamics simulations.

Hybrid Potential Methods

In the not-so-distant future algorithmic enhancements and im-
proved computer hardware will allow systems of thousands of
atoms to be studied using purely QM techniques. Currently, how-
ever, this is not practicable and so other methods have had to be
devised to treat reactions in condensed-phase systems. The most
successful class of approaches are those based upon hybrid po-
tentials, in which potentials of differing accuracy are used to treat
different regions of the system. Thus, for example, chemical re-
actions are typically studied by treating the reacting atoms and
those immediately surrounding them with a QM potential, and us-
ing a simpler method for the atoms of the remainder of the system.
When partitioning the system in this way, the assumption is made
that the process of interest is localized in the QM region—this will
be reasonable for many reactions but it will not be valid in some
instances, such as, for example, when the reaction is coupled to an
electron-transfer event.

Many types of hybrid potential have been implemented (for re-
views, see refs. 45 – 47). They differ in the number of regions into
which the system is divided, the types of potential used to treat the
different regions and the ways in which the interfaces between the
potentials are handled. Probably the most common hybrid poten-
tials are those for the analysis of solvent effects in which only the
solute is treated explicitly and the solvent is modeled as a contin-
uum with a dielectric constant of the appropriate value.48, 49 These
potentials have also been used to study reactions in enzymes (see,
e.g., ref. 50) but such models will, in general, be inappropriate due
to the heterogeneity of the active site structure, and it will be nec-
essary to include more detailed information about the environment.
This is accomplished using hybrid QM/MM potentials in which the
atoms of the protein are included explicitly in the calculation and
whose potential is modeled with a molecular mechanics (MM) or
an empirical energy function.

QM/MM potentials have been employed to treat a wide range
of enzyme reactions (for a partial list, see ref. 46), since their intro-
duction by Warshel and Levitt in the 1970s.51 The great majority
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of studies have been done with EVB or MNDO-type semiempirical
QM methods to describe the reacting atoms, a standard nonpolar-
izable protein force field to represent the rest of the protein and an
interface in which there are nonbonding electrostatic and Lennard-
Jones interactions between the atoms of the two regions. The way
of dealing with the case where there are covalent bonds between the
QM and MM regions has depended upon the semiempirical method
being used. For EVB potentials, the bonds are treated with standard
MM terms because most EVB parametrizations have represented
the energy of each valence bond resonant structure in an MM-like
manner. For the MNDO semiempirical methods, it has been usual
to employ the link-atom approximation in which additional atoms,
one per bond between the QM and MM atoms, are introduced into
the QM region to replace the MM atom of the broken bonds in the
quantum calculation. As each fictitious atom serves to sate a va-
lence of one of the QM atoms bonded covalently to an MM atom, it
is represented by a univalent atom, normally a hydrogen but some-
times a halogen.52

Whereas most hybrid potential applications to enzymes have
been performed up until now with semiempirical QM methods,
there are more and more applications with ab initio QM/MM
potentials. This is, in large part, due to the increasing availabil-
ity of programs that implement hybrid potentials and is a trend
that will continue as commercial products, from such companies
as Gaussian53 and Schrödinger,54 push these techniques into the
mainstream. The use of ab initio QM methods in QM/MM poten-
tials places more demands on the precision of the coupling between
the atoms of the QM and MM regions and, because of this, most of
the recent innovative developmental work on QM/MM potentials
has concerned them. This is in contrast to the case of semiempirical
QM/MM potentials for which the basic formalism of the coupling
and its accuracy is probably satisfactory.

Most of the work on coupling has concentrated on how to
describe covalent bonds between QM and MM atoms. As men-
tioned above, the link atom scheme has been the most popular
with semiempirical QM/MM potentials, although other algorithms
have been proposed. These include methods based upon hybrid
orbitals51, 55, 56 and those that use pseudoatoms.57 Although these
methods are more elegant in that they dispense with the fictitious
link atoms in the QM region, they have not yet been shown to be
consistently better than the newer link atom approximations,58, 59

which are more versatile and, in comparison to the hybrid or-
bital methods, simpler to implement. The situation is less clear
with ab initio QM/MM potentials for which link atom,60, 61 hybrid
orbital,62 – 65 and pseudoatom66 methods have all been developed.
The most impressive results have been obtained by Murphy et al.,65

with a frozen orbital method that has been parametrized for amino
acid groups and that reproduces conformational energetics to very
high accuracy (to within ∼5 kJ mol−1). The formalism of the
method though is rather complex, and it has to be reparametrized
every time there is a covalent bond between QM and MM atoms in
a different environment.

Understandably, most work on QM/MM methods has gone into
dealing with covalent bonds at the QM and MM interface. With
the increasing use of ab initio methods, however, it is likely that
other aspects of the coupling will need to be improved, and that
the treatment of the interactions between the QM and MM regions
with simple electrostatic and Lennard-Jones terms will no longer

be sufficient. Little work appears to have been done in this area,
although Murphy et al. have performed a thorough parametrization
of the QM atom Lennard-Jones parameters and experimented with
terms to correct hydrogen-bond interactions between QM and MM
atoms,65 and Day et al. have developed an effective fragment model
in which the charge distribution on the MM atoms (the “spectator
groups”) is treated with a multipole expansion and there are explicit
terms for charge penetration, exchange-repulsion, and polarization
effects.67

An alternative way of improving the boundary in hybrid poten-
tial methods is to employ several QM methods of varying precision
for the core region of the simulation system instead of a single
one. Thus, a high-level ab initio method could be used for the
reacting atoms, a lower level QM method for the atoms in their
immediate environment and an MM method for the remainder of
the system. In this way, the problem of treating the boundaries
between different regions is less acute as the differences between
the methods on either side of the boundary are smaller. Methods
of this type have been pioneered by Morokuma and coworkers
with their IMOMO/ONIOM series of models (see, e.g., refs. 68
and 69), but others have also developed similar techniques, in-
cluding Gogonea et al., who have introduced a combined ab initio
DFT/semiempirical QM algorithm,70 and Hong et al., who describe
a DFT method in which the electronic density of the environment
is either frozen or constrained.71

To finish this section it is perhaps worth restating the advantage
that QM/MM methods have over pure QM methods for treating
large molecular systems. This point was made vividly in the recent
work of Titmuss et al., who used both linear-scaling semiempirical
QM and hybrid QM/MM potentials to determine the reaction path-
ways for hydride transfer in dihydrofolate reductase (DHFR) and
found that the hybrid potential calculations were about 500 times
quicker.44

Miscellaneous Developments

As stated earlier, a variety of simulation approaches will be ap-
propriate for looking at enzyme reactions. The previous sections
discussed in detail the most crucial aspect of any study—how to
represent accurately the potential energy surface for the reacting
atoms—but in this section developments in other areas that are
likely to benefit enzyme simulation work will be briefly considered.

Although QM potentials are of primary concern for reactions,
work on MM potentials is important for improving the description
of the environment in hybrid potentials as well as the quality of
normal force-field simulation studies. Apart from the push to better
parametrize existing force fields, the most significant change hap-
pening in this area at the moment is the gradual introduction of
general-purpose potentials that are polarizable. Whereas the rep-
resentation of a system’s charge distribution by fixed charges on
the atoms captures the essential features of its electrostatic interac-
tions, the inclusion of polarization is necessary for a more detailed
treatment.

The use of polarization terms in MM potentials has a long his-
tory (see, e.g., ref. 72), and can be done in a number of different
ways. Much recent work, however, has gone into the elegant charge
equilibration or fluctuating charge schemes that were first used in
conjunction with MM potentials by Rappé and Goddard.73 These
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methods, whose formalisms are derivable from density functional
theory,74, 75 no longer treat the charge distributions of the atoms as
fixed, but allow them to change in response to their environment.
There are a number of different varieties of charge equilibration
algorithms, which differ principally in the way that the changing
charge distributions are modeled. The simplest schemes, like that of
Rappé and Goddard,73 use charges centered on the atoms, but other
representations in terms of dipoles76 or arbitrary basis sets77 are
also possible. In addition to the development of the models them-
selves, it has been shown how these schemes may be incorporated
straightforwardly into hybrid potentials.78, 79

There is, of course, much more to a simulation than the potential
because the potential must be used appropriately if meaningful re-
sults are to be obtained. In general, the whole gamut of simulation
methodologies can be formulated for use with any given poten-
tial, but the principal limiting factor dictating which method can
be exploited with which potential is the time required for the eval-
uation of the energy (or related quantities such as the forces on the
atoms) for a single configuration of the system. Thus, ab initio QM
or QM/MM potentials can be combined effectively with methods
that search the potential energy surface locally, such as geom-
etry minimization or saddle-point location algorithms, whereas
semiempirical QM or QM/MM and MM potentials can be em-
ployed with methods that sample the system’s phase space more
comprehensively, such as molecular dynamics or procedures that
determine free energies.

It is unnecessary to review the range of simulation methodolo-
gies here as most can be adapted, with little change, to studying
enzyme systems. There is one aspect that needs highlighting though
and that concerns simulations with ab initio hybrid potentials in
which there is a large disparity in cost between the QM and MM
portions of the calculation. In these cases, it pays to find algorithms
that minimize the number of QM calculations that are required.
Several such schemes have been developed, including geometry op-
timization methods,65, 80 in which extensive minimizations in the
MM subspace are coupled to less frequent geometry updates of the
QM region, and methods for the calculation of free energies, in
which the sampling of the QM part of the potential energy surface
is enhanced by the use of approximate replacement potentials, of
either EVB-36, 81 or of fluctuating charge-type.82

To end this section, a new class of methods will be consid-
ered that are having a large impact in the investigation of reaction
processes, although they do not yet appear to have been ap-
plied to enzyme systems. Traditionally, calculations of the rate of
a condensed-phase reaction have employed a transition-state or
activated-dynamics approach (see, e.g., ref. 83), which typically
consists of three steps: (i) the definition of a reaction coordinate;
(ii) the evaluation of the activation free energy by calculation of
the potential of mean force (PMF) along the reaction coordinate;
(iii) the estimation of dynamical factors, such as the transmission
coefficient, that correct the transition-state rate expression. This
scheme, while fairly robust, relies upon being able to identify a re-
action coordinate. This is normally done either by selecting the
geometrical variables, which are thought to be important for the
description of the reaction, or by locating a minimum-energy path
between reactants and products on the potential energy surface
of the system using one of the standard techniques. For simple
reactions both approaches are probably satisfactory, but in com-

plex systems there are two problems. First, it can be difficult
to identify appropriate variables or to locate a pathway in the
high-dimensional space available to the system and, second, the
hypothesis of a single, dominant reaction coordinate may not be
a good one.

These problems are circumvented in recently introduced sta-
tistical algorithms that generate ensembles of transition paths
between stable states and dispense with the notion of a single,
well-defined reaction path entirely. The original method was due
to Pratt,84 but his ideas have been elaborated upon by Chandler
and coworkers,85 – 87 and by Woolf and coworkers.88 These groups
have formulated various recipes for determining the transition paths
between reactants and products and have shown how to use this
information to estimate the reaction rate. Chandler et al. have ap-
plied their methods to reactions of biomolecular relevance using
both ab initio QM and MM potentials, the former to a proton trans-
fer in a water cluster86 and the latter to the isomerization of the
alanine dipeptide in solution.87

Recent Simulation Studies

In this section, examples of enzyme simulation studies are dis-
cussed. The section starts with a general presentation followed by
the elaboration of two specific topics. Other recent reviews of vari-
ous aspects of the simulation of enzyme reactions may be found in
refs. 89 – 92.

General Studies

It is impractical to review here all the enzymes that have been inves-
tigated with simulation techniques and so only a couple of exam-
ples will be mentioned. However, to give readers a flavor of what
has been done, recent work (among much other) has been per-
formed on the reactions catalyzed by acetyl cholinesterase,93 aldose
reductase,94 carbonic anhydrase,95 – 97 catechol O-methyltransf-
erase,98 – 100 chorismate mutase,101, 102 citrate synthase,103 – 106 di-
hydroxyfolate reductase,107 – 109 enolase,110 formate dehydro-
genase,111 glyoxalase I,112, 113 haloalkane dehydrogenase,114 HhaI
methyltransferase,115 orotidine 5′-monophosphate decarboxylase
(ODCase),116, 117 protein tyrosine phosphatase,118, 119 the GTPase
reaction of p21 RAS,120 ribonuclease A,121 and trypsin.122, 123

Additional references, to pre-1999 work on enzymes using hy-
brid potentials, may be found in ref. 46. Other aspects of enzyme
function that have received attention include calculations to deter-
mine the dielectric properties of enzyme active sites,124 molecular
dynamics simulations to estimate the transmission coefficient cor-
rection factor to the transition state rate for a proton transfer in the
triosephosphate isomerase (TIM) reaction,125 simulations of the
diffusional encounter between enzymes and substrates,126 and cal-
culations on intra- and inter-molecular anhydride formation that act
as models for enzyme-catalyzed reactions.127 – 129

The studies mentioned above employed the whole range of the-
oretical methodologies from high-level ab initio QM calculations
on model systems to the determination of the free-energy profile
for the reaction in the enzyme using molecular dynamics simula-
tions. In many cases, several techniques have been applied to the
same enzyme so as to obtain different insights into the behavior of
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Figure 1. The decarboxylation of orotidine 5′-monophosphate to form
a carbanion and carbon dioxide. “R” stands for a ribose-phosphate
moiety, and the 4-position of the orotate ring is at the top.

the reaction. A nice example of this concerns the enzyme ODCase
that catalyzes the decarboxylation of orotidine 5′-monophosphate
to uridine 5′-monophosphate (see Fig. 1). It is currently the most
catalytically proficient enzyme known with a �Grel of about
−130 kJ mol−1 (see earlier).130 In an early study of this reac-
tion, before X-ray crystallographic structures of the enzyme were
available, Lee and Houk employed ab initio QM calculations of
model systems to postulate a mechanism in which decarboxyla-
tion occurred simultaneously with protonation of the orotate ring
in the 4-position by a weak acid in the protein to produce a carbene
intermediate.50 Such a mechanism was shown to be consistent with
the observed rate acceleration produced by ODCase as long as the
enzyme active site was assumed to have a low dielectric constant.

Since then, four crystal structures of different ODCases com-
plexed with substrate and substrate analogs have appeared that have
not supported this mechanism. Instead, the active site has been
shown to contain a novel Lys–Asp–Lys–Asp charge network, with
one of the aspartates juxtaposed against the carboxylate group of
the orotate ring. This has led to the suggestion that the driving
force for the reaction is due to destabilization of the substrate in
the enzyme–substrate complex because the electrostatic repulsion
between the negatively charged aspartate and carboxylate will be
relieved in the transition state. The energy required to destabilize
the reacting groups is paid for by the favorable interactions be-
tween the ribose and phosphate groups of the substrate and the
enzyme.131 This scheme has been supported by simulations with
a semiempirical QM/MM hybrid potential that determined the free-
energy profiles for the enzyme and solution-phase reactions and
the free energy of transfer of the substrate between enzyme and
solution.117.

Warshel and coworkers have also carried out simulations on
this reaction using their EVB methodology.116 Like the previous
workers, they agree that electrostatic effects are responsible for
the catalysis but they argue against ground-state destabilization be-
cause they estimate that the interactions between the ribose and
phosphate of the substrate and the enzyme that pay for the destabi-
lization are too small, and that such a large destabilization energy
would in any case induce a change in the protonation state of the
charged groups at the active center. In contrast, they propose that
the charged groups in the active site are preorganized so as to pref-
erentially stabilize the charge distribution of the transition state
structure.

Another enzyme reaction that has been subjected to a range of
different theoretical techniques is that of citrate synthase, which
catalyzes the condensation of oxaloacetate and an acetyl group
attached to acetyl-coenzyme A. One of the principal mechanistic
uncertainties in this reaction has been the identity of the interme-

Figure 2. The initial hydrogen abstraction step of the citrate synthase
reaction giving either an enolate (left) or an enol (right) intermediate.
Co-A stands for coenzyme A, and the amino acid numbering corre-
sponds to that of the pig enzyme.105

diate after the abstraction of the proton from the terminal methyl
group of acetyl-coenzyme A by the side chain of an aspartate
residue in the enzyme (see Fig. 2). It had been argued that the
enolate-imidazole form would be unstable, and that an alternative
intermediate would be preferred. This has been postulated to be
an enol-imidazolate pair or a form intermediate between enol and
enolate that involves stabilization by short, strong hydrogen bonds
(or LBHBs).

Traditional hydrogen bonds with nitrogen and oxygen donors
and acceptors have distances between heavy atoms of the order
of 2.8 Å and energies of approximately 20 kJ mol−1. LBHBs
are significantly shorter and stronger, with distances often around
2.5 Å and energies of up to 80 kJ mol−1. The main difference
between the two types of hydrogen bond is that LBHBs have
a high covalent character, whereas the interactions in traditional
hydrogen bonds are primarily electrostatic. As the hydrogen-bond
donor–acceptor distance shortens, the barrier to proton transfer
decreases and the hydrogen becomes more diffusely distributed be-
tween the two. Short hydrogen bonds have been observed in small
molecule, enzyme–inhibitor and enzyme–substrate analog crystal
structures,8 and have been characterized in ab initio QM calcu-
lations of hydrogen-bonded systems.132 – 134 LBHBs have been
postulated to play an important role in enzyme catalysis because
formation of a LBHB in a TS would provide stabilization and a re-
duced barrier to proton transfer. Examples of enzyme mechanisms
that have been proposed to be LBHB-assisted include those of the
serine proteases, of TIM, and of citrate synthase.8 These ideas are
not universally accepted, however. Thus, Warshel and collaborators
think that LBHBs are likely to be anticatalytic because their more
diffuse charge distribution will result in a smaller electrostatic sta-
bilization of a TS structure by an enzyme.135, 136
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In early work on the citrate synthase reaction, Mulholland
and coworkers tested various mechanistic hypotheses employing
semiempirical QM/MM potentials in conjunction with geometry
optimization and reaction-path location techniques.103, 104 They
found that the initial hydrogen abstraction step was indeed effected
by an aspartate, and that the enolate intermediate was more stable
than the alternative enol form. Due to doubts about the accuracy
of the semiempirical methods, they have more recently performed
calculations with ab initio QM/MM potentials and obtained equiv-
alent results. They see no evidence of involvement of LBHBs.105

Donini et al. have reached similar conclusions in their simu-
lations of citrate synthase but by a different route.106 Rather than
using QM/MM potentials to examine the reaction directly in the
enzyme, Kollman and coworkers have adopted a slightly simpler
strategy that they name the quantum-mechanical free-energy (QM-
FE) approach.137 This involves three steps: (1) the characterization
of the reaction in a model system in the gas phase with high-
level ab initio calculations; (2) the use of this data to parametrize
a MM model for the reaction in the enzyme; (3) standard mole-
cular dynamics and free-energy perturbation simulations with the
MM model to determine the free-energy profiles for the reaction or
the free-energy differences between various reaction intermediates.
The QM-FE method has the advantage that molecular dynamics
and free-energy simulations are much less expensive than with
QM/MM potentials, but the disadvantage that the reaction mech-
anism of the model system is assumed not to be significantly
perturbed in the enzyme environment.

Metalloproteins

A significant number of enzymes contain metals that participate
passively or actively in the catalysis. A passive participation is
due to electrostatic effects in which, for example, the metal cation
serves to align a negatively charged substrate in the active site or
to stabilize a negative charge that forms along the reaction path-
way. A more active participation is involved when the redox state
of the metal changes during the course of the reaction or when its
coordination is altered.

If the metal’s influence is essentially electrostatic, then it can
be modeled in a reasonable way using either MM or semiempirical
QM potentials. There is a caveat, though, which is that the groups
coordinating the metal can be highly polarized when the charge
on the metal is large, and these effects are often either neglected
or poorly reproduced by the commonly used MM and semiem-
pirical QM methods. With this reservation, a number of stud-
ies of metalloproteins have been performed using semiempirical
QM/MM potentials, including those of the enzymes acetohydroxy-
isomeroreductase138 and D-xylose isomerase139 (magnesium), of
carbonic anhydrase96 (zinc) and of the metal-binding protein,
metallothionein140 (cadmium and zinc).

When the metal participates directly in the reaction of the en-
zyme as is the case, for example, with the hydrogenases (iron
and nickel) or enzymes that use coenzyme B12 (cobalt), there is
no alternative but to use an ab initio QM method if a reasonable
description of the reaction is to be obtained. The most practical
methods, for looking at reactions involving transition metals are
the DFT methods which have a cost comparable to that of HF cal-
culations but much higher precision. Quite a few DFT studies of

metalloenzymes have been performed, but all of them, with only
a couple of exceptions, have neglected the protein environment and
employed truncated models of the protein’s active site. Notable ex-
amples of such work are the investigation of the soluble methane
monooxygenase (MMO) by Dunietz et al.141 and of a number of
metalloproteins, including cytochrome c oxidase (iron and copper)
and the water oxidizing complex in photosystem II (manganese), by
Blomberg, Siegbahn, and coworkers.142, 143 The article of Dunietz
et al. on MMO represents the state-of-the-art in ab initio studies
of models of enzyme active sites. Their approach differed substan-
tially from previous ones because they included a large number of
atoms in the model (∼100), not only the two irons of the active cen-
ter and their immediate coordinating atoms but also all the atoms
of the coordinating groups. In addition, they used large basis sets
(triple-ζ with polarization functions) to determine the energetics of
the structures they had previously geometry optimized with smaller
basis sets.

There have been very few DFT studies of metalloenzymes that
include the environment. The first was performed by Amara et al.
on the nickel-iron hydrogenase from Desulfovibrio gigas.144 The
aim of this work was not the determination of the reaction mech-
anism per se, but the elucidation of the nature of the redox states
taking part in the catalytic cycle. The protein was modeled with
a DFT QM/MM hybrid potential with approximately 30 atoms of
the active site in the quantum region and 15,000 atoms, protein,
and water, in the MM region. The results of the simulations under-
lined the importance of representing the environment properly as
the structures of the nickel-iron group in the different, redox states
were distinctly different depending upon whether the protein was
present or not. A more recent study by Himo et al. of galactose
oxidase (GO) also employed a hybrid DFT QM/MM potential,145

but, unlike the hydrogenase work, only a very limited portion of
the protein was included in the MM region. GO converts alcohols
to aldehydes with a simultaneous reduction of molecular oxygen to
hydrogen peroxide, and its mechanism involves a copper atom and
tyrosine radical intermediates.

Quantum Effects

Up until now, in this review, a lot has been spoken of QM meth-
ods but these have always referred to methods that calculate the
potential energy surface for the atoms in the system. The use that
has been made of this potential energy surface—for example, the
finding of reaction paths and the calculation of free energies—has
involved algorithms that are based upon classical mechanics. There
is increasing evidence though that quantum dynamical effects, and,
in particular, tunneling, play a role in determining the rates of en-
zyme reactions.146 – 148

For a reaction to occur within a classical picture, the system
must pass over the potential barrier that separates reactants from
products. In the quantum world, this is no longer the case because
there is a certain probability that the system will be able to tunnel
through the barrier and allow the reaction to occur. Tunneling is
more pronounced the lighter the particle, and so is important in re-
actions involving electron transfer, but it will also take place when
there are transfers of hydrogen and, to a lesser extent, its isotopes
deuterium and tritium. There are several different descriptions of
tunneling reactions. In the simplest version, the barrier through
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which the tunneling takes place is static, and the quantum contri-
bution to the reaction will be independent of temperature. In more
complicated theories, there is a temperature dependence because
the dynamics of the protein environment serves to align the reac-
tant and product wells in a configuration that is suitable for the
hydrogen transfer. Both these types of tunneling appear to have
been observed in practice.148

Simulations of enzyme reactions that try and account for quan-
tum effects have been relatively rare, primarily because the algo-
rithms available for performing quantum dynamical calculations
are immature compared to their classical counterparts. Probably the
earliest workers in this area were Warshel, Hwang, and cowork-
ers who estimated quantum corrections to the rates of hydrogen
and deuterium transfer reactions in enzymes and solution given by
classical TST.149 – 151 They did this by assuming that the classical
and quantum TST rate expressions were of the same form except
that the classical activation free energy, �G‡

cl, was replaced by its

quantum equivalent,�G‡
qu, thus giving a quantum correction factor

of exp[−(�G‡
qu − �G

‡
cl)/RT ]. The classical free energies were

calculated in the normal way, whereas the quantum free energies
were determined using a path-integral simulation algorithm.152, 153

Path-integral simulations are straightforward to implement and to
perform (see, e.g., ref. 59 for details), but they are computationally
expensive and so further applications of this technique to enzyme
reactions have been limited, although a study of a hydrogen trans-
fer in the reaction catalyzed by the flu virus neuraminidase has also
been published.154

A number of techniques, other than path-integral methods,
have been used to investigate quantum dynamical effects in en-
zyme reactions. Thus, in two recent articles, Alhambra et al.
employed semiempirical QM/MM potentials in conjunction with
semiclassical variational TST to calculate the rates and the kinetic
isotope effects (KIEs) for the proton transfer in the yeast enolase
reaction155 and the hydride transfer in liver alcohol dehydroge-
nase (LADH).156 The hydride transfer in LADH has also been
studied by Hammes–Schiffer and coworkers,157, 158 but, in contrast
to Alhambra et al., they solved the time-independent Schrödinger
equation to obtain wave functions for the transferring hydrogen
along various paths between the reactant and product states. Both
groups of workers found that tunneling played a significant contri-
bution in the transfer, and needed to be included if the experimental
secondary KIEs were to be reproduced. Bala et al. have also looked
at a proton transfer in an enzyme reaction, this time in phospholi-
pase A2, but they were able to observe the quantum dynamics of
the transfer directly because they employed an algorithm that cou-
pled the solution of the time-dependent Schrödinger equation for
the quantum particle with a classical molecular dynamics simula-
tion of the remaining atoms.159

Summary

So, is Blow correct?2 Well, in a strict sense, yes. There are few (if
any) enzymes for which a fully quantitative understanding obtained
from theory is available (and upon which all the workers in the field
would agree!). The reason, as Blow so rightly states, is due to the
difficulty of accurately modeling the interactions and the dynamics
that determine reaction processes in systems that are as large as

enzymes. Having said this though, there has been a huge amount of
high quality theoretical work that has led to a real understanding of
certain aspects of certain enzyme reactions.

The situation is only likely to get better, as there has been
substantial progress in the last few years. It is now possible to in-
vestigate with DFT QM methods reactions in systems of between
100 to 200 atoms and, although not consistently capable of pro-
viding chemical accuracy, they will be adequate in many instances.
Likewise, robust implementations of ab initio QM/MM potentials
are appearing that extend the applicability of the QM methods to
larger systems, and improvements in simulation algorithms mean
that transition paths and thermodynamic quantities can be reliably
determined for reactions in complex systems. All in all, the out-
look is bright—new algorithms combined with increased computer
power mean that precise simulations of realistic models of enzyme
reactions are likely very soon. This is fortunate, and indeed nec-
essary, if “computational enzymology” is to contribute fully to the
interpretation of the function of the large number of enzyme struc-
tures to be generated by the structural genomics initiatives160 and
in the use of this information for the rational design of drugs161 and
new enzyme functions.162
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