
CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

Simulating Events of Unknown Probabilities via

Reverse Time Martingales

Krzysztof  Latuszyński
University of Warwick

Ioannis Kosmidis
University of Warwick

Omiros Papaspiliopoulos
Universitat Pompeu Fabra

Gareth O. Roberts
University of Warwick

June 25, 2009

Abstract

Assume that one aims to simulate an event of unknown probability
s ∈ (0, 1) which is uniquely determined, however only its approximations
can be obtained using a finite computational effort. Such settings are often
encountered in statistical simulations. We consider two specific examples.
First, the exact simulation of non-linear diffusions ([3]). Second, the cele-
brated Bernoulli factory problem ([10], [16], [13], [12], [9], and also [1] and
[8]) of generating an f(p)−coin given a sequence X1, X2, ... of independent
tosses of a p−coin (with known f and unknown p). We describe a general
framework and provide algorithms where this kind of problems can be
fitted and solved. The algorithms are straightforward to implement and
thus allow for effective simulation of desired events of probability s. In the
case of diffusions, we obtain the algorithm of [3] as a specific instance of
the generic framework developed here. In the case of the Bernoulli factory,
our work offers a statistical understanding of the Nacu-Peres algorithm
for f(p) = min{2p, 1 − 2ε} (which is central to the general question, c.f.
[13]) and allows for its immediate implementation that avoids algorithmic
difficulties of the original version. In the general case we link our results
to existence and construction of unbiased estimators. In particular we
show how to construct unbiased estimators given sequences of under- and
overestimating reverse time super- and submartingales.

1 Introduction

Assume that one aims to simulate an event of unknown probability s ∈ (0, 1)
which is uniquely determined, however only its approximations can be obtained
using a finite computational effort. Typical examples include consistent estima-
tion of s or a series expansion for s, we discuss it in the sequel. Such settings
are often encountered in statistical simulations (see e.g. [7], [6], [5], [3] [10],
[13]). A celebrated example of this kind is the Bernoulli factory problem which
motivated our work. It can be stated as follows. Let p ∈ P ⊆ [0, 1] be unknown
and let f : P → [0, 1]. How to generate Y, a single coin toss of an s = f(p)−coin,
given a sequence X1, X2, ... of independent tosses of a p−coin? For the histori-
cal context of this question and a range of theoretical results see [16], [10], [13],

1



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

[12] and [9]. In particular [10] provide necessary and sufficient conditions for
f, under which an algorithm generating an f(p)−coin exists. Nacu and Peres
in [13] suggest a constructive algorithm for simulating f(p) = min{2p, 1 − 2ε}
which is central to solving the problem for general f and allows for generat-
ing an f(p)−coin for a large class of functions (e.g. real analytic, see [13] and
Section 3 for details). The algorithm is based on polynomial envelopes of f.
To run the algorithm one has to construct sets of {0, 1} strings of appropriate
cardinality based on coefficients of the polynomial envelopes. Unfortunately
its naive implementation requires dealing with sets of exponential size (we en-
countered e.g. 2226

) and thus is not very practical. Hence the authors provide
a simple approximate algorithm for generating min{2p, 1}−coins. An ongoing
research in Markov chain Monte Carlo and rejection sampling indicates that the
Bernoulli factory problem is not only of theoretical interest (c.f. also [1], [8] and
[2] Chapter 16). However using approximate algorithms in these applications
perturbs simulations in a way difficult to quantify.

In the present article we develop a framework for simulating events of un-
known probabilities (Section 2). Our approach is based on random sequences,
say Ln and Un under- and overestimating s that are monotone in expectations
(i.e. E Ln ↗ s and E Un ↘ s) and are reverse time super- and submartingales
respectively. From Ln and Un we construct L̃n and Ũn that are monotone al-
most surely and have the same expectations (c.f. Theorem 2.5, Algorithm 4).
Given L̃n and Ũn we sample events of probability s using a single U(0, 1) ran-
dom variable. This result generalizes over classical constructions for simulation
of events of unknown probabilities using deterministic sequences ([7]). We link
these results to existence and construction of unbiased estimators. In particular
one can use the algorithms of Section 2 to obtain unbiased sequential estimators
of a parameter of interest that is not necessarily in [0, 1].

We illustrate our results with examples. First, in Section 3, we offer a
statistical understanding of the Nacu-Peres algorithm that uses upper and lower
polynomial envelopes for f to simulate an f(p)−coin (e.g. for f(p) = min{2p, 1−
2ε}). We identify coefficients of the lower and upper polynomial envelopes as
random variables of desired properties and implement the algorithm using a
single U(0, 1) auxiliary random variable. We do not need to identify subsets
of {0, 1} strings and thus avoid algorithmic difficulties of the original version.
Second, in Section 4 we obtain the Exact Algorithm for diffusions introduced in
[3] as an application of the generic Algorithm 3 of Section 2.

2 Simulation of Events with Unknown Proba-
bilities

Throughout the paper we assume that we can easily generate uniformly dis-
tributed iid random variables G0, G1, ... ∼ U(0, 1) which will typically serve as
a source of randomness for algorithms. Generic variables, not necessairy dis-
tributed as U(0, 1) introducing additional randomness to algorithms will be de-
noted as R0, R1, ... Thus to simulate an s−coin Cs we just let Cs := I{G0 ≤ s}.
We will be concerned with settings where s is not known explicitly.

The following simple observation will turn out very useful.

2



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

Lemma 2.1. Sampling events of probability s ∈ [0, 1] is equivalent to construct-
ing an unbiased estimator of s taking values in [0, 1] with probability 1.

Proof. Let Ŝ, s.t. EŜ = s and P(Ŝ ∈ [0, 1]) = 1 be the estimator. Then draw
G0 ∼ U(0, 1), obtain Ŝ and define a coin Cs as

Cs := I{G0 ≤ Ŝ}.

Clearly

P(Cs = 1) = E I(G0 ≤ Ŝ) = E
(
E
(
I(G0 ≤ ŝ) | Ŝ = ŝ

))
= EŜ = s.

The converse is straightforward since an s−coin is an unbiased estimator of s
with values in [0, 1].

Thus given Ŝ ∈ [0, 1], an unbiased estimator of s, we can sample events of
probability s by the following algorithm that uses two sources of randomness
G0 ∼ U(0, 1) and Ŝ = Ŝ(R0). In a sense Ŝ(R0) carries information about s and
G0 is an auxiliary random variable. In the proof above we implicitely assumed
that G0 and R0 are independent. We shall drop R0, R1, ... from notation unless
we focus on them.

Algorithm 1.
1. simulate G0 ∼ U(0, 1);
2. obtain Ŝ;
3. if G0 ≤ Ŝ set Cs := 1, otherwise set Cs := 0;
4. output Cs.

Next assume that l1, l2, ... and u1, u2, ... are sequences of lower and upper
bounds for s converging to s. This setting is well known ([7]) and appears
in a variety of situations, usually as an element of more complex simulation
procedures, see e.g. [5], [15]. Here we use the following algorithm for simulating
an s−coin.

Algorithm 2.
1. simulate G0 ∼ U(0, 1); set n = 1;
2. compute ln and un;
3. if G0 ≤ ln set Cs := 1;
4. if G0 > un set Cs := 0;
5. if ln < G0 ≤ un set n := n+ 1 and GOTO 2;
6. output Cs.

The algorithm stops with probability 1 since ln and un converge to s from
below and from above. Precisely, the algorithm needs N > n iterations to stop
with probability infk≤n uk− supk≤n lk. Because we can always obtain monotone
bounds by setting un := infk≤n uk and ln := supk≤n lk, we assume that ln is an
increasing sequence and un is a decreasing sequence.

The next step is to combine the above ideas and work with randomized
bounds, i.e. in a setting where we have estimators Ln and Un of the upper and
lower bounds ln and un. The estimators shall live on the same probability space

3



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

and have the following properties.

P(Ln ≤ Un) = 1 for every n = 1, 2, ... (1)
P(Ln ∈ [0, 1]) = 1 and P(Un ∈ [0, 1]) = 1 for every n = 1, 2, ... (2)
E Ln = ln ↗ s and E Un = un ↘ s (3)

P(Ln−1 ≤ Ln) = 1 and P(Un−1 ≥ Un) = 1 (4)

Note that we do not assume that Ln ≤ s or Un ≥ s. Also condition (4) implies
monotonicity of expectations in (3). Let

F0 = {∅,Ω}, Fn = σ{Ln, Un}, Fk,n = σ{Fk,Fk+1, ...Fn} for k ≤ n.

Consider the following algorithm.

Algorithm 3.
1. simulate G0 ∼ U(0, 1); set n = 1;
2. obtain Ln and Un given F0,n−1,
3. if G0 ≤ Ln set Cs := 1;
4. if G0 > Un set Cs := 0;
5. if Ln < G0 ≤ Un set n := n+ 1 and GOTO 2;
6. output Cs.

Lemma 2.2. Assume (1), (2), (3) and (4). Then Algorithm 3 outputs a valid
s−coin. Moreover the probability that it needs N > n iterations equals un − ln.

Proof. Probability that Algorithm 3 needs more then n iterations equals E(Un−
Ln) = ln − un → 0 as n→∞. And since 0 ≤ Un − Ln is a decreasing sequence
a.s., we also have Un − Ln → 0 a.s. So there exists a random variable Ŝ, such
that for almost every realization of sequences {Ln(ω)}n≥1 and {Un(ω)}n≥1 we
have Ln(ω)↗ Ŝ(ω) and Un(ω)↘ Ŝ(ω). By (2) we have Ŝ ∈ [0, 1] a.s. Thus for
a fixed ω the algorithm outputs an Ŝ(ω)−coin a.s. Clearly E Ln ≤ E Ŝ ≤ E Un
and hence E Ŝ = s.

Remark 2.3. The random variable Ŝ constructed in the proof can be viewed as
the unbiased estimator of s mentioned earlier with sequences Ln and Un being
its lower and upper random approximations.

Remark 2.4. For Algorithm 3 assumption (2) can be relaxed to

P(Ln ∈ (−∞, 1]) = 1 and P(Un ∈ [0,∞)) = 1 for every n = 1, 2, ... (5)

The final step is to weaken condition (4) and let Ln be a reverse time super-
martingale and Un a reverse time submartingale with respect to Fn,∞. Precisely,
assume that for every n = 1, 2, ... we have

E (Ln−1 | Fn,∞) = E (Ln−1 | Fn) ≤ Ln a.s. and (6)
E (Un−1 | Fn,∞) = E (Un−1 | Fn) ≥ Un a.s. (7)

Consider the following algorithm, that uses auxiliary random sequences L̃n
and Ũn constructed online.

4



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

Algorithm 4.
1. simulate G0 ∼ U(0, 1); set n = 1; set L0 ≡ L̃0 ≡ 0 and U0 ≡ Ũ0 ≡ 1
2. obtain Ln and Un given F0,n−1,
3. compute L∗n = E (Ln−1 | Fn) and U∗n = E (Un−1 | Fn).
4. compute

L̃n = L̃n−1 +
Ln − L∗n
U∗n − L∗n

(
Ũn−1 − L̃n−1

)
(8)

Ũn = Ũn−1 −
U∗n − Un
U∗n − L∗n

(
Ũn−1 − L̃n−1

)
(9)

5. if G0 ≤ L̃n set Cs := 1;
6. if G0 > Ũn set Cs := 0;
7. if L̃n < G0 ≤ Ũn set n := n+ 1 and GOTO 2;
8. output Cs.

Theorem 2.5. Assume (1), (2), (3), (6) and (7). Then Algorithm 4 outputs
a valid s−coin. Moreover the probability that it needs N > n iterations equals
un − ln.

Proof. We show that L̃ and Ũ satisfy (1), (2), (3) and (4) and hence Algorithm
4 is valid due to Lemma 2.2.

Conditions (1), (2) and (4) are straightforward due to construction of L̃ and
Ũ and (6), (7).

To prove (3) we show that the construction in step 4 of Algorithm 4 preserves
expectation, i.e.

E L̃n = E Ln = ln and E Ũn = E Un = un. (10)

It is straightforward to check that (10) holds for n = 1, 2. Moreover note that
Ũ0 − L̃0 = 1 a.s., U∗1 − L∗1 = 1 a.s. and from (8) and (9) we have

Ũn − L̃n =
(
Ũn−1 − L̃n−1

) Un − Ln
U∗n − L∗n

and hence

L̃n = L̃n−1 +
Ln − L∗n
U∗n − L∗n

Un−1 − Ln−1

U∗n−1 − L∗n−1

· · · U2 − L2

U∗2 − L∗2
(U1 − L1) . (11)

Now we compute E L̃n by induction, conditioning (11) subsequently on F2,∞, . . . ,Fn,∞
and using (6) and (7). Calculation of E Ũn is identical.

E L̃n = E L̃n−1 + E
(
E
(
Ln − L∗n
U∗n − L∗n

Un−1 − Ln−1

U∗n−1 − L∗n−1

· · · U2 − L2

U∗2 − L∗2
(U1 − L1)

∣∣∣F2,∞

))
= E Ln−1 + E

(
Ln − L∗n
U∗n − L∗n

Un−1 − Ln−1

U∗n−1 − L∗n−1

· · · U2 − L2

U∗2 − L∗2
E
(
U1 − L1

∣∣F2,∞
))

= E Ln−1 + E
(
Ln − L∗n
U∗n − L∗n

Un−1 − Ln−1

U∗n−1 − L∗n−1

· · · U3 − L3

U∗3 − L∗3
(U2 − L2)

)
= · · ·

= E Ln−1 + E (Ln − L∗n) = E
(
E
(
Ln−1 + Ln − L∗n

∣∣Fn,∞)) = E Ln.

Remark 2.6. All of the discussed algorithms are valid if n takes values along an
increasing sequence n↗∞.

5



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

Now let us link once again the algorithmic development of this Section with
construction of unbiased estimators. Lemma 2.1 together with Theorem 2.5
result in the following construction of sequential unbiased estimators based on
under- and overestimating reverse time super- and submartingale sequences.
The estimators are sequential in the sense that the amount of input needed to
produce them is random.

Theorem 2.7. Suppose that for an unknown value of interest s ∈ R, there exist
a constant M <∞ and random sequences Ln and Un s.t.

P(Ln ≤ Un) = 1 for every n = 1, 2, ...
P(Ln ∈ [−M,M ]) = 1 and P(Un ∈ [−M,M ]) = 1 for every n = 1, 2, ...

E Ln = ln ↗ s and E Un = un ↘ s

E (Ln−1 | Fn,∞) = E (Ln−1 | Fn) ≤ Ln a.s. and
E (Un−1 | Fn,∞) = E (Un−1 | Fn) ≥ Un a.s.

Then one can construct an unbiased estimator of s.

Proof. After rescaling, one can use Algorithm 4 to sample events of probability
(M+s)/2M, which gives an unbiased estimator of (M+s)/2M and consequently
of s.

3 Application to the Bernoulli Factory Problem

Based on Section 2, we provide here a practical version of the Nacu-Peres algo-
rithm for simulating an f(p)−coin form a sequence of p−coins, where f(p) =
min{2p, 1 − 2ε}. This is central to the general version of the Bernoulli factory
problem, as [13] develops a calculus for collapsing simulation of a real analytic
function, say g, to simulation of f(p) = min{2p, 1 − 2ε}. Briefly, one takes a
series expansion of g and uses a composition of appropriate techniques (e.g. for
simulating a sum or a difference of simulable functions). We refer to the original
paper for details.

In particular we prove Proposition 3.1, a general result, which is a minor
modification of Proposition 3 in [13]. However its proof, different from the
original one, links polynomial envelopes of f with the framework of Section 2
by identifying terms. It results in an immediate application of Algorithm 4.

Proposition 3.1. An algorithm that simulates a function f on P ⊆ (0, 1) exists
if and only if for all n ≥ 1 there exist polynomials gn(p) and hn(p) of the form

gn(p) =
n∑
k=0

(
n

k

)
a(n, k)pk(1−p)n−k and hn(p) =

n∑
k=0

(
n

k

)
b(n, k)pk(1−p)n−k,

s.t.

(i) 0 ≤ a(n, k) ≤ b(n, k) ≤ 1,

(ii) limn→∞ gn(p) = f(p) = limn→∞ hn(p),

(iii) For all m < n, their coefficients satisfy

a(n, k) ≥
k∑
i=0

(
n−m
k−i

)(
m
i

)(
n
k

) a(m, i), b(n, k) ≤
k∑
i=0

(
n−m
k−i

)(
m
i

)(
n
k

) b(m, i). (12)

6



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

Proof. We skip the implication algorithm ⇒ polynomials, as it has been shown
in [13], and focus on proving polynomials ⇒ algorithm using framework of Sec-
tion 2. Let X1, X2, . . . be a sequence of independent tosses of a p−coin. Define
random sequences {Ln, Un}n≥1 as follows: if

∑n
i=1Xi = k, then let Ln = a(n, k)

and Un = b(n, k). In the rest of the proof we check that (1), (2), (3), (6) and
(7) hold for {Ln, Un}n≥1 with s = f(p). Thus executing Algorithm 4 with
{Ln, Un}n≥1 yields a valid f(p)−coin.

Clearly (1) and (2) hold due to (i). For (3) note that E Ln = gn(p)↗ f(p)
and E Un = hn(p)↘ f(p). To obtain (6) and (7) define the sequence of random
variables Hn to be the number of heads in {X1, . . . , Xn}, i.e. Hn =

∑n
i=1Xi

and let Gn = σ(Hn). Thus Ln = a(n,Hn) and Un = b(n,Hn), hence Fn ⊆ Gn
and it is enough to check that E(Lm|Gn) ≤ Ln and E(Um|Gn) ≥ Un for m < n.
The distribution of Hm given Hn is hypergeometric and

E(Lm|Gn) = E(a(m,Hm)|Hn) =
Hn∑
i=0

(
n−m
Hn−i

)(
m
i

)(
n
Hn

) a(m, i) ≤ a(n,Hn) = Ln.

Clearly the distribution of Hm given Hm is the same as the distribution of Hm

given {Hn, Hn+1, . . . }. The argument for Un is identical.

Remark 3.2. In contrast to [13], throughout this section we simulate f in the
weak sense, i.e. we use U(0, 1) as an auxiliary random variable. This is the
natural approach in applications and also this is equivalent to strong simulability
if P ⊆ (0, 1), c.f. [10].

Section 3 of [13] provides explicit formulas for polynomial envelopes of f(p) =
min{2p, 1− 2ε} that satisfy conditions of Proposition 3.1, precisely a(n, k) and
b(n, k) satisfy (ii) and (iii) and one can easily compute n0 = n0(ε) s.t. for
n ≥ n0 condition (i) also holds, which is enough for the algorithm (however n0

is substantial, e.g. n0(ε) = 32768 for ε = 0, 1 and it increases as ε decreases).
By Theorem 2.5 the probability that Algorithm 4 needs N > n inputs equals
hn(p)− gn(p). The polynomials provided in [13] satisfy hn(p)− gn(p) ≤ Cρn for
p ∈ [0, 1/2 − 4ε] guaranteeing fast convergence, and hn(p) − gn(p) ≤ Dn−1/2

elsewhere. Using similar techniques one can establish polynomial envelopes s.t.
hn(p)−gn(p) ≤ Cρn for p ∈ [0, 1]�(1/2−(2+c)ε, 1/2−(2−c)ε). We do not pur-
sue this here, however in applications it will be often essential to obtain polyno-
mial approximations tailored for a specific problem and with desired properties.
Moreover, we note that despite the fact that the techniques developed in [13] for
simulating a real analytic g exhibit exponentially decaying tails, they are often
not practical. Nesting k times the algorithm for f(p) = min{2p, 1− 2ε} is very
inefficient. One needs at least n0(ε)k of original p−coins for a single output.

To give a more complete view of the Bernoulli factory problem in the frame-
work of Section 2 we show, as a corollary from Lemma 2.1, a result orig-
inally established in [10] and also provided in [13], namely that generating
min{2p, 1}−coins from p−coins is not possible.

Corollary 3.3. An algorithm that simulates f(p) = 2p for p ∈ P = (0, 1/2)
does not exists.

Proof. We show that there does not exists an unbiased estimator of 2p for p ∈
(0, 1/2) that takes values in [0, 1] and we conclude the corollary from Lemma 2.1.

7



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

Let S be such an estimator and let X1, X2, . . . be a sequence of p−coins.
We allow S to be sequential and use an auxiliary random variable independent
of the p−coins. So

S = S
(
{X1, X2, . . . , }, T,R0

)
= S

(
{X1, X2, . . . , XT }, R0

)
,

where T is a stopping time with respect to σ{F1,n,G}, where {F1,n}n≥1 is the
filtration generated by X1, X2, . . . and G is a σ−algebra independent of F1,n and
generated by R0. Clearly the joint distribution of {{X1, X2, . . . }, T,R0} depends
on p. We denote it by Pp and let Pp|t be the projection of Pp on {X1, X2, . . . , Xt}.
Now fix p = 1/4. Since 2p = 1/2 we have δ := P1/4(S ≤ 1/2) > 0. Moreover
there exists such an t0 that

P1/4(S ≤ 1/2; T ≤ t0) ≥ δ/2.

Note that Pp|t0 is absolutely continuous with respect to P1/4|t0 for all p ∈
[1/4, 1/2) and

inf
p∈[1/4,1/2)

inf
A⊆{0,1}t0

Pp|t0(A)
P1/4|t0(A)

≥ 2−t0 ,

and consequently for every p ∈ [1/4, 1/2) we have

Pp(S ≤ 1/2) ≥ Pp(S ≤ 1/2; T ≤ t0) ≥ 2−t0P1/4(S ≤ 1/2; T ≤ t0) ≥ δ2−(t0+1).

Now let p→ 1/2. This combined with S ∈ [0, 1] contradicts unbiasedness.

4 Application to the exact simulation of diffu-
sions

In this Section we derive the Exact Algorithm for diffusions introduced by [3]
as a specific application of Algorithm 3 of Section 2. Before proceeding, let us
clarify that exact simulation algorithms for diffusions have been considerably
generalized, compared to the case we consider here, in [4, 5] based on construc-
tions of the Brownian motion and involving auxiliary Poisson processes.

The problem can be described as follows. We are interested in simulating
XT which is the solution at time T > 0 of the following Stochastic Differential
Equation (SDE):

dXt = α(Xt) dt+ dWt, X0 = x ∈ R, t ∈ [0, T ] (13)

driven by the Brownian motion {Wt ; 0 ≤ t ≤ T}, where the drift function α
is assumed to satisfy the regularity conditions that guarantee the existence of
a weakly unique, global solution of (13), see ch.4 of [11]. Let Ω ≡ C([0, T ],R)
be the set of continuous mappings from [0, T ] to R and ω be a typical element
of Ω. Consider the co-ordinate mappings Bt : Ω 7→ R, t ∈ [0, T ], such that for
any t, Bt(ω) = ω(t) and the cylinder σ-algebra C = σ({Bt ; 0 ≤ t ≤ T}). We
denote by W x = {W x

t ; 0 ≤ t ≤ T} the Brownian motion started at x ∈ R, and
by W x,u = {W x,u

t ; 0 ≤ t ≤ T} the Brownian motion started at x and finishing
at u ∈ R at time T ; the latter is known as the Brownian bridge. We make the
following assumptions for α:

1. The drift function α is differentiable.

8



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

2. The function h(u) = exp{A(u) − (u − x)2/2T}, u ∈ R, for A(u) =∫ u

0
α(y)dy, is integrable.

3. The function (α2 + α
′
)/2 is bounded below by ` > −∞, and above by

r + ` <∞.

Then, let us define

φ(u) =
1
r

[(α2 + α
′
)/2− `] ∈ [0, 1] , (14)

Q be the probability measure induced by the solution X of (13) on (Ω, C), W
the corresponding probability measure for W x, and Z be the probability mea-
sure defined as the following simple change of measure from W: dW/dZ(ω) ∝
exp{−A(BT )}. Note that a stochastic process distributed according to Z has
similar dynamics to the Brownian motion, with the exception of the distribution
of the marginal distribution at time T which is biased according to A. Hence,
we refer to this process as the biased Brownian motion. In particular, the biased
Brownian motion conditional on its value at time T has the same law as the
corresponding Brownian bridge.

The final steps of the mathematical developement entail resorting to the
Girsanov transformation of measures (see for instance ch.8 of [14]) to obtain
dQ/dW; applying an integration-by-parts (possible by means of Assumption 1)
to eliminate the stochastic integral involved in the Radon-Nikodym derivative;
and using the definition of Z to obtain that

dQ
dZ

(ω) ∝ exp

{
−rT

∫ T

0

T−1φ(Bt)dt

}
≤ 1 Z− a.s. (15)

The details of this argument can be found in [3, 5]. By a standard rejection sam-
pling principle, it follows that a path ω generated according to Z and accepted
with probability (15) it yields a draw from Q. Hence, the following algorithm
yields an exact sample from the solution of (13) at time T :

1. simulate u ∼ h
2. generate a Cs coin where s := e−rTJ , and J :=

∫ T
0
T−1φ(W x,u

t )dt;
3. If Cs = 1 output u and STOP;
4. If Cs = 0 GOTO 1.

Exploiting the Markov property, we can assume from now on that rT < 1. If
T is such that rT > 1, then we can divise sub-intervals of length δ such that
rδ < 1 and apply the algorithm sequentially.

Clearly, the challenging part of the algorithm is Step 2, since exact compu-
tation of J is impossible due to the integration over a Brownian bridge path.
On the other hand, it is easy to generate J-coins: CJ = I(ψ < φ(W x,u

χ )), where
ψ ∼ U(0, 1) and χ ∼ U(0, T ) independent of the Brownian bridge W x,u and of
each other. Therefore, we deal with another instance of the problem studied
in this article: given p-coins how to generate f(p)-coins, where here f is the
exponential function. One possibility would be to follow [13] to first reduce this
problem to one of simulating min{2p, 1 − 2ε}-coins, and simulate the latter as
in Section 3 using Algorithm 4.

9



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

However, a much more efficient algorithm exists which exploits the properties
of the exponential function and the mechanism which generates the J-coins. We
start by expanding the exponential function into a power series and constructing
bounding sequences:

e−rTJ =
∞∑
i=0

(rT )i(−J)i/i!

un =
2n∑
i=0

(rT )i(−J)i/i! , for n = 0, 1, . . .

ln =
2n+1∑
i=0

(rT )i(−J)i/i! , for n = 0, 1, . . .

Although the bounding sequences ln and un are intractable, unbiased estimators
of them can be devised. It is easy to check directly that letting U0 = 1, and
given v ∼ U(0, 1) and a sequence of independent ψj ∼ U(0, 1), χj ∼ U(0, T ),
the following iteratively constructed stochastic bounds

Ln = Un − I
(
v <

(rT )2n+1

(2n+ 1)!

) 2n+1∏
i=1

I(ψi < φ(W x,u
χi

)) , n ≥ 0

Un = Ln−1 + I
(
v <

(rT )2n

(2n)!

) 2n∏
i=1

I(ψi < φ(W x,u
χi

)) , n ≥ 1

satisfy the requirements of Lemma 2.2 and Algorithm 3 can be directly used to
simulate an event of probability ertJ .

Acknowledgements

We would like to thank Şerban Nacu and Yuval Peres for helpful comments. The
first author would also like to thank Wojciech Niemiro for a helpful discussion.
The third author would like to acknowledge financial support by the Spanish
government through a “Ramon y Cajal” fellowship and the grant MTM2008-
06660 and the Berlin Mathematical School for hosting him as a visiting Professor
while preparing this manuscript.

References

[1] S. Assmussen, P. W. Glynn and H. Thorisson. Stationarity Detection in the
Initial Transient Problem. ACM Transactions on Modelling and Computer
Simulation, 2(2):130-157, 1992.

[2] S. Asmussen and P. W. Glynn Stochastic simulation: algorithms and anal-
ysis. Springer, New York, 2007.

[3] A. Beskos, G.O. Roberts. Exact Simulation of Diffusions. Ann. Appl.
Probab. 15(4): 2422–2444, 2005.

10



CRiSM Paper No. 09-30, www.warwick.ac.uk/go/crism

[4] A. Beskos, O. Papaspiliopoulos, G.O. Roberts. Retrospective Exact Simula-
tion of Diffusion Sample Paths with Applications. Bernoulli 12: 1077–1098,
2006.

[5] A. Beskos, O. Papaspiliopoulos, G.O. Roberts. A factorisation of diffusion
measure and finite sample path constructions. Methodol. Comput. Appl.
Probab. 10(1): 85–104, 2008.

[6] A. Beskos, O. Papaspiliopoulos, G.O. Roberts, and P. Fearnhead. Exact
and computationally effcient likelihood-based estimation for discretely ob-
served diffusion processes (with discussion). Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 68(3):333-382, 2006.

[7] L. Devroye. Nonumniform Random Variable Generation. Springer-Verlag,
New York, 1986.

[8] S.G. Henderson and P. W. Glynn. Nonexistance of a class of variate gen-
eration schemes. Operations Research Letters, 31: 83–89, 2003.

[9] O. Holtz, F. Nazarov, and Y. Peres. New coins from old, smoothly. eprint
arXiv: 0808.1936, 2008.

[10] M.S. Keane and G.L. OBrien. A Bernoulli factory. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 4(2):213-219, 1994.

[11] P.E. Kloeden and E.Platen. Numerical Solution of Stochastic Differential
Equations, Springer-Verlag, 1995.

[12] E. Mossel and Y. Peres. New coins from old: computing with unknown
bias. Combinatorica, 25(6):707-724, 2005.

[13] S. Nacu and Y. Peres. Fast simulation of new coins from old. Annals of
Applied Probability, 15(1):93–115, 2005.

[14] , B.K. Øksendal. Stochastic Differential Equations: An Introduction With
Applications, Springer-Verlag, 1998.

[15] O. Papaspiliopoulos, G.O. Roberts. Retrospective Markov chain Monte
Carlo for Dirichlet process hierarchical models. Biometrika, 95:169–186,
2008.

[16] Y. Peres. Iterating von Neumann’s procedure for extracting random bits.
Annals of Statistics, 20(1): 590–597, 1992.

11


