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Abstract

We show that scattering from the boundary of static, higher-order topological insulators

(HOTIs) can be used to simulate the behavior of (time-periodic) Floquet topological in-

sulators. We consider D-dimensional HOTIs with gapless corner states which are weakly

probed by external waves in a scattering setup. We find that the unitary reflection matrix

describing back-scattering from the boundary of the HOTI is topologically equivalent to

a (D − 1)-dimensional nontrivial Floquet operator. To characterize the topology of the

reflection matrix, we introduce the concept of ‘nested’ scattering matrices. Our results

provide a route to engineer topological Floquet systems in the lab without the need for

external driving. As benefit, the topological system does not suffer from decoherence

and heating.
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1 Introduction

Topology provides a common tool set for analyzing the properties of both static and dynamical
systems. Bulk-boundary correspondence predicts the appearance of gapless modes both in
the spectra of time-independent Hermitian Hamiltonians [1, 2], as well as in those of the
unitary time-evolution (or Floquet) operators describing periodically-driven systems [3, 4].
Both Hermitian and unitary phases have been classified using dimensional reduction, leading
to the so called ‘periodic tables’ of topological phases [5–15].

In spite of the common methods used in their analysis, there is a strong dichotomy between
the study of topology in Hermitian and unitary systems, both on a theoretical and especially on
an experimental level. Topological phases described by Hamiltonians are usually realized in
the ground states of isolated, time-independent systems [1,2], and a large body of research has
focused on materials that exhibit topologically nontrivial ground states [16–22]. In contrast,
unitary topology conventionally refers to Floquet operators that physically involve pumping
energy into an open system by means of an external driving field. In the many-body setting,
it is known that the system will absorb this energy, reaching a featureless steady state unless
it is many-body localized [23, 24]. Even on the single-particle level, heating due to noise-
induced decoherence of Floquet states is unavoidable, since any realistic driving field will not
be perfectly periodic in time [25–27].

In this work, we resolve the dichotomy between Hermitian and unitary systems by showing
that a static, D-dimensional topological phase can be used to simulate a time-periodic, (D−1)-
dimensional topological phase, without any external driving. We consider a sub-class of higher-
order topological insulators (HOTIs) [28–34]: time-independent systems with a gapped bulk,
gapped boundaries, and topologically protected gapless modes localized at their corners. We
envision a scattering experiment on the D-dimensional HOTI by probing the system at the
boundary. Due to the gap, all incoming modes are back-reflected, a process described by a
reflection matrix r (see Fig. 1). Our main insight is that this reflection matrix: (1) is unitary,
(2) (D − 1)-dimensional, (3) has a gapped spectrum, and (4) shows topologically protected
mid-gap modes at its boundaries. As such, the unitary reflection matrix can be thought of as
the Floquet operator of a lower-dimensional driven system.

On a practical level, our results provide a way of experimentally realizing unitary topo-
logical phases in a static experiment. The required ingredients, a HOTI probed by means of
a scattering measurement, are presently available in the lab. HOTIs have been achieved in
a variety of metamaterials [35–50]. The reflection matrix can be determined by standard in-
terferometric techniques [51, 52], or by simply visualizing the standing wave pattern formed
between incoming and outgoing modes [49, 53]. Note that alternative proposals for simulat-
ing Floquet phases, such as photonic crystals [54–57] or quantum walks [58,59], suffer from
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Figure 1: Scattering experiment in which a waveguide is attached to the right bound-
ary of a HOTI [Eq. (1)] with corner states (red). Due to the gapped bulk and edges,
the incoming waves are reflected. This process is described by the unitary reflection
matrix r, that is topologically equivalent to the Floquet operator of a nontrivial 1D
chain. The spectrum of its eigenphases φ, denoting the phase difference between
incoming and reflected waves, exhibits topologically protected mid-gap states. The
corresponding transversal modesψ are localized at the boundaries of the waveguide
and scatter off the corners of the 2D system.

decoherence due to noise in the periodic modulation of the system. In contrast, our setup has
the advantage of avoiding decoherence. This is because there is no driving field to begin with:
the HOTI is fully static and remains in its ground state, being only weakly probed.

We first present our main idea in a generic setting (Sec. 2) before proceeding with a con-
crete example of a two-dimensional (2D) particle-hole symmetric HOTI. For the latter sys-
tem, we show that the reflection matrix is topologically equivalent to a 1D Floquet Kitaev
chain [60–62], realizing the same topological phases (Sec. 3). By interpreting the reflection
matrix as a 1D Floquet operator and computing its scattering matrix (e.g., the scattering ma-
trix of the reflection matrix) [63, 64], we determine the topological invariants (Sec. 4). This
defines a generic, recursive procedure similar to that of ‘nested Wilson loops’ [28, 29]. It
enables to access the unitary topology encoded in a scattering matrix by computing its higher-
order, nested scattering matrices. We show that the resulting topological phases are robust
against disorder as long as their protecting symmetries are preserved (Sec. 5). We argue that
the topological phases can be identified using experimental tools which have already been
demonstrated (Sec. 6). We conclude and discuss future directions of research in Sec. 7. The
appendix is dedicated to details on how we compute the scattering matrix (App. A), its sym-
metries (App. B), the dimensional reduction map (App. C), as well as to a discussion on chiral
symmetry (App. D), topological phase transitions of the reflection matrix (App. E), and the
connection to Floquet invariants (App. F).

2 Main idea

Consider the 2D HOTI shown in Fig. 1, which has gapped bulk and edges, shown in blue, but
hosts topologically protected gapless corner modes, shown in red. The right edge of this static
system, having a linear dimension of L sites, is weakly coupled to a waveguide with a set of L

modes that are used to probe the system. Since the bulk and the edges of the HOTI are fully
gaped, no transmission occurs through the system, and all incoming waves are back-reflected.
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Therefore, the reflection matrix r, whose elements (r)nm describe the probability amplitude to
scatter from (incoming) mode m to (outgoing) mode n, is forced to be unitary. The eigenvalues
eiφ of this matrix determine the eigenphases φ acquired by modes upon reflecting from the
system edge.

Consider an incoming plane-wave, extended along the translationally invariant direction
of the waveguide, but localized in its transversal direction y (see Fig. 1). The phase it acquires
upon reflection will depend on the transversal direction. If the reflection occurs from a portion
close to the middle of the gapped edge, we expect the outgoing state to pick up an eigenphase
φ, which may depend on the properties of the edge close to the position y and its coupling to
the waveguide. In fact, for the choice of system and waveguide considered in the following,
we have an open boundary condition with φ → 0 for vanishingly weak coupling strength. In
contrast, if the incoming plane-wave is localized at the boundary of the waveguide, such that it
impinges on the corner of the HOTI, then resonant scattering from the gapless corner mode will
force the outgoing state to pick up a π-phase relative to the incoming one [65–68]. As a result,
the eigenstates of r at the center of the waveguide have eigenphases φ close to zero, and there
is one eigenvalue with φ = π located at each of the two boundaries of the waveguide. The
reflection matrix of this 2D system thus corresponds to a 1D topological Floquet chain (along
the transversal direction) with mid-gap topological modes (at φ = π) localized at the ends of
the chain. Note that the π-modes are specific to the classification of unitary Floquet systems
and do not have an analog for Hamiltonian systems. Thus, the process of weakly probing a
static HOTI is determined by the reflection matrix r, which is equivalent to a Floquet operator.
If the static system is in the HOTI phase, the resulting Floquet operator is also topological; this
is the sense in which the static system simulates a topological Floquet system.

By analogy, we expect the connection between the topology of the Hamiltonian and that of
the reflection matrix to remain valid in arbitrary dimension: a D-dimensional HOTI in which
the bulk and hypersurfaces are gapped, but which hosts gapless 0D corner modes at its 2D

corners, will have a reflection matrix that simulates a (D−1)-dimensional topological Floquet
system. As in the 2D example of Fig. 1, this is because waves which are back-scattered from
the corners will produce π-modes in the reflection matrix, whereas waves reflected from the
middle of the surface of the system will produce modes withφ→ 0 in the weak-coupling limit.
We make these arguments precise in Appendix C.

3 Hamiltonian and scattering matrix

To make the above discussion concrete, we consider a HOTI model describing non-interacting,
spinless fermions hopping on a dimerized square lattice [28,29]. There are four sites per unit
cell, and each plaquette is threaded by a magnetic π-flux. The Hamiltonian reads

h(k) =(γx +λx cos kx)τxσ0 −λx sin kxτyσz − (γy +λy cos ky)τyσy −λy sin kyτyσx , (1)

where k = (kx , ky) are the momenta in the two directions. The Pauli matrices τ act on the
sublattice degree of freedom, whereas the Pauli matrices σ act on the two sites within a sub-
lattice. Similar to the Su-Schrieffer-Heeger (SSH) model [69], the hoppings in the horizontal
and vertical (x and y) directions are dimerized, taking values γx ,y within a unit cell and λx ,y

between unit cells, all chosen real and positive in the following. The model obeys particle-
hole symmetry, P = τzK, with K complex conjugation, such that all states are symmetric in
energy around E = 0.1 For γx ,y < λx ,y the system is in a topological phase: the bulk/edges

1Note that the system has an additional chiral symmetry, C = τz , which has no effect as we do not consider
more than a single 0- or π-mode. For more information see Appendix D.
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Figure 2: Eigenphases of the reflection matrix, showing π-modes (0-modes) and
their associated wavefunctions in red (blue). The HOTI parameters are λx ,y = 1 in
all panels. We have chosen γx ,y = 0.4 in panels (a) and (d), γx ,y = 1.2 in panel
(b), whereas γx = 1.2 and γy = 0.4 in panel (c). Insets sketch the corresponding
dimerization pattern of the HOTI as well as the sites connected to the lead (green).
The system-lead coupling strength is tsl = 0.5 in all cases. The gap around φ = 0
as well as the bandwidth of the bulk states (black) is proportional to tsl in the weak
coupling limit.

are gapped and corner sites are weakly coupled to the rest of the system (see Fig. 1) such that
they each host a localized, zero-energy mode.

We place a finite-sized HOTI (L × L sites with L = 36) in a two-terminal geometry with
translationally invariant electronic waveguides (leads) oriented in the x direction attached
to its left- and right-most sites. Incoming and outgoing modes at E = 0 are related by the
scattering matrix,

S =

�

r t ′

t r ′

�

, (2)

where the blocks r(′) and t(′) contain the probability amplitudes for states to be back-reflected
or transmitted across the system, respectively. More details on calculating S can be found in
Appendix A. To obtain direct information on the real-space position of a scattering state in
the y direction, we choose a simple model for the leads composed of decoupled chains (zero
on-site term, unit hopping), each chain connecting to a single site of the edge of the system.
As a result, the reflection and transmission blocks have a size L × L and are effectively 1D
operators parameterized by the transversal coordinate y .

In the nontrivial phase, transmission through the system is exponentially suppressed since
the bulk and edges are gapped. Hence, the reflection matrix r of the left lead (or equivalently
r ′ for the right lead) is unitary up to exponential precision. By numerically2 diagonalizing the

2We use the kwant code for tight-binding and scattering matrix calculations [70]. The code used to generate
our numerical results is included in the supplemental material.
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1D unitary operator r, we find that its eigenphase spectrum is analogous to the eigenphase (or
quasi-energy) spectrum of 1D Floquet topological chains, as shown in Fig. 2a. We observe two
±φ-symmetric phase-bands, shown in black, separated by phase-gaps centered around φ = 0
and φ = π. The bands correspond to states which are back-reflected from the mid section, or
‘bulk’ of the lead, meaning states which contact the central part of the HOTI edge. At φ = ±π,
however, there are two degenerate states, shown in red, which are separated by a gap from
other eigenphases. These two modes correspond to scattering states at the boundaries of the
lead and contact the corner states of the HOTI.

The reflection matrix r is topologically equivalent to a 1D nontrivial Floquet system and
thus provides an example of dimensional reduction from a 2D Hermitian operator to a 1D uni-
tary operator. The latter is in a symmetry class allowing for nontrivial topology, since it inherits
particle-hole symmetry from the original 2D HOTI. The P symmetry of the Hamiltonian and of
the leads implies a constraint on the reflection matrix, r = τz r∗τz [67,71], which is identical
to the condition imposed by particle-hole symmetry on Floquet systems (see Refs. [3,63] and
Appendix B). Due to the constraint relating r to its complex conjugate, the eigenvalues of r

must be either real, corresponding to phases φ = 0,π, or must come in complex conjugate
pairs. This explains both the ±φ-symmetric spectrum of Fig. 2 and the pinning of edge modes
to the middle of the gap. Furthermore, since resonant scattering from a zero-energy state pro-
duces a π phase shift of the reflected wave [67], the corner states of a nontrivial HOTI induce
topological π-modes in the reflection operator. These modes are associated with a quantized
topological response indicative of the nontrivial nature of r: the phase difference between
incoming and outgoing waveguide modes is quantized to π when backscattering occurs at
the waveguide boundaries. Therefore, the dimensional reduction scheme obeys the require-
ment of mapping a nontrivial system onto a nontrivial one (see Appendix C for details on this
dimensional reduction map).

Particle-hole symmetric Floquet systems in 1D possess a Z2 × Z2 classification [72], with
four possible phases: (1) trivial, (2) edge modes at φ = π, (3) edge modes at φ = 0, and
(4) a so-called ‘anomalous’ phase hosting edge modes at both 0 and π. Depending on the
dimerization pattern of the 2D system and on how the leads are attached, we show that all four
phases can be reproduced by the reflection matrix. As an immediate check, a trivial system,
γx ,y > λx ,y , yields a trivial r (Fig. 2b). The phase with φ = 0 modes (Fig. 2c) can be obtained
by setting γx > λx and γy < λy (nontrivial dimerization on the edge contacting the leads,
but trivial dimerization along the other edges). In this situation, the system is in a topological
phase (as signaled by its nontrivial nested Wilson loop invariant [28]) even though it does not
exhibit zero-energy corner states. Remarkably, the reflection matrix detects the topology of
the phase even in this case, by the presence of the φ = 0 modes.

So far, the waveguides were only coupled to the outermost sites of the HOTI. Thus, only
half of the sites of the last unit cell are coupled to the lead, since the unit cell contains four sites
and only two of them form the boundary of the system (see Fig. 1). However, depending on
the physical system realizing the HOTI phase, the matrix structure of the Hamiltonian Eq. (1)
might be due to internal degrees of freedom. For instance, the Pauli matrices τ and σ could
represent, e.g., electron-hole and spin degrees of freedom in a superconductor. In this case,
a lead would couple to all four states in a unit cell, producing a reflection matrix which is
2L × 2L. Interestingly, attaching the lead in this way maps the nontrivial HOTI (γx ,y < λx ,y)
to an anomalous r, with mid-gap end modes at both φ = 0 and φ = π (Fig. 2d). Even though
the system Hamiltonian is in the same nontrivial phase as was used to produce Fig. 2a, r is
now in a different topological phase. The difference is due to the fact that, both for static
and for Floquet chiral systems [28, 29, 69, 73–77], the topology is not just a property of the
HOTI Hamiltonian, but crucially depends on the way in which the system is terminated. The
important point however, as discussed before, is that zero-energy corner states in the 2D HOTI
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lead to π modes in the reflection matrix, such that a nontrivial static system is mapped onto a
nontrivial unitary Floquet operator.

Finally, we make some remarks on the topology of the reflection matrix in the context of
previous HOTI classification studies. According to Refs. [33, 34], HOTIs fall within two large
classes. In intrinsic HOTIs, the zero-energy corner states are associated with a bulk topological
invariant which is protected by lattice symmetries. This is the case for the Hamiltonian in
Eq. (1), where the bulk invariant relies on fourfold rotation symmetry and has been computed
in Ref. [29]. In extrinsic HOTIs, however, the bulk is trivial and corner states at E = 0 are a
consequence of the fact that the system’s boundary is in a strong topological phase. By weakly
breaking the lattice symmetries while preserving the particle-hole (or the chiral) symmetry,
the Hamiltonian Eq. (1) transitions from an intrinsic to an extrinsic HOTI phase. The bulk
becomes trivial due to the breaking of the symmetries required to define the invariant, but
mid-gap corner states remain protected due to the strong topology of the edge. This can in
fact be seen in Fig. 1: the edges of the system are nontrivial SSH chains. Therefore, the corner
modes of the 2D system and the topological modes of its reflection matrix do not require lattice
symmetries for their protection. We explore this fact later in Section 5, as well as in Appendix
C, in which we discuss the range of validity of our dimensional reduction scheme.

4 Nested scattering matrices and topological invariants

We want to prove that the reflection matrix r of the HOTI is indeed in a topological phase
when viewed as a unitary Floquet operator by computing its topological invariants. The spectra
shown in Fig. 2 give a first indication that this is the case, due to the presence of mid-gap modes.
The most conventional way of calculating the invariants of a periodically-driven system [9,
78] relies on access to the instantaneous eigenstates of the system at every moment of time
throughout a period of the drive. In our system, we do not have access to these instantaneous
eigenstates, but only to the reflection matrix r, which is analogous to the Floquet operator
— the time-evolution operator over a full driving cycle. One possibility is to mimic a time-
evolution process by finding a continuous way of unitarily deforming the reflection matrix to
the identity operator, which we explore in Appendix F. In the following, we rely instead on a
recently developed way of determining the topological invariants of a 1D Floquet system [63,
64], which only uses knowledge of r (the analog of the Floquet operator). To this end, we
calculate the scattering matrix S̃ of a 1D Floquet system described by the ‘Floquet operator’
r. We call S̃ a nested scattering matrix, as it is the scattering matrix of the reflection matrix r

(which is a sub-block of the scattering matrix S).
Following Ref. [63], the procedure to obtain the topological invariants is as follows: we

define a fictitious scattering problem starting from the finite-sized, 1D unitary operator r. We
attach one fictitious absorbing terminal to the first (y = 0,1) and one to last (y = L−2, L−1)
unit cell of the 1D system. The projection operator onto the absorbing terminals,

P =

¨

1, if y ∈ {0,1, L − 2, L − 1},

0, otherwise.
(3)

is of size 4× L or 8×2L, depending on whether the waveguides probing the HOTI are attached
only to the last sites (as in Fig. 2a,b,c), or to the full unit cell (as in Fig. 2d). Transmission
t̃(′) and reflection r̃(′) from the two absorbing terminals at the ends of the 1D system can be
computed from the nested scattering matrix3

S̃(φ) = P[1− eiφ r(1− PT P)]−1eiφ rPT , (4)

3The equation is identical to that used in Refs. [63] to study driven systems, with the exception that the Floquet
operator F has been replaced by r, and its quasi-energies ǫ have been replaced by the phases φ.

7

https://scipost.org
https://scipost.org/SciPostPhysCore.4.2.007


SciPost Phys. Core 4, 007 (2021)

having the same block structure as Eq. (2). The interpretation of Eq. (4) in Floquet language is
as follows: it corresponds to an infinite sum over different scattering processes, obtained by ex-
panding the inverse in a geometric series. Each successive term describes time-evolution over
an additional period, obtained by applying the ‘Floquet operator’ r. Each state is projected out
if it reaches the absorbing terminals (given by P) and continues evolving for another driving
cycle if it does not overlap with the terminals (given by 1−PT P). The nested scattering matrix
S̃ inherits particle-hole symmetry from the reflection block of the scattering matrix S. Indeed,
r = τz r∗τz together with Eq. (4) imply r̃(φ) = τz r̃∗(−φ)τz [63]. As such, the determinants
of r̃(φ = 0) and r̃(φ = π) are real and the topological invariants are given by

ν0 = sign det[r̃(0)], νπ = sign det[r̃(π)], (5)

see also [60, 67, 68, 79, 80]. We have checked that the two Z2 indices correctly capture the
presence of topological modes in the spectrum of r. Whenever there are mid-gap modes at
φ = 0 or φ = π, we find that ν0 or νπ take the nontrivial value −1. Otherwise, they take
the trivial value +1. In Appendix E, we show how changing the HOTI parameters leads to
topological phase transitions of the reflection matrix, signaled by changes in its topological
invariants. These phase transitions can occur both by preserving the unitarity of r (the 2D
HOTI remains insulating), or by rendering it singular (the 2D HOTI conducts).

5 Disorder effects

Systems with gapless corner modes have successfully been realized in many different plat-
forms [35–50], most of them being the classical analogs of condensed matter systems. Even
though such realizations offer a better control over disorder, its complete elimination remains
a challenging task. For this reason, we consider two types of imperfections in the 2D system.
One kind of disorder breaks the particle-hole symmetry, while the other one preserves it. In
the following, we will study how these disorder types affect topological phases of the reflection
matrix.

Disorder which breaks P is simulated by means of random onsite energies, drawn inde-
pendently for every site from the uniform distribution on [−dons, dons]. Here, dons denotes the
strength of disorder. Disorder which preserves P is modeled with γx(y) → γx(y) + δhop and
λx(y) → λx(y) + δhop, where δhop drawn independently for each hopping from the uniform
distribution on [−dhop, dhop], where dhop represents disorder strength. For both situations, we
consider 250 disorder realizations and study averaged density of states (DOS) of the eigen-
phases of the reflection matrix. The results for phases with 0-modes and π-modes are given
in Fig. 3.

The effect of the onsite disorder that breaks P on 0-modes and π-modes is shown in Fig. 3a
and Fig. 3b, respectively. We expect this type of disorder to shift the eigenphases of end modes
from the particle-hole (and chiral) invariant points of the φ-spectrum, thus diminishing the
DOS peak atφ = 0,π. This effect is noticeable in both panels, and even for very small disorder
strengths. Further increase of the disorder strength pushes eigenphases of these end states
(at φ = 0,π in the clean limit) towards the bulk values, after which the DOS midgap peak
disappears. Finally, even though π-modes are related to gapless Hamiltonian states, while
0-modes are not, both kinds are similarly affected by disorder. This is because the existence of
both kinds of states originates from symmetry requirements on r.

On the other side, we expect the nontrivial phase of the reflection matrix to be more stable
to spatial disorder that preserves P . This is because for this type of disorder the 2D system
enters an extrinsic HOTI phase, as discussed above. The disorder cannot move corner states
from zero-energy but it reduces the bulk mobility gap. Once a mobility gap closing occurs, the
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d d d

d d d

Figure 3: The evolution of the DOS (of the reflection matrix) with disorder. For every
disorder realization, we calculate the DOS by dividing the full eigenphase range into
60 equally sized intervals. Panels (a) and (b) concern onsite disorder, while panels
(c) and (d) reveal effects of randomness in hopping strengths. In panels (a) and (c),
we consider a reflection matrix with 0-modes (γx = 1.2,γy = 0.4,λx = λy = 1),
while panels (b) and (d) show how disorder influences a reflection matrix with only
π-modes (γx = γy = 0.4,λx = λy = 1). In all cases, the system size is 60× 60 sites.

reflection matrix loses unitarity, and cannot be used to simulate Floquet phases of Hermitian
systems. For this reason, we restrict ourselves to disorder strengths which leave r unitary
for every disorder realization with 1− |det r| ≤ 10−6. As randomness in hoppings preserves
P , 0-modes and π-modes remain pinned to φ = 0,π as observed in Fig. 3c and in Fig. 3d,
respectively.

6 Experimental feasibility

Our insight that a static system which is weakly probed simulates a Floquet system opens an
alternate route to the experimental realization of Floquet topological phases. The method
relies on two parts: (1) constructing a HOTI and (2) measuring the eigenphases of its reflec-
tion matrix. The first part has already been achieved in photonic [35–37], phononic [38],
microwave [39], acoustic [41–47, 50], topoelectric [40], and condensed-matter [49] meta-
materials, producing HOTI Hamiltonians similar to Eq. (1). Many of these platforms also
allow to directly measure the phase of reflected waves, either by means of interferometry, as
done in microwave [51], photonic [52], acoustic [81], and topoelectric [82] systems, or by
directly visualizing the standing wave pattern formed at the sample boundary, as done, e.g.,
with electronic [49] or water waves [53]. Indeed, the authors of [49] have recently reported
experiments realizing a HOTI by placing impurities on a surface in a Kagome lattice and mea-
suring the system using scanning tunneling microscopy. While the focus of their paper is on the
system itself, their Fig. 2 clearly shows a standing wave pattern of electronic waves reflected
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from the system boundary. Our prediction is that extracting the reflection matrix eigenphases
from this pattern will yield gapped bands and topological mid-gap states. Note that these static
HOTI systems even allow to simulate the stroboscopic time-evolution of Floquet topological
phases, as the reflection matrix r of the static system is exactly the stroboscopic evolution op-
erator. Reflecting incoming waves off a HOTI system thus emulates the evolution over a single
period. In order to simulate a periodic driving over multiple time periods, our setup has to be
altered such that the incoming wave undergoes multiple subsequent scattering processes.

7 Conclusion

We have shown that back-scattering from the boundary of a static 2D HOTI is described by
a reflection matrix which is topologically equivalent to a 1D nontrivial Floquet system. De-
pending on the properties of the HOTI and those of the system-waveguide interface, all four
phases of the 1D particle-hole symmetric Z2×Z2 classification can be obtained. These phases
are characterized by quantized topological responses: the phase difference between incoming
and outgoing waves is quantized to either 0 or π when the modes scatter from the boundaries
of the waveguide. Our work introduces a dimensional reduction procedure based on the scat-
tering matrix, which maps the 2D Hamiltonian of a HOTI into the 1D Floquet operator of a
nontrivial chain. In Appendix C, we show that this dimensional reduction map remains valid
for HOTIs with corner states in any dimension and in any symmetry class, provided the corner
states are robust against lattice symmetry breaking. Based on the insight that the reflection
matrix can simulate a Floquet operator, we have shown that the topological invariants of the
former can be obtained by defining nested scattering matrices.

Our work introduces a novel metamaterial platform: simulating topological phases using
reflection matrices. In recent years, topological metamaterials are emerging as an intensely
studied research field, both theoretically and experimentally. This is both due to the possibility
to accurately control system parameters, as well as in light of potential applications, including
signal transmission [83], sensors [84], and even ‘light funnels’ [85]. By now, topologically
nontrivial systems have been experimentally simulated in photonic crystals [86], electronic
circuits [40], as well as Josephson junctions [87] and acoustic [41], phononic [38], and me-
chanical metamaterials [88]. We look forward to the experimental measurements of topology
in a reflection matrix.

One of the advantages of using reflection matrices to simulate and measure the properties
of Floquet systems is that this method does not suffer from noise-induced decoherence. In non-
interacting periodically-driven systems, inevitable noise in the driving field generally leads to
exponentially fast decoherence. All topological properties are lost in the long time limit as
the system evolves towards a uniform, featureless steady state. The problem of decoherence
due to driving noise has been recognized both theoretically and experimentally, starting from
early measurements of the quantum kicked rotor in the 90s [89, 90], and an active research
field has emerged from studying and attempting to mitigate this effect [26,27,91–104]. In our
work, we have found a way of eliminating this effect completely: driving noise cannot lead to
decoherence if unitary topological phases are realized without any driving.

The results we presented here open several directions for further research also on a theo-
retical level. First, the dimensional reduction scheme we have introduced might be adapted to
reflection matrices which inherit lattice symmetries, such as mirror, rotation, and glide, from
the parent HOTI. Building on our work, we anticipate that a link between the classifications
of static and driven topological phases can also be established in these systems. Moreover, in
three-dimensional HOTIs with corner states, recently realized in acoustic [44–47] and topo-
electric [48]metamaterials, we expect the reflection matrix to exhibit corner states of its own,
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thus simulating a Floquet HOTI. For three-dimensional systems, it would be interesting to suc-
cessively apply the nested scattering matrix construction twice. Furthermore, for HOTIs where
only two of the four corners show zero modes [105–108], the reflection matrix from one side
may show an odd number of topological states, thus simulating a Floquet system which falls
outside of the existing, ‘tenfold way’ [109] classification of topological phases. Finally, it would
be interesting to think about how to include many-body effects. While we have treated this sys-
tem using a purely single-particle, Landauer-Büttiker formalism, the reflection matrix and its
topological invariants can be computed also for certain strongly-correlated systems [110–113].
A potential extension of our work would be to see whether interacting Floquet phases, such
as the Z3 parafermion chain of Ref. [114] could be simulated in this way.

Acknowledgments

We thank Max Geier, Mikael Rechtsman, and Shinsei Ryu for useful discussions, and we thank
Ulrike Nitzsche for technical assistance.

Author contributions F.H. and I.C.F. initiated and oversaw the project. S.F. carried out the
analysis of the reflection matrix, wrote the code, and performed numerical calculations. S.F.
and I.C.F produced the figures. All authors contributed to formulating the results and writing
the manuscript.

Funding information This work is supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) through the Würzburg-Dresden Cluster of Excellence on Com-
plexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project-id 39085490) and under
Germany’s Excellence Strategy – Cluster of Excellence Matter and Light for Quantum Comput-
ing (ML4Q) EXC 2004/1 390534769.

A Calculating the reflection matrix

Our starting point is the 2D real-space Hamiltonian corresponding to Eq. (1) of the main text.
We define two translationally invariant leads along the x direction, where each lead is modeled
as an array of isolated waveguides arranged such that each chain connects to only one site of
the system. To compute the scattering matrix, we solve the Schrödinger equation [68,70]

(H − E)(ψin
n +
∑

m

Smnψ
out
m +ψloc) = 0 , (6)

corresponding to the full, system-plus-leads tight-binding model, described by the Hamilto-
nian H. Here, E denotes the Hamiltonian eigenvalues, ψloc stands for wave-functions which
are localized in and near the scattering region, and ψin/out

n denote incoming and outgoing
lead states, that is, plane waves with velocity pointing towards or away from the system, re-
spectively. For detecting states at zero energy, one takes E = 0 in the above calculation. The
scattering matrix S with elements Smn is obtained directly from the solution of the above equa-
tion. All our simulations are done using kwant [70].

In the two terminal geometry, S is a 2× 2 block matrix in which the diagonal blocks are
reflection matrices, and the off-diagonal blocks are transmission matrices. We are interested in
the regime where the transmission between leads vanishes, yielding unitary reflection matrices

r and r ′. If we construct spinors Ψ in/out
L/R

containing all incoming and outgoing modes in both
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the left (L) and right (R) leads, then we obtain

Ψ
out
L = rΨ in

L , (7)

for the reflection matrix of the left lead r. The last relation becomes an eigenvalue equation for
Ψ

out
L = eiφ

Ψ
in
L , implying that the eigenmodes of reflection matrix are standing waves formed

as superpositions of Ψ in
L and Ψout

L . The spectrum of the reflection matrix, consisting of the
eigenphases φ, influences the standing wave pattern formed at the sample boundary.

B Symmetries of the reflection matrix and Floquet operator

The classification of topological phases relies on presence or absence of three local symmetries:
time-reversal T = UT K, particle-hole P = UPK and chiral symmetry C = UC . Here, K denotes
complex-conjugation, while UT , UP , UC are unitary matrices.

These symmetries constrain the single-particle Hamiltonian H as

T HT
−1 = H, PHP

−1 = −H, CHC
−1 = −H, or

UT H∗U
†
T
= H, UPH∗U

†
P
= −H, UCHU

†
C
= −H.

(8)

Local symmetries of the scattering region and the leads also constrain the scattering matrix
S that is related to H via Eq. (6). In order to obtain these constraints using Eq. (6), we need
to know the action of these symmetries on incoming modes ψin

n and outgoing modes ψout
n .

Under the action of T and C, an incoming mode transforms into a linear combination
of outgoing modes, and vice versa for the outgoing plane-wave [71]. On the other hand,
particle-hole symmetry does not mix incoming and outgoing states. With a unitary matrix
V (W ) denoting the linear combination of outgoing (incoming) plane-waves, the previous
statements can be expressed as

T ψin
n = (VT )nmψ

out
m , Cψin

n = (VC)nmψ
out
m , Pψout

n = (VP)nmψ
out
m ,

T ψout
n = (WT )nmψ

in
m, Cψout

n = (WC)nmψ
in
m, Pψin

n = (WP)nmψ
in
m,

(9)

where implicit summation has been assumed. Time-reversal, particle-hole, and chiral symme-
try require that WT V ∗

T
= VT W ∗

T
= T 2 = ±1, WPW ∗

P
= VPV ∗

P
= P2 = ±1, and VCWP = C2 = 1,

respectively. We can choose a basis [33, 71, 108] such that the symmetries act on the lead
modes as UT = V T

T
=W T

T
, UP = V T

P
=W T

P
, and UC = V

†
P
=W

†
P

, leading to

UT S∗U
†
T
= S†, UPS∗U

†
P
= S, UCS†U

†
C
= S. (10)

In this work, we consider reflections of a 2D HOTI system with gapped bulk and edges.
The elements of transmission matrices t, t ′ are therefore exponentially supressed with system
size, yielding unitary r and r ′. For this reason, Eq. (10) can be reduced to

UT r∗U
†
T = r†, UP r∗U

†
P = r, UC r†U

†
C
= r. (11)

The above relations are identical to the symmetry constraints of a unitary Floquet operator:

F = exp[−i/ħh

∫ T

0

H(t)d t], (12)

where exp denotes the time-ordered exponential and T is the period of the drive. As detailed
in Ref. [14], these constraints can be obtained using the definition of the Floquet operator and
symmetry relations Eq. (8). They read [14,63]

UTF
∗U

†
T = F

†, UPF
∗U

†
P = F , UCF

†U
†
C
= F . (13)
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By comparing Eqs. (11) and (13), it is evident that local symmetries constrain r and F in
the same manner. The reflection matrix of a D-dimensional HOTI with corner modes in class
S is therefore a (D− 1)-dimensional unitary operator in the same symmetry class S.

C Dimensional reduction map

In this Appendix we show the conditions under which our dimensional reduction map applies
when considering HOTIs of different dimension and symmetry class. We begin by stating these
conditions, and then explain them.

Dimensional reduction map: Every D-dimensional Hermitian TI of order D ≥ 2, in any
symmetry class S, maps to a (D − 1)-dimensional unitary TI of order (D − 1), in the same
symmetry class S, provided that the parent system’s topological corner states are robust against
lattice-symmetry breaking.

A TI in D dimensions is said to be of order N if it hosts topologically protected, gapless
boundary modes of dimension (D−N). The original, strong TIs have an order N = 1, so they
are called first-order topological phases, since their bulk has dimension D and their gapless
surface states have dimension D−1. A HOTI with zero-dimensional topological corner states,
the focus of our work, is thus a HOTI of order D in D dimensions.

Our dimensional reduction map preserves the symmetry class of the tenfold way classifica-
tion of Altland and Zirnbauer [109]. This has been shown in the Appendix above by separately
treating time-reversal, particle-hole, as well as chiral symmetry. Thus, if a Hermitian system
is in symmetry class S, the dimensionally-reduced unitary (its reflection matrix) will still be in
symmetry class S.

This map applies to HOTIs with corner states, in any dimension for which corners can exist
(that is D ≥ 2), as long as they do not rely on lattice symmetry to be protected. This includes
all extrinsic HOTI phases, as well as all intrinsic HOTI phases which are converted to extrinsic
HOTIs when lattice symmetries are broken. Based on the classification results of [33,34], such
D-dimensional TIs of order D with D ≥ 2 are possible in the following symmetry classes: D,
DIII, AIII, BDI, and CII.

By now we have clarified the dimensions and symmetry classes which are covered by our
dimensional reduction procedure. What is left to show is that the reflection matrix of the Dth

order D-dimensional Hermitian TI is indeed topological. We achieve this in the following by
construction, that is by defining a model indpendent method of obtaining the nontrivial r.

Consider a large but finite-sized D-dimensional Hermitian TI of order D, in a D-dimensional
hypercube geometry, hosting 0D corner states at its 2D corners. Note that since we consider
HOTIs that do not rely on lattice symmetries, such a geometry is always possible, and any such
HOTI can be deformed into this geometry after adding suitably many trivial degrees of freedom
to its Hamiltonian. Next, place this Hamiltonian in a two-terminal geometry, by connecting
two opposite hyper-surfaces to semi-infinite waveguides oriented along one of the D space
directions (say x1). The resulting scattering matrix can be computed using Eq. (6). As long as
the bulk and all hyper-surfaces are gapped, the transmission between the leads will vanish, and
the reflection blocks will be unitary. For concreteness, one can use the same lead Hamiltonian
as in the main text, where each of the internal degrees of freedom of each of the boundary
sites is connected to a 1D chain with unit hopping and zero onsite term. This has several
implications. First, the reflection matrix is (D − 1)-dimensional, being parameterized by the
chain index with real-space coordinates x2, x3, . . . , xD. Second, the open boundary condition
will be fixed to the one used in the main text. This means that in the weak coupling limit,
waves reflecting far from the corners of the hypercube will pick up a phase φ → 0. Further,
as shown in Refs. [65–68], resonant reflection from the zero-energy corner states of the HOTI
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will lead to φ = π for waves localized at the corners of the waveguide.
So far, the construction yields a (D−1)-dimensional reflection matrix hostingφ = πmodes

at each of its 2D−1 corners. The final step is to show that these corner modes are indeed
the consquence of a topologically nontrivial unitary, i.e., they cannot be removed without
symmetry-breaking, or closing the gap, or deviating from unitarity. This follows directly from
the topological nature of the parent HOTI system. First, the reflection matrix is in the same
symmetry class as the HOTI (D, DIII, AIII, BDI, or CII), as discussed in the previous Appendix,
which means the corner states are pinned to the middle of the gap [33,34]. The zero-energy
corner states of the HOTI, and therefore also the π modes of the reflection matrix, cannot be
shifted away from this energy (eigenphase) without breaking the local symmetries. The only
option left is that the mid-gap modes of the HOTI annihilate pairwise, which must involve
a closing of the bulk gap or a closing of some of the hyper-surface gaps of the HOTI. These
can have two effects on the reflection matrix: (1) either it stops being unitary, for instance if
the HOTI bulk or if hyper-surfaces that connect the two leads become gapless, or (2) it stops
having a gap around π eigenphase, for instance if the HOTI hyper-surface which becomes
gapless is the one contacting the lead. This shows that the reflection matrix is a topological
unitary: its π modes are protected by unitarity, the eigenphase gap, and the local symmetries.

Finally, we make two remarks about this dimensional reduction map in the context of
previous works. First, as shown in Refs. [115, 116], a D-dimensional Floquet system can be
related to a (D + 1)-dimensional static system by defining a so-called ‘Floquet Hamiltonian’
in a procedure that is commonly called the ‘repeated zone scheme.’ This is different from
our approach, since Refs. [115, 116] explicitly consider periodically-driven systems and the
increase of dimension is associated with processes involving the exchange of photons between
the system and the driving field. In contrast, our work deals with static systems, in the absence
of any driving field. Second, the dimensional reduction procedure defined above is not one-to-
one. If it were, this would imply the existence of an inverse, dimensional raising map, which
starts from a reflection matrix and produces a higher-dimensional Hermitian HOTI. There is
no unique way of doing this, since the reflection matrix encodes only the properties of states
close to the Fermi level, whereas the full static HOTI contains also degrees of freedom far
from the Fermi level. We note that a lack of invertibility is not a detriment when it comes to
establishing connections between topological phases. For instance, the HOTI classification of
Ref. [33], as well as the original, ‘tenfold way’ classification of TIs in Ref. [7] are based on
dimensional reduction maps which are not invertible in general. The reason is the same as in
our case: the map ‘throws away’ high-energy degrees of freedom which are unimportant for
the topological classification.

D Chiral symmetry

It is known that a unitary 1D system with 0/π-modes protected by P follows a Z2 × Z2 clas-
sification, while a Z × Z classification occurs in 1D systems where C is the protecting sym-
metry [14]. To find scattering invariants of a 1D system described by r, we calculate the
reflection matrix r̃(φ = 0,π) of one end of this system [63]. For systems with P , the invari-
ant sign det [r̃(φ = 0,π)] takes only two values, −1 for a system with topologically protected
modes and 1 otherwise. In chiral symmetric phases, the invariant is the number of negative
eigenvalues νn[r̃(φ = 0,π)] in the basis where r̃ is Hermitian [68].

In the phase with a single π-mode per end, r̃(φ = π) is a 2×2 matrix with det [r̃(π)] = −1.
This implies the spectrum of r̃(π) has to be real, and the chiral invariant reads νn[r̃(π)] = 1.
Both invariants are thus in agreement. In the phase with a 0-mode at each end, we obtain the
same values of invariants for φ = 0. Finally, in the anomalous phase, r̃(φ = 0,π) is a unitary
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Figure 4: Eigenphases of the reflection matrix, showingπ-modes (0-modes) and their
associated wavefunctions in red (blue). We consider a bilayer of HOTI systems, each
with 20 × 20 sites. In all panels, λx ,y = 1 and Dx = Dy = 0.15. We have chosen
γx ,y = 0.4 in panels (a) and (d), γx ,y = 1.2 in panel (b), whereas γx = 1.2 and
γy = 0.4 in panel (c). Insets sketch the corresponding dimerization pattern of the
HOTI as well as the sites connected to the lead (green). The system-lead coupling
strength is tsl = 0.5 in all cases.

4×4 matrix with negative determinant. We transform to the basis in which r̃ is Hermitian via
r̃ 7→ U r̃U†, U = diag(i, 1)⊗σ0, and we again obtain νn[r̃(φ = 0,π)] = 1.

For the phases described in the main text, both P and C protect only one 0- and/or π-mode
per end. However, by considering two copies of the 2D HOTI system and coupling them in a
way that preserves local symmetries, one can obtain a reflection matrix with two modes per
end. The momentum-space Hamiltonian for this bilayer system reads

Hbilayer(k) = h(k)η0 + Dxτyσzηy + Dyτxσyηy , (14)

where h(k) is the Hamiltonian Eq. (1) of the main text. Dx and Dy denote intralayer couplings,
while the additional layer degree of freedom is represented by Pauli matrices η. Here, for sim-
plicity, we assumed intralayer hoppings are momentum independent, i.e., they only connect
sites within the unit cell. The chiral symmetry operator reads C = τzσ0η0K. The calculated
reflection matrix spectra for different parameters are plotted in Fig. 4.

In Fig. 4a, the eigenphase spectrum calculated for a bilayer system in the HOTI phase
reveals the presence of four π-modes. They form two pairs, each pair pinned to an end, as
shown in the lower inset. Dimerizing a bilayer system trivially in both directions results in
a trivial Floquet phase, see Fig. 4b. Furthermore, if the system is nontrivial only in the y

direction, the eigenphase spectrum of r contains four 0-modes, as seen in Fig. 4c. Finally,
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attaching leads to a full unit cell on the boundary gives an anomalous phase whose spectra
is plotted in Fig. 4d. The number of negative eigenvalues of r̃ differs by 2 across the phase
transition between trivial and topological phases. For example, the topological phase of a 1D
system with π-modes is described by νn[r̃(φ = π)] = 2 indicating νπ = 1. Therefore, in
the bilayer case, the particle-hole invariant cannot distinguish the topological from the trivial
phase.

E Topological phase transitions of the reflection matrix

The gapless corner modes of a finite 2D system in a HOTI phase, described by the Hamiltonian
Eq. (1) of the main text, can depart from zero energy as a result of various gap closings.
Some of these phase transitions occur only on the edges, like the x-edge gap closing that
appears when γx = λx and γy 6= λy (and vice versa for the y-edge). The vanishing of an
edge gap is related to the appearance of two counter-propagating modes per edge that are
protected by translation symmetry [117–119]. Furthermore, a bulk gap closing occurs for
γx = γy = λx = λy at (kx , ky) = (π,π). These phase transitions affect the reflection matrix r

that describes the left edge of the 2D system.
First, we study the topological phase transition of r induced by a y-edge gap closing of the

2D system. Here, r remains unitary across the phase transition, provided the HOTI remains
insulating in the x direction. Thus, the spectrum of r lies on the unit circle, and henceforth
only its eigenphase (φ) spectrum is plotted. For a finite 2D system, the φ-spectrum can have
topologically protected states at particle-hole invariant eigenphases, as shown in Fig. 2 of the
main text. In this case, the nested scattering matrix topological invariants ν0 and νπ can be
used to study the phase transition. Here, we consider instead results obtained in a ribbon
geometry, for which the HOTI is infinite along the y direction, such that the momentum ky is
a good quantum number. The dispersion of the reflection matrix, φ(ky), is shown in Fig. 5 for
different values of γy/λy , while keeping γx/λx < 1. In this ribbon geometry r is a 2×2 matrix
and its eigenphases form two bands. In Fig. 5a the bands are plotted for a system in a HOTI
phase. For the same parameters, the φ-spectrum of an open 1D system has π-modes (see
Fig. 2a of the main text). For γy = λy a band gap closing occurs at φ = π, thus signaling the
hybridization of two π-modes and their shift into the bulk of the 1D unitary system. Finally,
Fig. 5c corresponds to γy > λy , and shows again two gapped bands. As in Floquet systems,
the phase transition of r is accompanied by a gap closing and reopening.

In a similar fashion, one can also study the phase transition between the phase that sup-
ports 0-modes and a trivial phase. Then, the dispersion of r would show a band gap closing
at φ = 0 for γy = λy . Finally, r that simulates an anomalous Floquet phase is obtained by
attaching lead to a unit cell of sites, and is thus a 4 × 4 matrix in the ky -space. The phase
transition in this case would involve four bands that cross at both 0- and π-eigenphases for
γy = λy .

Phase transitions which preserve the unitarity of r can be studied from the perspective
of its Z2 topological invariants ν0(π). By definition, these invariants are discontinuous at the
phase transition point, and match the value of det[r̃(φ = 0,π)] sufficiently far from it. Thus,
in Fig. 6, we plot the dependence of det[r̃(φ = 0,π)] on dimerization in the y direction. In
Fig. 6a, we start from a system initially dimerized such that r describes a 1D system with π-
modes, hence det[r̃(π)] = −1 and det[r̃(0)] = 1. The latter quantity does not change across
the phase transition, while γy/λy → 1 implies det[r̃(π)] = 0. The nested reflection matrix r̃

has a zero eigenvalue due to the conducting y-edge [67], while for γy > λy , det[r̃(π)] = 1.
Fig. 6b describes a similar situation, as now we start from a system with 0-modes, and there-
fore det[r̃(0)] changes the value from −1 to 1 across the phase transition. If r describes an
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Figure 5: The dispersion φ(ky) of the 2 × 2 matrix r is calculated across the
phase transition related to the y-edge gap closing of the 2D system. In all panels
λx = λy = 1, and there are 36 sites in the x direction. In panel (a), the 2D system
is in a HOTI phase with γx = γy = 0.4. The intracell hoppings for panel (b) are
γx = 0.4 and γy = 1, and in panel (c) γx = 0.4 and γy = 1.2. The band gap closing
at φ = π signals the disappearance of π-modes in the φ-spectrum corresponding to
the reflection matrix of a finite 2D system.

anomalous Floquet phase, increasing γy/λy causes both det[r̃(0)] and det[r̃(π)] to change
values from −1 to 1, as seen in Fig. 6c.

In the case of an x-edge or a bulk gap closing, the finite transmission between the leads
renders r subunitary. This implies that not all complex eigenvalues z of r have |z| = 1, so not
all information is encoded in their phase. Thus, we study these phase transitions by plotting
z in the complex plane (Re(z), Im(z)), like in Fig. 7. For r calculated with open boundary
conditions in the y direction, these eigenvalues are represented by black dots. If however,
we have a finite system with a periodic boundary condition (PBC) in the y direction, z’s are
represented by light blue crosses. To visually identify eigenvalues with |z|= 1, we always plot
a unit circle, colored in grey.

Due to the weak link (hopping strength tsl) between the system and the lead (with hopping
tlead), translation symmetry is broken at the system-lead interface. The weak link causes back-
scattering of the gapless edge and bulk states present in the 2D system at its phase transitions.
As such, det r = 0, which would correspond to perfect transmission, does not exactly coincide
with gap closings of the 2D system. Rather, det r = 0 for γx/λx = 1− δ, with δ > 0, where δ
is a function of tls. This explains why in Fig. 7 the zero eigenvalues of the reflection matrix do
not occur exactly at γx = 1, but are shifted closer to the value γx = 0.925.

We start with a unitary r whose φ-spectrum has two π-modes denoted by red color in
Fig. 7a. As γx increases (while keeping γy/λy constant), these boundary modes shift along the
x-axis. For an appropriate δ, they are located exactly at (Re(z), Im(z)) = (0,0) and det r = 0
(see Fig. 7b). By further increasing γx/λx , these modes move along the horizontal axis to
become 0-modes, colored in dark blue in Fig. 7c. Meanwhile, the r eigenvalues calculated
in the presence of a PBC remain on the unit circle, as gapless counter-propagating modes on
opposite edges are now coupled.

In the proximity of a bulk gap closing, r has a phase transition between a topological and
a trivial phase. To study the latter, we start from r with two π-modes, whose spectrum is
plotted in Fig. 7d. As the system approaches the phase transition point, these modes split
into a complex-conjugate pair that does not lie on the unit circle, as seen in Fig. 7e. This is
because the system conducts but not with a unit conductance due to finite size energy splittings.
Finite size effects are eliminated upon the introduction of PBC, as we see two bulk modes at
(Re(z), Im(z)) = (0,0) in Fig. 7e. Increasing intracell hoppings with respect to intercell ones
moves all modes back to the unit circle. We see in Fig. 7f that r now describes a trivial system.
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Figure 6: The dependence of det[r̃] at eigenphases φ = 0,π on the ratio γy/λy ,
with λx = λy = 1. In panels (a) and (b) we use γx = 0.4 and γx = 1.2, respectively,
and r is obtained by attaching leads only to the sites closest to the boundary of the
2D HOTI. In panel (c) however, r is calculated for leads attached to the full unit cell
of the 2D system, while the parameters are the same as in panel (a). In all panels,
the 2D system consists of 100× 100 sites and it is connected to leads with hopping
strength tlead = 1 via a weak link with hopping strength tsl = 0.5.

Figure 7: Eigenvalues of r (called z) are represented in the complex plane
(Re(z), Im(z)). The matrix r is calculated for a system made of 36×36 sites. The spec-
trum of an open system is denoted by black dots, while light blue crosses represent
the spectrum in the presence of a periodic boundary condition in the y direction. We
always take λx = λy = 1, and panels (a) and (d) are calculated for γx = γy = 0.4.
Red and dark blue dots correspond to π-modes and 0-modes, respectively, of the φ-
spectrum. Panels (b) and (c) have the same γy = 0.4 and differ in γx = 0.925 and
γx = 1.2, respectively. Intracell hoppings in panel (e) are γx = 0.925 and γy = 1,
while γx = γy = 1.2 in panel (f). As in Fig. 6, we take tlead = 1 and tsl = 0.5 for all
panels.
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F Fictitious time-evolution operator

The time-evolution operator for a periodically-driven 1D system described by a Hamiltonian
H(t, k) = H(t + T, k) (where T is the driving period) reads

U(t, k) = exp[−i/ħh

∫ t

0

H(t ′, k)d t ′]. (15)

Here, exp denotes a time-ordered exponential, and k is the momentum. At t = T , U(T, k) =

F(k), where F is the Floquet operator defined in Eq. (12) of Appendix B.
At t = 0, U(0, k) is an identity matrix and all its eigenphases are fixed to zero. One

can characterize the Floquet operator topology by studying the winding of the eigenphases of
U(t, k) as a function of t and k. For a system in class D, the associated topological invariants
Q0, Qπ count the number of topological 0-modes and π-modes at the boundary of the Floquet
system. These invariants are computed as the parity of the number of times the eigenphases
cross values 0 (π), in the interval t ∈ (0, T], at momenta k = 0, and k = π [72].

In the following, we show how the reflection matrix that simulates a Floquet operator can
be continuously deformed to the identity. This deformation simulates a time-evolution process
described with a fictitious time-evolution operator. We find a parametrization of the reflection
matrix r(s, k) which produces the original reflection matrix for s = 0 and the identity matrix
for s = 1. Note that this corresponds to a ‘backwards’ time evolution, but yields the same
topological invariants. The parameter 0 ≤ s ≤ 1 controls changes in the hopping strengths in
Eq. (1).

We start with the scattering region in the limit γx = γy = 0 and λx = λy = 1. In real space,
there are two π-modes in the eigenphase spectrum of r. In momentum space, the eigenphase
spectrum of r(ky) resembles the one in Fig. 5a and is gapped at φ = 0,π ∀ky . To deform it to
the identity, we consider a three-step process:

1. For 0 ≤ s ≤ 1
3 , we change hoppings along the y direction as γy = 3s and λy = 1− 3s,

with all other parameters kept constant. At the point γy = λy , there is a π-gap crossing
of the reflection matrix eigenphase bands, like in Fig. 5b. As explained in App. E, this
process preserves the unitary nature of the reflection matrix.

2. For 1
3 ≤ s ≤ 2

3 , the dimerization pattern in the x direction alternates, i.e. γx = 3s−1 and
λx = 2−3s, with all other parameters kept constant. r remains unitary throughout this
process.

3. For 2
3 ≤ s ≤ 1, we eliminate the remaining hopping in the y direction by taking γy = 3s−2.

After this step, the 2D system becomes a stack of independent trivial chains oriented in
the x direction. The resulting r = 1 because every incoming plane-wave will be back-
reflected into the lead from the same position and with a vanishing phase difference.

In Fig. 8a and Fig. 8b, we plot the eigenphases of r(ky = 0) and r(ky = π) during this
process. There are no crossings of eigenphases at 0, and thus Q0 = 0 (even parity) is trivial.
Indeed, there are no zero-modes at the boundaries of the reflection matrix. For the momentum
ky = π, the eigenphases close the π-gap at the point γy = λy = 1/2 and then evolve towards
φ = 0. This implies Qπ = 1 (odd parity), consistent with the presence of π-modes at the
boundaries of r. This Z2 invariant agrees with the topological invariant νπ calculated for a
finite chain that is obtained using the nested scattering matrix method.

Next, we consider a scattering region in the limit γx = λy = 1 and γy = λx = 0. With
open boundaries, its reflection matrix supports isolated 0-modes. To deform it to the identity,
we consider a following two-step process:
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Figure 8: In panels (a) and (b), we consider r(ky = 0,π) that simulates a Floquet
system with π-modes, and show it can be adiabatically related to the identity matrix.
In panels (c) and (d), we study how eigenphases of r(ky = 0,π) that simulates
a Floquet system with 0-modes change upon smooth deformations to the identity
matrix. In panels (a) and (c), we assume ky = 0, and ky = π for panels (b) and
(d). In all panels, we consider a system in the ribbon geometry, with 36 sites in the
x direction.

1. For 0 ≤ s ≤ 1
2 , the dimerization pattern in the x direction alternates, i.e. γy = 2s and

λy = 1 − 2s, with all other parameters kept constant. As before, r remains unitary
throughout this process.

2. For 1
2 ≤ s ≤ 1, we eliminate the remaining hopping in the y direction by taking γy = 2−2s.

Following this step, the 2D system is a stack of independent trivial chains oriented in the
x direction, and its r = 1 as explained previously.

Finally, we show in Fig. 8c (Fig. 8d) how the eigenphases of r(ky = 0) (r(ky = π)) change
during this two-step process. We observe no crossing at eigenphase π, so Qπ = 0 (even)
is trivial, consistent with the absence of π modes at the boundaries of the reflection matrix.
There is only one crossing at zero eigenphase, such that the invariant Q0 = 1 (odd) agrees
with the Z2 invariant ν0 calculated for a finite chain.
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