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Abstract

Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic

hypoxia, signify a tumor’s resistance to therapy. Although recent research has shed light on

the intracellularmechanisms of cancer metabolic reprogramming, little is known about how

tumors become metabolically heterogeneous or chronically hypoxic, namely the initial con-

ditions and spatiotemporal dynamics that drive these cell population conditions. To study

these aspects, we developed a minimal, spatially-resolved simulation framework for model-

ing tissue-scale mixed populations of cells based on diffusible particles the cells consume

and release, the concentrations of which determine their behavior in arbitrarily complex

ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate

metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give

rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel ques-

tions in the context of these results: (1) How will two metabolically symbiotic cell subpopula-

tions self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a

robust pattern of alternating striations. (2) What is the proper time scale to observe stable

local regions of chronic hypoxia? We observe the stability is a function of the balance of

three factors related toO2—diffusion rate, local vessel release rate, and viable and hypoxic

tumor cell consumption rate. We anticipate our simulation framework will help researchers

design better experiments and generate novel hypotheses to better understand dynamic,

emergent whole-tumor behavior.

Introduction

Tumors are disorganized, heterogeneous tissues, consisting of many distinct cell types in spa-

tially complex arrangements. The somatic evolution of early carcinogenesis feeds on sources of

phenotypical variation present in tumor and surrounding stromal tissue. Besides the poly-

clonal proliferating cancer cell population undergoing somatic evolution [1], tumors include

non-proliferating stromal cells, fibroblasts, immune cells, extracellular matrix, collagen, blood

vessels, and other structures and cell types [2–4]—these include “normal” cells that are
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conscripted by transformed cells to play collaborative roles in the neoplastic agenda. So there

is a large degree of genotypic and phenotypic heterogeneity composing a tumor. Since tumors

originate in physiological structures that range from simple epithelial sheets to ducts to neural

and muscle tissue, and often invade neighboring tissues and then metastasize, colonizing dis-

tant tissues, the spatial situations and geometric structural relationships of tumors are them-

selves complex and heterogeneous. Add to this the dynamic character of the

microenvironment, from high frequency variations in oxygen, nutrient, and signaling mole-

cule concentrations, to longer time scale processes like the synthesis of extracellular matrix

and blood vessels during angiogenesis.

As a tumor grows, it rapidly outstrips its blood supply. High proliferation causes high cell

density that overtaxes local oxygen supply. This leaves portions of the tumor with an oxygen

concentration significantly lower than in healthy tissues. This stress condition is tumor hyp-

oxia. Hypoxia is strongly correlated with poor prognosis as it renders tumors less responsive to

chemotherapy and radiotherapy [4–6]. Hypoxia-inducible factors (HIFs) are transcription fac-

tors that respond to changes in available oxygen in the cellular environment, specifically to

hypoxia. When activated, HIF-1 upregulates several genes to promote survival in low-oxygen

conditions. These include glycolysis enzymes that allow cells to synthesize ATP in an oxygen-

independent manner, and vascular endothelial growth factor (VEGF) that cells release to pro-

mote angiogenesis. So hypoxia is directly instrumental in tumor progression. Prolonged or

extreme hypoxia can lead to necrosis, and tumors often have central regions called necrotic

cores [7]. Necrosis in turn activates inflammatory responses that produce cytokines that stimu-

late tumor growth [4]. Recent research has investigated the interactions between hypoxic

tumor cells and immune cells (tumor-associated macrophages [8]) and cells that synthesize

extracellular matrix (tumor-associated fibroblasts [9, 10]). Both are involved with inflamma-

tory processes tied to tumor progression. In the context of the tumor microenvironment, these

interactions regulate tumor properties like spatial patterns of cell localization, angiogenesis,

and collective invasion and migration [11, 12]. Thus it is of theoretical and clinical significance

to understand how, and under what conditions, hypoxia arises in tumors.

We are especially interested in simulating how tumor chronic hypoxia interacts with tumor

metabolic heterogeneity [13–15]. In tumors, while the Warburg effect [16, 17] is commonly

observed, aerobic glycolysis is not the only metabolic program cancer cells follow. In fact,

there are experiments and mathematical models to suggest the metabolic strategies tumors

use, when considered as a whole, are quite dynamic [18–20]. As a tumor progresses, it negoti-

ates a course of barriers to proliferation [2, 3, 21]. Its gain of oncogenic function [22–29], and

loss of tumor suppressor function [30–32], give rise to changing bioenergetic and biosynthetic

requirements for proliferation in the face of the new obstacles [20]. So the tumor cells’ meta-

bolic programs are varied and in flux, following from this coevolution. Direct in vivo detection

and quantification of metabolic heterogeneity dates back to at least 1990, using 1HNMR spec-

troscopic imaging of human intracranial tumors [33], and has progressed more recently to use

3D high-resolution fluorescence imaging, for example, of human breast tumors [34], and
18F-FDG PET/CT imaging, for example, of invasive ductal carcinoma of the breast [35] and

head and neck tumors [36]. One recent study finds a hypoxic non-Warburg metabolic pheno-

type plays an active role in tumorigenesis [37].

For a long time, there was no systematic characterization of metabolic pathways active in

transformed cells, so the contribution of these pathways in promoting rapid cancer cell prolif-

eration was unclear. But in 2012, Jain, et al [38] produced a comprehensive metabolite profile

for each of the NCI-60, a set of sixty well-characterized primary human cancer cell lines estab-

lished from nine common tumor types. To systematically characterize cancer cell metabolism,
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they created cellular consumption and release (CORE) profiles of 219 metabolites spanning

the major pathways of intermediate metabolism. We were particularly encouraged by the con-

ceptual approach Jain, et al undertook in their methods, namely, that cancer cell metabolic

reprogrammingmanifests as altered nutrient uptake and release. In other words, the gross

quantitative properties of cellular consumption rate and release rate of metabolites (and other

particles, like gasses and signaling molecules) is sufficient to characterize and distinguish can-

cer cell metabolic phenotypes from an extracellular perspective.

When one is deciding how to create a computational model of a cell population, the pri-

mary choice is whether it should be continuous or discrete (or a hybrid). Usually, this

breaks out into two canonical design dimensions. In the first, one can represent cells as

points, or as being composed of sub-elements. In the second, cells can occupy positions on

a fixed, regular lattice, or positions off-lattice. The lattice-gas cellular automata model [39]

is an example of cells-as-points on a lattice. The off-lattice hybrid discrete-continuum

model [40] is an example of cells-as-points off-lattice. The cellular Potts model [41–49] is an

example of cells composed of sub-elements on a lattice. The sub-cellular viscoelastic model

[50] is an example of cells composed as sub-elements off-lattice. Considering the canonical

modeling dimensions, one should weigh several trade-offs. When one models cells as

points, one can represent large numbers of cells in a computationally efficient manner; but

the model is coarse-grained, neglecting cell mechanics and other biophysical consider-

ations. When one models cells composed of sub-elements, one can better represent cell

shape, cytoskeleton, and internal structure; but this requires more computation and one

can therefore represent fewer objects. Lattice-based models are computationally efficient

and afford a simpler algorithmic design; but the complexity depends on lattice size, not the

number of objects, and the rigid structure of the lattice can affect morphology and behavior.

Off-lattice models have a complexity that depends on the number of objects being modeled,

and one can model cell movement and morphology continuously; but collision detection is

computationally expensive, and interactions between nearby elements can be more expen-

sive than using a lattice.

We restrict our focus to individual-based, spatially-resolved, diffusive models that can rep-

resent the gross metabolic phenotypical properties measured by Jain, et al [38], namely distinct

consumption and release profiles, and particle types with distinct diffusion rates. Using the

spatial simulation framework developed by Cleveland, et al [51] as a starting point, we devel-

oped a fast, minimal simulation of a metabolically and spatially heterogeneous cell population

with diffusible metabolites, gasses, and signaling molecules. We extend the framework in sig-

nificant and novel ways to further suit our needs. First, we can support any number of cell

types and any number of particle types (each with its own diffusion rate). Second, each cell

type has default behaviors, as before, and conditional behaviors, which can implement pheno-

typical adaptations and mutations, and state machines composed of two or more cell types.

Third, initial, and upper- and lower-bounded basal concentrations can be set for each particle

type. Fourth, each cell type can be replaceable or not, and reproductive or not. Fifth, initial lat-

tice occupation can be delayed to establish complex diffusion gradients to form prior to

simulation.

We observe important emergent phenomena such as metabolic symbiosis [52, 53], necrotic

core formation, and stable local regions of chronic hypoxia like we observe in xenographed

hypoxic tumor histology (see the Materials and Methods section below for histology image

availability). The 3D lattice data structure is simple, regular, and easy to interrogate by feature

measurer and feature integrator modules one can later implement to detect emergent phe-

nomena—we elaborate on this in the conclusion.
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Materials and Methods

Cellular automaton

The universe of the simulation is a 2D or 3D cellular automaton [54]. Hereafter, for the sake of

defining the simulation, we shall assume a 3D configuration, though many of the examples

appearing on the page will naturally lend themselves better to a 2D presentation. A cellular

automaton works according to the following principles. Each box inside a regular 3D lattice

represents a cell, whose position is specified by an integer-valued three-tuple, (i, j, k). Each cell

is one of a finite number of states. For simplicity, let us assume these states are “on” and “off.”

Each cell has a well-defined neighborhood of adjacent cells, where neighborhood can be

defined in a flexible way, most commonly immediate neighbors. All cells are initialized to

some state at time = 0. Then, at each subsequent time step (time = 1, 2, . . .), the cells’ states are

updated according to fixed rules that determine the new state of the cell as a function of the

cell’s current state and those of its neighbors. The state update rules are applied uniformly and

simultaneously to the whole lattice of cells. In this way, the cellular automaton evolves as a

whole, and patterns in the population of cells emerge over time that cannot be predicted with-

out performing the requisite computation.

The spatial simulation

In the context of simulating large, heterogeneous cell populations, we need a flexible and

extensible framework. We first specify the dimensions of our universe as x_dim, y_dim, and

z_dim parameters—running examples will execute on a 40 × 40 × 40 lattice—and the total run-

ning time of the simulator, where time steps are in arbitrary time units, and can be scaled

using a time parameter, τ. We wish to simulateM types of cell: T = {v, ε, α, β, γ, δ, . . .}, where v
and ε are special types related to a blood vessel and “empty” space, respectively. (Note “empty”

may be simply interpreted as “devoid of any cellular function”; units of “empty” space could be

used to model a lumen, the inside space of a tubular structure, which is of particular interest to

those modeling colonic crypts, or lung and pancreatic adenocarcinomas, for instance.) We fur-

ther wish to simulate N types of diffusible particles that cells can consume and release. At any

given time, each (i, j, k) is occupied by some t 2 T. Each cell type, t 2 Tn{v, ε}, has a two sets of
parameters that specify its behavior.

First are the default parameters. These include: ct,p, the consumption rate of particle type p;

rt,p, the release rate of particle type p; σt,p, the impact factor of each particle type p; whether or

not t is replaceable; and whether or not t is reproductive. These can be thought of as imple-

menting the cells’ genotypical (native) behaviors, as viewed from an outside, cell population

perspective.

Second are the conditional parameters. These are formulated as trigger-action pairs. A trig-

ger is a set of one or more predicates that are based on particle concentrations, as measured by

the cell in its locality. All trigger predicates must be true to execute the associated action. An

action is a set of commands which are executed sequentially. The possible commands include:

apoptosis; become (“jump to”) another cell type, t0 2 Tn{v, ε, t}; set the consumption rate of

particle type p to a target value; set the release rate of particle type p to a target value; set the

impact factor of particle type p to a target value; set the Boolean condition of being replaceable;

and set the Boolean condition of being reproductive. This conditional degree of flexibility

grants us the ability to implement cell mutational events (the action to become another cell

type) and the cells’ phenotypical response behaviors (all of the actions), again as viewed from

an outside, cell population perspective.

Simulating Heterogeneous Tumor Cell Populations
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The initial cell population in the lattice constitutes another set of parameters. The default

cell type for the lattice is empty (ε). One can manually specify cell types at individual locations,

or can algorithmically do this, using arbitrary functions, including stochastic ones, to specify

the initial population. An initialization delay parameter specifies when the all-empty lattice is

replaced by its initial configuration. Its default value is 0, but can be set to any future time step,

to allow, for example, one to establish a concentration gradient (or set of gradients), that may

take many time steps, prior to introducing the cells into it.

Each time step drives the simulation through four phases. Particles are consumed and

released according to the cell type’s consumption and release rates, respectively, for that parti-

cle type. Particles continually diffuse in R3 according to the particle type’s diffusion rate. A

cell’s fitness is first individually computed as a function of impinging concentrations of the

particles in combination with the cell type’s impact factors corresponding to each particle type.

Then its fitness is computed from the fitness scores of individuals in its neighborhood, accord-

ing to their cell types. This defines a distribution that will be statistically sampled to determine

what cell type each lattice location will contain in the next time step.

Phase 1: consume and release particles

Let P denote the set of particle types, and ρp(i, j, k) denote the normalized concentration of par-

ticle type p 2 P at location (i, j, k). Concentrations of particles evolve at each time step by the

following. For each particle type p 2 P, for each cell type t 2 Tn{v, ε}, set

rpði; j; kÞ ¼ rpði; j; kÞ � ð1� ct;p þ rt;pÞ: ð1Þ

Note that cell type v (vessel) has some special default properties related to particles. These

defaults implement an assumption we make that a vessel is a perfect source for certain particles

(releasing them to full concentration) and a perfect sink for others (consuming them to zero

concentration). That is, if location (i, j, k) contains cell type v, then 8τ: 8p 2 P, rv,p = 1: ρp(i, j,

k) = 1 and 8τ: 8p 2 P, cv,p = 1: ρp(i, j, k) = 0. These default properties can be overridden by spec-

ifying non-unity vessel consumption and release rates for each particle type. In addition,

should one wish to simulate more complex scenarios involving vessels—like the heterogeneity

of perfusion—one can define a family of new cell types that act like vessels, each of which has

distinct consumption and release rates, and populate the regions of interest accordingly.

The simulator has additional parameters related to particle concentrations. Initial concen-

trations, and basal upper and lower bounds, can be set for each particle type. For the latter, the

simulator enforces the bounds in this phase at each time step: those concentrations falling

below the lower bound are set to the lower bound; those rising above the upper bound are set

to the upper bound.

Phase 2: diffuse particles

At each time step, each lattice point’s concentration of the particles it contains is updated

according to the diffusion rate, Dp, of each particle type p. Each particle type’s concentration

field, ρp, undergoes an isotropic 3D Gaussian convolution, using a 5 × 5 × 5 mask with

s ¼
ffiffiffiffiffiffiffiffi

2Dp

p

. The n-dimensional Gaussian kernel is defined as

Gnð~x; sÞ ¼
1

ð
ffiffi

ð
p

2pÞsÞ
n
e
�
j~x j2

2s2 : ð2Þ

We assume input array values outside the bounds of the array are equal to the nearest array

border value. We accomplish the convolution using Matlab’s imfilter command.
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Equivalently, consider each individual particle taking a random walk in each of the three

dimensions [55]. Let q be a number drawn from a standard normal distribution, q* N(0, 1),

and τ be a scaled time variable with respect to the simulation’s clock tick value. Concentrations

of particles diffuse at each time step by the following. For each particle p0 of type p 2 P,

Dxp0 ¼ Dyp0 ¼ Dzp0 ¼ q
ffiffiffiffiffiffiffiffiffiffi

2Dpt
p

: ð3Þ

Phase 3: compute fitness scores

For each location in the lattice (i, j, k), and for each cell type t 2 Tn{v, ε}, let us define a local fit-
ness function

ftði; j; kÞ ¼ ½st;1 � r1
ði; j; kÞ þ st;2 � r2

ði; j; kÞ þ :::þ st;n � rnði; j; kÞ� � I t; ð4Þ

where ρp(i, j, k) denotes the normalized concentration of particle type p at location (i, j, k); σt,p
denotes the impact of particle type p on t; and I t denotes the indicator function that is true if

and only if location (i, j, k) is occupied by cell type t, reflecting the simulator design assertion

of exclusive occupancy of one cell type per location. We define fε(i, j, k) = 0.

After we compute these individual fitness scores for each lattice location, we use them to

decide probabilistically what cell type each location (i, j, k) should contain in the next time

step. For each location in the lattice (i, j, k), and for each cell type t 2 Tn{v}, let us define a

neighborhood fitness function

Ftði; j; kÞ ¼
1

N

X

ði0 ;j0 ;k0Þ2neighbors

ftði
0; j0; k0Þ; ð5Þ

where Ft(i, j, k) denotes the probability that the cell at location (i, j, k) becomes cell type t; and

N denotes the number of neighbors in the sum. Note that since (i, j, k) may reside on an edge

or corner of the lattice, the number of its immediate neighbors is bounded from above by 8 (in

2D) and 26 (in 3D).

Phase 4: reproduce probabilistically

Each cell’s immediate neighbors give a distribution from which to draw the target cell type. Let

S(i, j, k) = ∑t 2 Tn{v} Ft(i, j, k). In this scheme, if S(i, j, k)>1, then we normalize it to 1; and if S(i,

j, k)<1 then there is some probability that location (i, j, k) will become empty (t = ε) in the

next time step.

We accomplish this as follows. Let shrinkage factor l ¼ 1

Sði;j;kÞ
. For each t 2 Tn{v}, shrink

each cell type’s probability contribution: Ft(i, j, k) = λ � Ft(i, j, k). We can represent each Ft(i, j,

k) as a subinterval of the unit interval. We place them side by side to cover the unit interval.

Then we draw a random number, r, uniformly in [0, 1]; whichever cell type’s interval r resides

in determines the target cell type of (i, j, k) for the next time step.

Note that cell type v (vessel) defaults to being neither replaceable (its fate is exempt) nor

reproductive (it casts no vote), so it is effectively neutral with respect to this reproduction

phase of the simulation. Vessels are static features of the spatiotemporal landscape.

Computing and plotting statistics

Between phases 3 and 4, the simulator computes and displays a number of useful statistics for

the user. These are organized into a console style grid of plots below. Since we can often get a

good sense of what is happening by examining 2D slices of our 3D world, and because render-

ing 3D plots is computational expensive, the dashboard consists of mostly 2D plots, and
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defaults to showing 2D slices on the z dim
2

plane; for a 40 × 40 × 40 simulation, for example, the

2D plots show the plane z = 20.

On the first row, in column:

1. Spatial organization of all cell types: 2D slice, color coded

2. Time series plot of the wall clock seconds elapsed at each time step (performance

diagnostic)

On the second row, in column:

1. Spatial organization of individual fitness of cell type 1: 3D scatter plot, color coded, intensity

level denotes fitness

2. same as above for cell types 2, . . .,M − 1

3. Spatial organization of individual fitness of cell typeM: 3D scatter plot, color coded, inten-

sity level denotes fitness

4. Time series plot of each cell type’s population at each time step, color coded

On the third row, in column:

1. Spatial organization of individual fitness of cell type 1: 2D slice, color coded, intensity level

denotes fitness

2. same as above for cell types 2, . . .,M − 1

3. Spatial organization of individual fitness of cell typeM: 2D slice, color coded, intensity level

denotes fitness

4. Time series plot of each cell type’s mean individual fitness (± standard deviation) at each

time step, color coded

On the fourth row, in column:

1. Spatial organization of neighborhood fitness of cell type 1: 2D slice, color coded, intensity

level denotes fitness

2. same as above for cell types 2, . . .,M − 1

3. Spatial organization of neighborhood fitness of cell typeM: 2D slice, color coded, intensity

level denotes fitness

4. Time series plot of each cell type’s mean neighborhood fitness (± standard deviation) at

each time step, color coded

On the fifth row, in column:

1. Time series plot of cell type 1’s x, y, z extents, color coded

2. same as above for cell types 2, . . .,M − 1

3. Time series plot of cell typeM’s x, y, z extents, color coded

4. Time series plot of each cell type’s whole-image Euler-Poincare characteristic at each time

step, color coded

Simulating Heterogeneous Tumor Cell Populations
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On the sixth row, in column:

1. Particle type 1 concentration: 2D slice, mesh plot

2. same as above for particle types 2, . . ., N − 1

3. Particle type N concentration: 2D slice, mesh plot

Figs 1 and 2 show these as they appear in the simulator console for 2D and 3D simulations,

respectively.

Code availability

The simulator was coded in Matlab. It depends on three libraries: Colormap and Colorbar

Utilities (to stabilize colormaps in multi-plot figures), freezeColors/unfreezeColors (to stabilize

colorbars in multi-plot figures), and Geometric Measures in 2D/3D Images (for computing

Minkowski functionals and the Euler-Poincaré characteristic—see Future Work section

below).

The simulator code is available in the GitHub repository: https://github.com/aesundstrom/

tumor-hypoxia-simulation

Histology image availability

Our histology images of chronic tumor hypoxia are available in the Harvard Dataverse:

http://dx.doi.org/10.7910/DVN/SI32FV

Results and Discussion

Metabolic symbiosis (2D)

Setup. In this simulation, we have hypoxic and aerobic tumor cells in the “metabolic sym-

biosis” scenario illustrated in Fig 3. We have glucose (glu), oxygen (O2), and lactate (lac) parti-

cles.Hypoxic cells consume glu at a certain rate, and release lac at the same rate. Aerobic cells

consume O2 and lac at the same rate, and release no particles. In terms of particles and fitness,

glu positively impacts the fitness of hypoxic cells; and O2 and lac positively impact the fitness of

aerobic cells. All rates and impacts are the same quantities for the two cell types. The one vessel

that extends along the bottom row consumes lac and releases glu and O2. Both cell types are

replaceable and reproductive. The specific quantities mentioned here are given in the tables

below.

Configuration parameters. We populate configuration parameters as stated in Tables 1–9.

Initial conditions. The simulation opens with the initial concentrations of glu and O2 set

to zero, and lac set to a negligible amount—otherwise, if it too were set to zero, then given the

nature of how our simulation computes particle concentrations after cellular consumption

and release, it would remain zero throughout the simulation—as specified in Table 2, and

lower-bounded basal concentrations of glu and O2, as specified in Table 3. These diffuse with

rates specified in Table 1. We initialize the 2D lattice with the top half hypoxic cells, the bottom

half aerobic cells, and place one vessel that extends along the bottom row.

Discussion. We observe in Fig 4 that the hypoxic and aerobic cell populations immediately

begin to mix at their horizontal interface. Then a thick horizontal layer of aerobic cells pulls

away and migrates upward; transiently, it appears that the populations of hypoxic and aerobic

cells have swapped positions. Then a thick horizontal layer of aerobic cells pulls away and

migrates downward. This inversion and pull-away migration repeats at successively smaller

length scales, all the while maintaining its near perfect horizontality, until the entire area is
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Fig 1. 2D simulation console.Simulator console displaying an evolving necrotic core in a 40 × 40 lattice. The simulation consists of four
cell types—empty (blue), viable (red), hypoxic (green), and necrotic (orange)—and one particle type,O2. In row 1, column 1, the cell
population at this point in the simulation consists of all cell types. In rows 2-5, columns 1-3, all cell types except empty have fitness and other
spatial statistics reported. In row 6, the concentration ofO2 is reported. In column 4, rows 2-5, aggregate cell type statistics are reported in
time series.

doi:10.1371/journal.pone.0168984.g001
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Fig 2. 3D simulation console.Simulator console displaying evolving regions of stable chronic hypoxia with many vessels in a 40 × 40 × 40
lattice. The simulation consists of five cell types—vessel (white), empty (blue), viable (red), hypoxic (green), and necrotic (orange)—and one
particle type,O2. In row 1, column 1, the cell population at this point in the simulation consists of hypoxic and necrotic cells. In rows 2-5,
columns 1-3, all cell types except vessel and empty have fitness and other spatial statistics reported. In row 6, the concentration ofO2 is
reported. In column 4, rows 2-5, aggregate cell type statistics are reported in time series. Components of the console displaying 2D plots
show the plane z = 20.

doi:10.1371/journal.pone.0168984.g002
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Fig 3. Metabolic symbiosis. A schematic view of the “metabolic symbiosis” [52, 53] between hypoxic and
aerobic tumor cells, where lactate produced by hypoxic cells is taken up by aerobic cells, which use it as their
principal substrate for oxidative phosphorylation. The two cell types thereby mutually regulate their access to
energy metabolites. Note the orientation of glucose, oxygen, and lactate gradients with respect to the blood
vessel at the bottom.

doi:10.1371/journal.pone.0168984.g003

Table 1. Diffusion rate of each particle type.

glu O2 lac

1 1 1

doi:10.1371/journal.pone.0168984.t001
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Table 2. Initial concentration of each particle type.

glu O2 lac

0 0 0.01

doi:10.1371/journal.pone.0168984.t002

Table 3. Basal lower-bound concentration of each particle type by cell type.

cell type glu O2 lac

vessel 0.1 0.1 0

empty 0.1 0.1 0

hypoxic 0.1 0.1 0

aerobic 0.1 0.1 0

doi:10.1371/journal.pone.0168984.t003

Table 4. Basal upper-bound concentration of each particle type by cell type.

cell type glu O2 lac

vessel 1 1 1

empty 1 1 1

hypoxic 1 1 1

aerobic 1 1 1

doi:10.1371/journal.pone.0168984.t004

Table 5. Consumption rate of each particle type by cell type.

cell type glu O2 lac

vessel 0 0 10.0

empty 0 0 0

hypoxic 1.0 0 0

aerobic 0 1.0 1.0

doi:10.1371/journal.pone.0168984.t005

Table 6. Release rate for of particle type by cell type.

cell type glu O2 lac

vessel 10.0 10.0 0

empty 0 0 0

hypoxic 0 0 1.0

aerobic 0 0 0

doi:10.1371/journal.pone.0168984.t006

Table 7. Impact factor of each particle type upon each cell type.

cell type glu O2 lac

vessel 0 0 0

empty 0 0 0

hypoxic 1 0 0

aerobic 0 1 1

doi:10.1371/journal.pone.0168984.t007
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covered in a regular striation pattern: horizontal, equal thickness layers of aerobic and hypoxic

cells alternate from top to bottom. This pattern is stable for the duration of the simulation, and

perhaps indefinitely. In Fig 5 we observe that since the two cell populations always fill the

entire area, their population dynamics is always zero-sum in character. From generation 10 to

50, aerobic cells dominate; but from generation 50 onward, the two populations converge at,

and oscillate about, the same mean size. We expect neither the reaction-diffusion [56] type

emergent striation pattern nor the population size rebalancing.

That being said, we struggle to understand our results in a biologically meaningful way.

While cell self-sorting is possible in principle, we are unaware of any in vitro or in vivo studies

of metabolic symbiosis that observe alternating striation patterns of hypoxic and aerobic cell

types. Though we base our simulation of metabolic symbiosis on an illustrative explanation in

Sonveaux, et al [53], perhaps our assumption that aerobic cells are totally dependent on lactate

and do not consume glucose is unrealistic. The striations may also result from numerical arti-

facts emerging from the fitness calculations and initial conditions; for instance, this could arise

from resonance created by the kinetics of the system and the simulation time step. In the simu-

lation, all cells move zero or one lattice point in a given time step, so the discrete nature of the

cell replacement may result in an artifact; in a true biological context, this would be smoothed

by varying migration rates in the locality of any given cell. In a follow-up study, we will try to

reproduce these results over a range of particle diffusivities and cell migration rates—since we

use fitness-based probabilistic replacement as a surrogate for modeling explicit cell migration,

we would explore a range of fitness parameters for this purpose.

We ran this simulation 10 times and observed the results were similar. First, we analyzed

the spatial frequency of the striations over the simulations. Each simulation produces a spatial

cell occupation map as it evolves and as its final output. To show the consistent spatial period-

icity of the striations of aerobic and hypoxic cells across simulations, we used Matlab’s FFT2

function to transform each resulting occupation map into the frequency domain, then exam-

ined the mean FFT2 magnitude over 10 simulations. See S1 Fig. Notice the two energy loci

above and below the center. They are distant from the center due to the sharp boundaries (and

thus high spatial frequency information) of the striations. They are vertically oriented from the

center because the striations tend to be horizontal and are thus perpendicular to the FFT2

magnitude orientation. And the loci are tightly clustered, indicating the consistent periodicity

Table 8. Replaceable predicate of each cell type.

cell type replaceable?

vessel No

empty Yes

hypoxic Yes

aerobic Yes

doi:10.1371/journal.pone.0168984.t008

Table 9. Reproductive predicate of each cell type.

cell type reproductive?

vessel No

empty Yes

hypoxic Yes

aerobic Yes

doi:10.1371/journal.pone.0168984.t009
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of striations between simulations. S2 and S3 Figs attest to the dispersion and noise in the spa-

tial frequency data. The maximum standard deviation is 0.43 times the maximummean value,

and no regions of high noise-to-signal ratio colocate with the two energy loci; rather, the noise

appears uniformly distributed across the energy surface. Looking at the population evolution

(S4–S6 Figs), the overlaid simulation trajectories show the similar population dynamics. In S5

Fig, notice the standard deviations are identical for hypoxic (red) and aerobic (green) popula-

tions—green is overlaid atop red—due to their zero-sum relationship; a gain in one population

is precisely the loss in the other, and vice-versa. The maximum standard deviation is 0.12

times the maximum mean value. In S6 Fig, unlike their respective standard deviations, the

populations have differing coefficients of variation since their respective denominators (mean

population sizes) differ. The maximum coefficient of variation is 0.12.

Fig 4. Spatial cell populations during ametabolic symbiosis simulation. Left-to-right, top-to-bottom: 60
generations shown in 36 frames (t = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41,
42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60). Key: vessel (white), empty (blue), hypoxic (red), aerobic (green)
cells.

doi:10.1371/journal.pone.0168984.g004
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Tumor-stroma signaling (2D)

Setup. In this simulation, we have epithelial, fibroblast, tumor, and inert cells. Three parti-

cle types play roles in the following scenario. In a middle of a row of epithelial cells, one of

them transforms into a tumor cell. The epithelial cells are separated from the fibroblast cells as

these are embedded in a thick layer of (inert) extracellular matrix. Proliferating (tumor) cells

(autocrine) signal themselves with particle type 1. When this reaches a sufficient concentra-

tion, affected tumor cells begin consuming it and their fitness increases. Simultaneously, tumor

cells (paracrine) signal nearby fibroblast cells residing in the (inert) extracellular matrix with

particle type 2. When this reaches a sufficient concentration, affected fibroblast cells begin con-

suming it and immediately releasing particle type 3. When this reaches a sufficient

Fig 5. Quantitative cell populations and fitness during ametabolic symbiosis simulation. Time evolution of: populations by cell type
(top), local fitness by cell type (middle), and neighborhood fitness by cell type (bottom). In the top, the horizontal axis denotes simulation time
steps, and the vertical axis denotes number of cells; in the middle and bottom, the horizontal axes denote simulation time steps, and the
vertical axes denote dimensionless fitness scores. In the middle and bottom, mean curves are plotted and gray regions above and below
show the respective standard deviations. Key: empty (blue), hypoxic (red), aerobic (green) cells.

doi:10.1371/journal.pone.0168984.g005
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concentration, affected tumor cells begin consuming it and their fitness increases by a substan-

tial factor, above and beyond that from its autocrine signaling. In this way, our conditional

logic implements a simple signaling and adaptation system between tumor and fibroblast cells,

illustrated schematically in Fig 6. By default, no cells consume particles, and only tumor cells

release particle types 1 and 2 at the same rate, to kick off autocrine and paracrine signaling,

respectively. By default, no impact factors are defined; they are only conditionally applied.

Only empty cells are replaceable, and only tumor cells are reproductive; the others are effec-

tively inert. The specific quantities mentioned here are given in the tables below.

Configuration parameters. We populate configuration parameters as stated in Tables

10–19.

Initial conditions. The simulation opens with the initial concentrations of particle types

1, 2, and 3 set to the same value, as specified in Table 11, with no lower- or upper-bounded

basal concentrations set. These diffuse with rates specified in Table 10. We initialize the 2D lat-

tice with a horizontal monolayer of epithelial cells, located about two-thirds down from the

top, in the middle of which we place a single tumor cell. Below this, we lay down a thick layer

of sub-epithelial (inert) extracellular matrix. Within this layer, we place a random scattering of

Fig 6. Tumor-stroma signaling. A schematic view of the tumor-stroma signaling described below, and quantified
in Tables 10–19.

doi:10.1371/journal.pone.0168984.g006

Table 10. Diffusion rate of each particle type.

pt 1 pt 2 pt 3

10 0.1 0.1

doi:10.1371/journal.pone.0168984.t010

Table 11. Initial concentration of each particle type.

pt 1 pt 2 pt 3

0.1 0.1 0.1

doi:10.1371/journal.pone.0168984.t011
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Table 12. Basal lower-bound concentration of each particle type by cell type.

cell type pt 1 pt 2 pt 3

vessel 0 0 0

empty 0 0 0

epithelial 0 0 0

fibroblast 0 0 0

tumor 0 0 0

inert 0 0 0

doi:10.1371/journal.pone.0168984.t012

Table 13. Basal upper-bound concentration of each particle type by cell type.

cell type pt 1 pt 2 pt 3

vessel 1 1 1

empty 1 1 1

epithelial 1 1 1

fibroblast 1 1 1

tumor 1 1 1

inert 1 1 1

doi:10.1371/journal.pone.0168984.t013

Table 14. Consumption rate of each particle type by cell type.

cell type pt 1 pt 2 pt 3

vessel 0 0 0

empty 0 0 0

epithelial 0 0 0

fibroblast 0 0 0

tumor 0 0 0

inert 0 0 0

doi:10.1371/journal.pone.0168984.t014

Table 15. Release rate for of particle type by cell type.

cell type pt 1 pt 2 pt 3

vessel 0 0 0

empty 0 0 0

epithelial 0 0 0

fibroblast 0 0 0

tumor 0.2 0.2 0

inert 0 0 0

doi:10.1371/journal.pone.0168984.t015

Table 16. Impact factor of each particle type upon each cell type.

cell type pt 1 pt 2 pt 3

vessel 0 0 0

empty 0 0 0

epithelial 0 0 0

fibroblast 0 0 0

tumor 0 0 0

inert 0 0 0

doi:10.1371/journal.pone.0168984.t016
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fibroblast cells such that their density increases nonlinearly in a rightward direction—this

amounts in most of the fibroblast cells populating the rightmost third of the area.

Discussion. We observe in Fig 7 that tumor cell proliferation is very slow at first, as the

autocrine signaling causes only a small increase in affected tumor cell fitness. It is not until

much later, when fibroblast paracrine signaling reaches the tumor cells that their proliferation

becomes noticeable, due to the consequent much higher fitness impact on the affected tumor

cells, and they eventually take over the replaceable area. Notice that this faster growth moves in

a decidedly rightward direction, toward the source of the signaling gradient, the rightwardly

dense fibroblast cells. After a fashion, radial outward growth dominates and the tumor contour

becomes circular. In Fig 8 we observe linear growth in the tumor population size from genera-

tion 145 to 155, then exponential growth from generation 155 to 250, where the population

size saturates at the full replaceable area.

We ran this simulation 10 times and observed the results were similar. See S7 Fig. Notice

the onset of tumor cell population growth varies by 120 time units (due to the random posi-

tioning of reciprocally-signaling fibroblast cells, and thus the variability in the onset of the posi-

tive growth feedback), but once growth onset occurs, the shape and slope of that growth is

similar. S8 and S9 Figs attest to the respective dispersion and noise in the population dynamics.

The apparently large standard deviation and coefficient of variation values are due to the

Table 17. Replaceable predicate of each cell type.

cell type replaceable?

vessel No

empty Yes

epithelial No

fibroblast No

tumor No

inert No

doi:10.1371/journal.pone.0168984.t017

Table 18. Reproductive predicate of each cell type.

cell type reproductive?

vessel No

empty Yes

epithelial No

fibroblast No

tumor Yes

inert No

doi:10.1371/journal.pone.0168984.t018

Table 19. Conditional triggers and actions for those cell types so configured.

cell type triggers actions

fibroblast ρ2 > 0.11 cfibroblast,2 0.01, rfibroblast,3 0.2

tumor ρ1 > 0.11 ctumor,1 0.01, σtumor,1 0.1

tumor ρ3 > 0.11 ctumor,3 0.01, σtumor,3 10

doi:10.1371/journal.pone.0168984.t019
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variation in growth onset times, as can be seen in the simulation trajectories, and trying to fit

them to a unimodal Gaussian distribution.

Stable local chronic hypoxia with many vessels (2D)

Setup. In this simulation, we have viable, hypoxic, and necrotic tumor cells that correspond

to those we see in our anti-pimonidazole stain images. The viable and hypoxic cells consume

O2 at a certain rate, and release no particles. The conditional logic implements a simple state

machine in the following way. Wherever O2 falls below a threshold, viable cells become

(“jump” to) hypoxic cells—identical in every way except as follows. Wherever O2 rises above

that threshold, hypoxic cells become viable again; and wherever O2 falls below an even lower

Fig 7. Spatial cell populations during a tumor-stroma signaling simulation. Time evolution of cell populations.
Left-to-right, top-to-bottom: 260 generations shown in 36 frames (t = 1, 8, 15, 22, 29, 36, 43, 50, 58, 65, 73, 80, 88, 95,
103, 110, 118, 125, 133, 140, 148, 155, 163, 170, 178, 185, 193, 200, 208, 215, 223, 230, 238, 245, 253, 260). Key:
vessel (white), empty (blue), epithelial (red), fibroblast (green), tumor (orange), inert (purple).

doi:10.1371/journal.pone.0168984.g007
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threshold, hypoxic cells become necrotic cells. Once a cell becomes necrotic it has entered an

absorbing state and its behavior is completely inert: it has no consumption or release profile,

and it is neither replaceable nor reproductive. The specific quantities mentioned here are

given in the tables below.

Configuration parameters. We populate configuration parameters as stated in Tables

20–29.

Initial conditions. The simulation opens with the initial concentration of O2 specified in

Table 21. This diffuses with a rate specified in Table 20. We initialize the 2D lattice with empty

cells; we place one viable cell in the center, and 10 vessels randomly about. Vessels consume no

particles and release O2 at the rate specified in Table 25.

Fig 8. Quantitative cell populations and fitness during a tumor-stroma signaling simulation. Time evolution of: populations by cell
type (top), local fitness by cell type (middle), and neighborhood fitness by cell type (bottom). In the top, the horizontal axis denotes simulation
time steps, and the vertical axis denotes number of cells; in the middle and bottom, the horizontal axes denote simulation time steps, and the
vertical axes denote dimensionless fitness scores. In the middle and bottom, mean curves are plotted and gray regions above and below
show the respective standard deviations. Key: empty (blue), epithelial (red), fibroblast (green), tumor (orange), inert (purple).

doi:10.1371/journal.pone.0168984.g008
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Table 20. Diffusion rate of each particle type.

O2

0.12

doi:10.1371/journal.pone.0168984.t020

Table 21. Initial concentration of each particle type.

O2

0.1

doi:10.1371/journal.pone.0168984.t021

Table 22. Basal lower-bound concentration of each particle type by cell type.

cell type O2

vessel 0

empty 0

viable 0

hypoxic 0

necrotic 0

doi:10.1371/journal.pone.0168984.t022

Table 23. Basal upper-bound concentration of each particle type by cell type.

cell type O2

vessel 1

empty 1

viable 1

hypoxic 1

necrotic 1

doi:10.1371/journal.pone.0168984.t023

Table 24. Consumption rate of each particle type by cell type.

cell type O2

vessel 0

empty 0

viable 0.01

hypoxic 0.01

necrotic 0

doi:10.1371/journal.pone.0168984.t024

Table 25. Release rate for of particle type by cell type.

cell type O2

vessel 0.2

empty 0

viable 0

hypoxic 0

necrotic 0

doi:10.1371/journal.pone.0168984.t025
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Discussion. We observe the following sequence of events in Fig 9. Viable cells proliferate

radially outward from the center. Once most of the area is covered with viable cells, then hyp-

oxic cells appear in the center.Hypoxic cells grow radially outward at a similar rate to the viable

cells just beyond them. They approach vessels (surrounded by viable cells) up to some radial

distance away from each vessel, the zone into which O2 diffuses with a sufficient concentration

to maintain viable cells. Once about half of the area is covered with hypoxic cells, then necroic

cells appear in the center. Necrotic cells grow radially outward at a similar rate to the hypoxic

and viable cells just beyond them. They approach vessels (surrounded by concentrically situ-

ated viable and hypoxic cells) up to some radial distance away from each vessel, the zone into

which O2 diffuses with a sufficient concentration to maintain viable and hypoxic cells. We

Table 26. Impact factor of each particle type upon each cell type.

cell type O2

vessel 0

empty 0

viable 1

hypoxic 1

necrotic 0

doi:10.1371/journal.pone.0168984.t026

Table 27. Replaceable predicate of each cell type.

cell type replaceable?

vessel No

empty Yes

viable No

hypoxic No

necrotic No

doi:10.1371/journal.pone.0168984.t027

Table 28. Reproductive predicate of each cell type.

cell type reproductive?

vessel No

empty Yes

viable Yes

hypoxic Yes

necrotic No

doi:10.1371/journal.pone.0168984.t028

Table 29. Conditional triggers and actions for those cell types so configured.

cell type triggers actions

viable ρ1 < 0.07 jump to hypoxic

hypoxic ρ1 < 0.05 jump to necrotic

hypoxic ρ1 > 0.07 jump to viable

doi:10.1371/journal.pone.0168984.t029
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eventually observe islands of concentrically situated viable and hypoxic cells, surrounded by a

sea of necrotic cells, similar to what we see in our anti-pimonidazole stain images. This

arrangement is stable for awhile, before the imbalance of three factors related to O2—diffusion

rate (Table 20), vessel release rate (Table 25), and viable and hypoxic consumption rate

(Table 24)—allow O2 concentration to climb out of control, at least in certain locales where

random vessels may be close together, and eventually convert all of the hypoxic cells back into

viable cells. We observe the succession of viable! hypoxic! necrotic cell populations in

Fig 10. The initial decay of viable and hypoxic cell populations is due to their proliferating out-

side of the spatial dimensions of the simulation while simultaneously being replaced by the

succeeding population. Since necrotic cells cannot be replaced, their population size monotoni-

cally increases. Beginning at generation 200 and continuing to the end of the simulation, the

Fig 9. Spatial cell populations during a stable local chronic hypoxia with many vessels (2D) simulation. Time
evolution of cell populations. Left-to-right, top-to-bottom: 220 generations shown in 36 frames (t = 1, 7, 13, 19, 25, 31,
37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 110, 116, 123, 129, 136, 142, 149, 155, 162, 168, 175, 181, 188, 194,
201, 207, 214, 220). Key: vessel (white), empty (blue), viable (red), hypoxic (green), necrotic (orange).

doi:10.1371/journal.pone.0168984.g009
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growth in the viable cell population at the expense of the hypoxic cell population occurs for the

reasons just discussed.

We ran this simulation 10 times and observed the results were similar, modulo some pat-

tern difference in the bands of viable and hypoxic cells, and in the growth and decay in those

populations, as would be expected given the random placement of vessels with each simulation

run. See S10–S12 Figs. In S11 Fig, the apparently large and growing standard deviation values

after time 150 is due to the randomly placed vessels causing differing patterns of growth and

decay in the viable and hypoxic populations. In S12 Fig, despite the standard deviation values

after time 150, we see the corresponding CV values drop sharply and remain low. In each 2D

simulation, 10 vessels were randomly placed in the simulation area, so across simulations we

had 10 × 10 = 100 candidate vessels to measure. Of these, 6 vessels were far enough from the

Fig 10. Quantitative cell populations and fitness during a stable local chronic hypoxia with many vessels (2D) simulation. Time
evolution of: populations by cell type (top), local fitness by cell type (middle), and neighborhood fitness by cell type (bottom). In the top, the
horizontal axis denotes simulation time steps, and the vertical axis denotes number of cells; in the middle and bottom, the horizontal axes
denote simulation time steps, and the vertical axes denote dimensionless fitness scores. In the middle and bottom, mean curves are plotted
and gray regions above and below show the respective standard deviations. Key: empty (blue), viable (red), hypoxic (green), necrotic
(orange).

doi:10.1371/journal.pone.0168984.g010
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edges and far enough from each other to provide undistorted measurement of the area and

radius of viable and hypoxic cells about the vessel. See S1 Table, rows 1-4. Here the statistics

describe a band of viable cells having mean thickness 1.60 about the vessel, and a band of hyp-

oxic cells having mean thickness of 3.87 − 1.60 = 2.27 around the viable ones. These low vari-

ance measures closely match our observation of simulation output and support the structural

similarity of band formation across respective simulations.

Stable local chronic hypoxia with many vessels (3D)

Setup. In this simulation, we have viable, hypoxic, and necrotic tumor cells that correspond

to those we see in our anti-pimonidazole stain images. The viable and hypoxic cells consume

O2 at a certain rate, and release no particles. The conditional logic implements a simple state

machine in the following way. Wherever O2 falls below a threshold, viable cells become

(“jump” to) hypoxic cells—identical in every way except as follows. Wherever O2 rises above

that threshold, hypoxic cells become viable again; and wherever O2 falls below an even lower

threshold, hypoxic cells become necrotic cells. Once a cell becomes necrotic it has entered an

absorbing state and its behavior is completely inert: it has no consumption or release profile,

and it is neither replaceable nor reproductive. The specific quantities mentioned here are

given in the tables below.

Configuration parameters. We populate configuration parameters as stated in Tables

30–39.

Initial conditions. The simulation opens with the initial concentration of O2 specified in

Table 31. This diffuses with a rate specified in Table 30. We initialize the 3D lattice with empty

cells; we place one viable cell in the center, and 100 vessels randomly about. Vessels consume

no particles and release O2 at the rate specified in Table 35.

Discussion. We observe the following sequence of events in Figs 11–14. Viable cells prolif-

erate radially outward from the center. Once most of the volume is covered with viable cells,

then hypoxic cells appear in the center.Hypoxic cells grow radially outward at a similar rate to

the viable cells just beyond them. They approach vessels (surrounded by viable cells) up to

some radial distance away from each vessel, the zone into which O2 diffuses with a sufficient

concentration to maintain viable cells. Once about half of the volume is covered with hypoxic

cells, then necrotic cells appear in the center. Necrotic cells grow radially outward at a similar

rate to the hypoxic and viable cells just beyond them. They approach vessels (surrounded by

concentrically situated viable and hypoxic cells) up to some radial distance away from each ves-

sel, the zone into which O2 diffuses with a sufficient concentration to maintain viable and hyp-

oxic cells. We eventually observe islands of concentrically situated viable and hypoxic cells,

surrounded by a sea of necrotic cells, similar to what we see in our anti-pimonidazole stain

Table 30. Diffusion rate of each particle type.

O2

0.12

doi:10.1371/journal.pone.0168984.t030

Table 31. Initial concentration of each particle type.

O2

0.1

doi:10.1371/journal.pone.0168984.t031
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Table 32. Basal lower-bound concentration of each particle type by cell type.

cell type O2

vessel 0

empty 0

viable 0

hypoxic 0

necrotic 0

doi:10.1371/journal.pone.0168984.t032

Table 33. Basal upper-bound concentration of each particle type by cell type.

cell type O2

vessel 1

empty 1

viable 1

hypoxic 1

necrotic 1

doi:10.1371/journal.pone.0168984.t033

Table 34. Consumption rate of each particle type by cell type.

cell type O2

vessel 0

empty 0

viable 0.01

hypoxic 0.01

necrotic 0

doi:10.1371/journal.pone.0168984.t034

Table 35. Release rate for of particle type by cell type.

cell type O2

vessel 0.2

empty 0

viable 0

hypoxic 0

necrotic 0

doi:10.1371/journal.pone.0168984.t035

Table 36. Impact factor of each particle type upon each cell type.

cell type O2

vessel 0

empty 0

viable 1

hypoxic 1

necrotic 0

doi:10.1371/journal.pone.0168984.t036
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images. This arrangement is stable for awhile, before the remaining viable cells become hypoxic

cells. These hypoxic cell islands persist indefinitely. We observe the succession of viable! hyp-

oxic! necrotic cell populations in Fig 15. The initial decay of viable and hypoxic cell popula-

tions is due to their proliferating outside of the spatial dimensions of the simulation while

simultaneously being replaced by the succeeding population. Since necrotic cells cannot be

replaced, their population size monotonically increases. By generation 125, necrotic cells have

taken over the volume, except for the islands of hypoxic cells.

We ran this simulation 10 times and observed the results were similar, modulo some pat-

tern difference in the shells of viable and hypoxic cells, and in the growth and decay in those

populations, as would be expected given the random placement of vessels with each simulation

run. See S13–S15 Figs. In S14 Fig, after the successive fluctuations in viable then hypoxic then

necrotic populations (after time 150), standard deviation values drop sharply, as we expect

from stable co-existing populations at nearly identical sizes across simulations. In S15 Fig,

after the successive fluctuations in viable then hypoxic then necrotic populations (after time

150), coefficient of variation values drop sharply, as we expect from stable co-existing popula-

tions at nearly identical sizes across simulations. The higher CV for the viable population size

is due to the denominator (mean population size) fluctuating near zero consistently across

simulations. In each 3D simulation, 100 vessels were randomly placed in the simulation vol-

ume, so across simulations we had 10 × 100 = 1000 candidate vessels to measure. Of these, 16

vessels were far enough from the edges and far enough from each other to provide undistorted

measurement of the volume and radius of viable and hypoxic cells about the vessel. See

S1 Table, rows 5-8. Here the statistics describe a shell of viable cells having mean thickness 0.00

(absent) about the vessel, and a shell of hypoxic cells having mean thickness of 1.43

Table 37. Replaceable predicate of each cell type.

cell type replaceable?

vessel No

empty Yes

viable No

hypoxic No

necrotic No

doi:10.1371/journal.pone.0168984.t037

Table 38. Reproductive predicate of each cell type.

cell type reproductive?

vessel No

empty Yes

viable Yes

hypoxic Yes

necrotic No

doi:10.1371/journal.pone.0168984.t038

Table 39. Conditional triggers and actions for those cell types so configured.

cell type triggers actions

viable ρ1 < 0.07 jump to hypoxic

hypoxic ρ1 < 0.05 jump to necrotic

hypoxic ρ1 > 0.07 jump to viable

doi:10.1371/journal.pone.0168984.t039
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− 0.00 = 1.43 around the viable ones; the absence of viable cells and thinner accumulation of

hypoxic cells in the 3D case is most likely due to greater diffusion of O2. These low variance

measures closely match our observation of simulation output and support the structural simi-

larity of shell formation across respective simulations.

Conclusion

Our contributions

We developed a spatially-resolved, mixed-population simulation which is minimal, fast, exten-

sible, and adaptable. First, we can support any number of cell types and any number of particle

Fig 11. Spatial cell populations during a stable local chronic hypoxia with many vessels (3D) simulation.
Time evolution of cell populations on the plane z = 20. Left-to-right, top-to-bottom: 150 generations shown in 36
frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105, 110, 114,
119, 123, 128, 132, 137, 141, 146, 150). Key: vessel (white), empty (blue), viable (red), hypoxic (green), necrotic
(orange).

doi:10.1371/journal.pone.0168984.g011
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Fig 12. Spatial time evolution of local fitness for viable (red) cells during a stable local chronic hypoxia with many vessels (3D) simulation. Left-to-
right, top-to-bottom: 150 generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105,
110, 114, 119, 123, 128, 132, 137, 141, 146, 150).

doi:10.1371/journal.pone.0168984.g012
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Fig 13. Spatial time evolution of local fitness for hypoxic (green) cells during a stable local chronic hypoxia with many vessels (3D) simulation.
Left-to-right, top-to-bottom: 150 generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 74, 78, 83, 87, 92, 96,
101, 105, 110, 114, 119, 123, 128, 132, 137, 141, 146, 150).

doi:10.1371/journal.pone.0168984.g013
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Fig 14. Spatial time evolution of local fitness for necrotic (orange) cells during a stable local chronic hypoxia with many vessels (3D) simulation.
Left-to-right, top-to-bottom: 150 generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 74, 78, 83, 87, 92, 96,
101, 105, 110, 114, 119, 123, 128, 132, 137, 141, 146, 150).

doi:10.1371/journal.pone.0168984.g014
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types (each with its own diffusion rate). Second, each cell type has default behaviors, as before,

and conditional behaviors, which can implement phenotypical adaptations and mutations,

and state machines composed of two or more cell types. Third, initial, and upper- and lower-

bounded basal concentrations can be set for each particle type. Fourth, each cell type can be

replaceable or not, and reproductive or not. Fifth, initial lattice occupation can be delayed to

establish complex diffusion gradients to form prior to simulation.

Our findings

Regarding the simulation, we found that with a few simple ingredients—space, distinct particle

types with their own diffusion rates, distinct cell types with default consumption and release

profiles, and conditional logic to implement cell-type-specific local adaptation—we captured a

Fig 15. Quantitative cell populations and fitness during a stable local chronic hypoxia with many vessels (3D) simulation. Time
evolution of: populations by cell type (top), local fitness by cell type (middle), and neighborhood fitness by cell type (bottom). In the top, the
horizontal axis denotes simulation time steps, and the vertical axis denotes number of cells; in the middle and bottom, the horizontal axes
denote simulation time steps, and the vertical axes denote dimensionless fitness scores. In the middle and bottom, mean curves are plotted
and gray regions above and below show the respective standard deviations. Key: empty (blue), viable (red), hypoxic (green), necrotic
(orange).

doi:10.1371/journal.pone.0168984.g015
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number of interesting features and phenomena. First, in a study of asymmetric fitness with

one vessel (not shown here), we observed sustained coexistence of two populations; one was

dominant but did not drive the other to extinction. Second, in Results subsection “Metabolic

symbiosis (2D)”, we observed emergent spatial self-organization among hypoxic and aerobic

cells into a stable striation pattern (without conditional logic), followed by population size

rebalancing. Third, in Results subsection “Tumor-stroma signaling (2D)”, we were able to

implement a functioning system of autocrine and reciprocal paracrine signaling. Fourth, in

Results subsections “Stable local chronic hypoxia with many vessels (2D)” and “Stable local

chronic hypoxia with many vessels (3D)”, we observed emergent 2D and 3D necrotic cores,

respectively; this was followed by emergent formation of local regions of spatially and numeri-

cally stable viable-hypoxic cell populations that were concentrically oriented, in 2D and 3D,

respectively, over different vascular densities. In terms of relative orientation, composition,

and dimensions, these simulated formations were similar to what we observed in our anti-

pimonidazole stain images. This is especially true where the randomized vasculature was more

dense, thereby breaking diffusion symmetries and giving rise to more realistic viable-hypoxic

agglomerations.

Regarding the biology of chronic hypoxia, in Results subsections “Stable local chronic hyp-

oxia with many vessels (2D)” and “Stable local chronic hypoxia with many vessels (3D)”, we

found there was an instability in the viable-hypoxic cell population balance. Either over-oxy-

genation eventually converted all hypoxic cells to viable cells, or under-oxygenation did the

reverse and then eventually these hypoxic cells became necrotic cells. We observed the oxygen-

ation balance derived from three rates related to O2: vessel release rate, the local population’s

average consumption rate, and the diffusion rate. There are at least two ways to explain this:

(1) histology data show a delicate balance that is stable, and therefore in evidence everywhere;

or (2) the balance is a transient phenomenon, and our histology happens to have caught one

early stage. But which is it? In other words, what is the relationship between tumor age and

average intra-tumor chronic hypoxia? We know tumor age correlates positively with degree of

vasculature, and therefore density of oxygenation, so we can design experiments to address

this question. In a follow-up study, we will fully explore the three rate parameters responsible

for the patterns of chronic hypoxia in light of these questions.

Whatever the cancer disease context, one could re-simulate the cell populations after add-

ing various therapeutic strategies (e.g., dosage frequency, cocktail therapy, immunotherapy)

by way of different delivery modalities (e.g., from explicitly represented vessels, or from a non-

specific source of diffusion) to model therapeutic effects and to understand when resistance

develops. These would produce additional emergent dynamics that would be worth analyzing.

Limitations and additional considerations

First, it may turn out that a lattice-based simulation is too limited to capture properties related

to cell crowdedness, which is arguably essential for modeling density-derived control of tumor

cell population growth, and emergent geometric and spatial organization. It may also have sig-

nificance for modeling emerging local, stable regions of chronic hypoxia. Without an explicit

notion of crowdedness, one cannot correctly model contact inhibition or anoikis, for example,

and how such mechanisms constrain growth rates and spatial patterns. While one could use

our conditional logic apparatus to exploit an as yet unimplemented local-density predicate to

crudely model constrained growth, Plank, et al argue that since lattice-based methods implic-

itly assume uniform density, among other limitations, properly modeling crowdedness

requires a lattice-free setting [57]. In a similar vein, lattice-based simulation, specifically the

discrete nature of fitness-based cell replacement, could introduce numerical artifacts that
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obscure biological interpretation of simulation results, as we discussed above in the results of

the metabolic symbiosis simulation.

Second, we may wish to explicitly model individual cell migration. Our simulation pres-

ently uses a simple statistical mechanism to implement fitness-based local cell type regional

takeover. As mentioned earlier, this implies that individual cells do not possess a unique iden-

tity. While distinct cell types can respond to local concentrations, and locally adapt to their

environment using their conditional logic, they do so in a manner that ignores their individu-

ality. In other words, our world is lattice-state-centric rather than cell-identity-centric. In the

end, this may be too abstract a setting to properly model individual cell migration in a way

that can be configured by its own set of parameters. This area has a broad literature [39–45, 50,

58]. Without individual cell identification, it is difficult to determine, for example, whether the

local population of hypoxic cells near a vessel is indeed a stable population (infrequent replace-

ment) or the result of dynamic, steady-state replacement. Thus, the relationship between cell

migration and emerging local, stable regions of chronic hypoxia is presently unclear to us, but

may prove worth exploring.

Third, cell sorting is accomplished by cell migration [58], and cell migration in turn

depends on cell-cell adhesion, among other biophysical factors; thus we may wish to explicitly

model cell-cell adhesion. Graner and Glazier created the cellular Potts model to simulate cell

sorting [41, 42]; since then, others have applied the cellular Potts model to study tumor

growth, invasion, and evolution [43], angiogenesis [45], and to create multiscale models of

tumor cell growth and invasion that use biophysics simulation frameworks like CompuCell3D

and Bionetsolver [44]. Despite the longterm degenerate behavior of the cellular Potts model

and the modeling limitations imposed by the central role of surface fluctuations [47], efforts to

map the parameters of the model formalism to physical and biological properties of cells sug-

gest it to be a powerful tool for investigating a large range of biological questions [46]. In addi-

tion, the cellular Potts model has been extended and enhanced in useful ways, for example: a

parallel processing implementation that can efficiently simulate a population of 107 or more

cells [48]; and a node-based version that can be implemented on any given domain, so long as

it is a proper discretization (regular or irregular, fixed or time-evolving), and can easily inter-

face with continuous mechanics or fluid dynamics models [49]. Beginning with Sulsky and

Childress [59], cell-centered Voronoi models of cell sorting have been used to study cell tissue

dynamics [60] and estimate the strength of cell-cell interactions under the differential adhesion

hypothesis [61]. Cellular Potts models and Voronoi tessellation models explicitly represent

cell-cell adhesion in their formulation, and so would likely be better settings to investigate met-

abolic symbiosis, and determine whether or not the stable cellular striations we observed arise

from realistic biological assumptions as regards cell-cell adhesion. Since the broader focus of

our study is not on subcellular-scale phenomena, but rather on phenomena emerging from

whole cells’ consumption and release behaviors, we chose to model each cell as a point source

of diffusion and collection, and thus leave the explicit modeling of cell-cell adhesion and cell

sorting for a future study.

To balance matters, let us appeal to parsimony. Although each of these areas of exploration

merit consideration, in the scope and context of modeling emerging local, stable regions of

chronic hypoxia, our present minimal model already captures some of the salient spatial and

dynamic features of the phenomenon.

Embedding the simulator

In this article, we present a simulator that executes a specified situation exactly once. Because

cell reproduction events in the simulation are stochastic, then for any given situation, one
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would need to run the simulator a number of times until one were confident the results did or

did not converge upon some well characterized, recognizable phenomenon. Then one would

want to explore nearby situations in the parameter space to quantify the variation of observ-

ables (e.g., cell migration speed, population sizes, fitness, structural properties like clustering,

connectedness, self-similarity, etc.) Here we sketch how one might embed the simulator in a

larger system to meet this challenge in an automated fashion.

The nature and extent of the simulation parameter space derives from the algorithmic spec-

ification given above. A number of parameters define any given simulation, those that specify

initial conditions and those that specify the entities that operate in the simulation. Initial con-

dition parameters specify: the initial positions in the 3D lattice of the cells of various types; the

initial and basal upper- and lower-bound concentrations of the various particle types; and the

delay time indicating when to place the cells in their initial positions. Operational parameters

specify: each particle type’s diffusion rate; the consumption and release rates and impact fac-

tors of each cell type for each particle type; whether each cell type is replaceable and whether

its reproductive; and the conditional behaviors for each cell type. Together, these constitute a

high dimensional parameter space. Each point in this parameter space is then a full specifica-

tion to simulate some biological system, and could be represented by a vector input to the

simulator.

Let us assume in the absence of simplifying factors or expert knowledge of the biology, each

parameter should be modeled as a random variable having a uniform, independent probability

distribution. We could then sample the large parameter space using a vanilla Monte Carlo

algorithm [62] and accumulate families of nearby solutions. Or we could attempt to make this

process more efficient by learning from each sample’s truth outcome if it is in {0, 1}, or branch-

ing-and-bounding sampled subspaces where the sample values are in [0, 1]. In this way, one

could develop adaptive Monte Carlo methods that, for example, employ boosting of the inde-

pendent probability distributions upon successful samples, or alternatively, constrained ran-

dom walks around successful samples. Further, we could adapt the traditional branch-and-

bound algorithm [63, 64], so that instead of systematically exploring a subspace of problems,

we employ constrained Monte Carlo sampling of each subspace.

Our model (simulation), once specified by a coordinate from the high dimensional parame-

ter space, is still stochastic, as mentioned above, owing to the cells’ manner of probabilistic

reproduction. Suppose a feature integrator-detector is embedded in the simulator that decides

when the formal characterization of, say, hypoxia—be it a spatiotemporal logical proposition,

φ, or a learned functional form, f—is satisfied. It will then enable the simulator to return a

value in {0, 1} or [0, 1], respectively, where the first is a the evaluation of a logical proposition,

and the second is a normalized similarity score. Thus, depending on the detection scheme

being implemented, the simulator’s outcome can be modeled as either a Bernoulli random var-

iable or a numerical random variable. The first case is the province of statistical model check-

ing. Jha, et al [65] gives a provably efficient Bayesian statistical model checking algorithm that

would work. It runs the simulator some bounded number of times until enough confidence

accrues to the null hypothesis (the simulator satisfies, within some bounded probability, the

spatiotemporal logical proposition describing hypoxia), or its alternative hypothesis (it does

not). This verdict constitutes the Bayesian-tested outcome of the simulation with respect to

satisfying φ. In a similar, and perhaps trivial, sense, the numerical [0, 1] outcome of the simula-

tion should be tested repeatedly until some threshold on the numerical stability of its mean

value is surpassed. Here a simple approach could be to examine its mean and standard devia-

tion, and apply a threshold to its CV ¼ s

m
.
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Above we presented two distinct ways of implementing a two-level simulation driver. The

top level explores by sampling the high dimensional parameter space, testing a coordinate in

that space by passing control down to the lower level that repeatedly runs the specified simula-

tion until a stable outcome is achieved. It then passes the binary verdict up to the top level that

records and eventually responds to the coordinate’s computed truth value. We envision such a

system would have a run-time design like in Fig 16. We leave this for a future study.

Fig 16. Run-time view of simulator control.Here we show the two possible execution paths of the hypothetical system we propose. These correspond to
the choice of whether to use a logical or functional characterization/detection scheme. In the logical scheme, we assume three global parameters: the
configuration parameter space,C, a probability threshold, θ, and a simulation time threshold, T. The adaptive Monte Carlo sampling method selects a c 2 C
and calls the Bayesian statistical model checker with c and θ. This then calls the simulator with c, thereby configuring the simulator for an execution. The
simulator embeds the logical feature integrator-detector and feature measurers, together which implement φ. The simulator either halts early, returning 1, or
runs its full course (to time T), returning 0. Depending on this outcome, the Bayesian statistical model checker decides whether or not to execute another
simulation of c. Once it halts, the Bayesian statistical model checker returns its binary verdict. In the functional scheme, we assume three global parameters:
the configuration parameter space,C, a coefficient of variation threshold, τ, and a simulation time threshold, T. The Monte Carlo branch-and-bound sampler
selects a c 2 C and calls the mean-variance thresholder with c and τ. This then calls the simulator with c, thereby configuring the simulator for an execution.
The simulator embeds the functional feature integrator-detector and feature measurers, together which implement f. The simulator halts at T and returns its
“high water mark” normalized similarity score, a real number in [0, 1]. Depending on this outcome, the mean-variance thresholder decides whether or not to
execute another simulation of c. Once it halts, the mean-variance thresholder returns its binary verdict.

doi:10.1371/journal.pone.0168984.g016
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Supporting Information

S1 Fig. Spatial frequency of metabolic symbiosis striations. Each simulation produces a spa-

tial cell occupation map as it evolves and as its final output. To show the consistent spatial peri-

odicity of the striations of aerobic and hypoxic cells across simulations, we used Matlab’s FFT2

function to transform each resulting occupation map into the frequency domain, then exam-

ined the mean FFT2 magnitude over 10 simulations. Notice the two energy loci above and

below the center. They are distant from the center due to the sharp boundaries (and thus high

spatial frequency information) of the striations. They are vertically oriented from the center

because the striations tend to be horizontal and are thus perpendicular to the FFT2 magnitude

orientation. And the loci are tightly clustered, indicating the consistent periodicity of striations

between simulations.

(TIFF)

S2 Fig. Dispersion in the spatial frequency of metabolic symbiosis striations. Standard devi-

ation (SD) in FFT2 magnitude across 10 simulations. The maximum standard deviation is 0.43

times the maximum mean value.

(TIFF)

S3 Fig. Noise-to-signal in the spatial frequency of metabolic symbiosis striations. Coeffi-

cient of variation (CV) in FFT2 magnitude across 10 simulations. Notice no regions of high

noise-to-signal ratio colocate with the two energy loci; rather, the noise appears uniformly dis-

tributed across the energy surface.

(TIFF)

S4 Fig. Population evolution of metabolic symbiosis.Mean aerobic (green) and hypoxic

(red) populations across 10 simulations. All simulation trajectories are shown (gray).

(TIFF)

S5 Fig. Dispersion in the population evolution of metabolic symbiosis. Standard deviation

(SD) in aerobic (green) and hypoxic (red) population sizes across 10 simulations. Notice the

SDs are identical for hypoxic and aerobic populations—green is overlaid atop red—due to their

zero-sum relationship; a gain in one population is precisely the loss in the other, and vice-

versa. The maximum SD is 0.12 times the maximummean value.

(TIFF)

S6 Fig. Noise-to-signal in the population evolution of metabolic symbiosis. Coefficient of

variation (CV) in aerobic (green) and hypoxic (red) population sizes across 10 simulations.

Unlike their respective standard deviations, the populations have differing CVs since their

respective denominators (mean population sizes) differ. The maximum CV is 0.12.

(TIFF)

S7 Fig. Population evolution of tumor-stroma signaling.Mean tumor (orange) population

across 10 simulations. All simulation trajectories are shown (gray). Notice the onset of tumor

growth varies by 120 time units (due to the random positioning of reciprocally-signaling fibro-

blast cells, and thus the onset of the positive growth feedback), but once growth onset occurs,

the shape and slope of that growth is similar.

(TIFF)

S8 Fig. Dispersion in the population evolution of tumor-stroma signaling. Standard devia-

tion (SD) in tumor (orange) population size across 10 simulations. The apparently large SD

values are due to the variation in growth onset times, as can be seen in the simulation
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trajectories, and trying to fit them to a unimodal Gaussian distribution.

(TIFF)

S9 Fig. Noise-to-signal in the population evolution of tumor-stroma signaling. Coefficient

of variation (CV) in tumor (orange) population size across 10 simulations. The apparently

large CV values are due to the variation in growth onset times, as can be seen in the simulation

trajectories, and trying to fit them to a unimodal Gaussian distribution.

(TIFF)

S10 Fig. Population evolution of stable local chronic hypoxia with many vessels (2D).

Mean viable (red), hypoxic (green), and necrotic (orange) populations across 10 simulations.

All simulation trajectories are shown (gray).

(TIFF)

S11 Fig. Dispersion in the population evolution of stable local chronic hypoxia with many

vessels (2D). Standard deviation (SD) in viable (red), hypoxic (green), and necrotic (orange)

population sizes across 10 simulations. The apparently large and growing SD values after time

150 is due to the randomly placed vessels causing differing patterns of growth and decay in the

viable and hypoxic populations.

(TIFF)

S12 Fig. Noise-to-signal in the population evolution of stable local chronic hypoxia with

many vessels (2D). Coefficient of variation (CV) in viable (red), hypoxic (green), and necrotic

(orange) population sizes across 10 simulations. Despite apparently large and growing SD val-

ues after time 150, we see the corresponding CV values drop sharply and remain low.

(TIFF)

S13 Fig. Population evolution of stable local chronic hypoxia with many vessels (3D).

Mean viable (red), hypoxic (green), and necrotic (orange) populations across 10 simulations.

All simulation trajectories are shown (gray).

(TIFF)

S14 Fig. Dispersion in the population evolution of stable local chronic hypoxia with many

vessels (3D). Standard deviation (SD) in viable (red), hypoxic (green), and necrotic (orange)

population sizes across 10 simulations. After the successive fluctuations in viable then hypoxic

then necrotic populations (after time 150), SD values drop sharply, as we expect from stable co-

existing populations at nearly identical sizes across simulations.

(TIFF)

S15 Fig. Noise-to-signal in the population evolution of stable local chronic hypoxia with

many vessels (3D). Coefficient of variation (CV) in viable (red), hypoxic (green), and necrotic

(orange) population sizes across 10 simulations. After the successive fluctuations in viable then

hypoxic then necrotic populations (after time 150), CV values drop sharply, as we expect from

stable co-existing populations at nearly identical sizes across simulations. The higher CV for

the viable population size is due to the denominator (mean population size) fluctuating near

zero consistently across simulations.

(TIFF)

S1 Table.

(TEX)
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