
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3112036, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Simulating Immunization Campaigns
and Vaccine Protection Against
COVID-19 Pandemic in Brazil
FABIO AMARAL 1, WALLACE CASACA 2, CASSIO M. OISHI 1, AND JOSÉ A.
CUMINATO 3
1
Faculty of Science and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil

2
Department of Energy Engineering, São Paulo State University (UNESP), Rosana 19273-000, Brazil

3
Institute of Mathematics and Computer Sciences, University of São Paulo (USP), São Carlos 13566-590, Brazil

Corresponding author: Wallace Casaca (e-mail: wallace.casaca@unesp.br).

This research was supported by São Paulo Research Foundation (FAPESP)—grants 2013/07375-0 and 2021/03328-3, National Council for

Scientific and Technological Development (CNPq)—grant 305383/2019-1, Coordination for the Improvement of Higher Education

Personnel (CAPES)—grant 88882.441642/2019-01, and PROPG/UNESP.

ABSTRACT The vaccine roll-out has currently established a new trend in the fight against COVID-19.

In many countries, as vaccination cover rises, the economic and social disruptions are being progressively

reduced, bringing more confidence and hope to the population. However, a crucial debate is related to fair

access to vaccines, which would lead to stepping up the pace of vaccination in developing countries. Another

important issue is how immunization has influenced the control of the infection, deaths, and transmissibility

of the new coronavirus in these countries. In this work we investigate the effects of the rate of vaccination

on the COVID-19 epidemic curves, by employing a new data-driven methodology, formulated on the

basis of a modified Susceptible-Infected-Recovered model and Machine Learning designs. This data-driven

methodology is applied to assess the influence of the vaccines administered in Brazil, on the fight against

the virus. The impacts of vaccine efficacy and immunization speed are also explored in our study. Finally,

we have found that the use of anti-SARS-CoV-2 vaccines with a low/moderate efficacy can be offset by

immunizing a larger proportion of the population more quickly.

INDEX TERMS COVID-19, Data-Driven, SIR, Vaccination

I. INTRODUCTION

Massive vaccination campaigns are one of the most ef-

fective strategies against the COVID-19 disease. Under

this premise, many countries have dedicated a considerable

amount of effort in negotiating and administering different

types of COVID-19 vaccines such as Pfizer/BioNTech, Ox-

ford/AstraZeneca and CoronaVac/Sinovac in order to control

the spread of new coronavirus. As a result, the nations that

implemented mass vaccination early have seen a significant

reduction of their SARS-CoV-2 cases and deaths, as for in-

stance, Israel and the UK [1]–[3]. However, due to limitations

on the capacity of vaccine production and the global fluctua-

tion in its distribution, it is well-known that several countries

around the world have faced enormous challenges in trying

to cope with new waves of COVID-19. This is the case

experienced by Brazil, a developing country that has suffered

from delays in negotiating early deals with pharmaceutical

companies [4] and from the high social inequality present in

the country [5]. As a consequence, the total number of new

cases and deaths significantly increased in 2021, surpassing

the worst scenario seen in the previous year [1].

Brazil is drawing the attention of the international com-

munity because of the rapid increase of new cases, hospi-

talizations and deaths so that its health system is teetering

on the brink of collapse [6]. Variant P.1, which emerged

at the Brazilian Amazon region, has a higher rate of trans-

mission [7], taking the country to the worst moment of

the pandemic. Also, as previously pointed out, the country

has strongly been affected by the shortage of COVID-19

vaccines, so that knowing the number of doses adminis-

tered per day, forecasting the number of new cases and the

transmissibility levels for the months ahead can significantly

contribute to the Brazilian authorities’ efforts in containing

the advance of the virus.
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In order to carry out such a complete assessment of vac-

cination in Brazil, in this paper we propose a new data-

driven approach, whose parameters are learned from individ-

ual regressors, to model the vaccination dynamics under a

two-dose regime. Unlike recent studies [8], [9] concerning

vaccination in Brazil, our methodology applies Artificial

Intelligence tools to predict the parameters used in a hybrid

compartmental model, since most of these parameters present

a transient behavior, as discussed in our recently published

work [10]. As shown by the experiments, this methodology

successfully captures the trend in the epidemiological curves

for well-behaved data such as that of Israel, as well as for

particular scenarios wherein the data is ill-conditioned, as

it is the case for Brazil. We also assess the outcome from

the CoronaVac/Sinovac vaccination of the adult population of

Serrana’s town experiment, in São Paulo State – Brazil, this

being another important contribution of this work. It is worth

mentioning that recently, Serrana became the world’s first

fully vaccinated population in consequence of the Project

S [11], a Brazilian study conducted by Instituto Butantan [12]

to shed light on important issues regarding mass vaccination

of a population with two-dose shots of the Sinovac vaccine.

Finally, this work can be extended further to investigate

COVID-19 vaccine mixing, i.e., the proposed methodology

allows for numerically exploring the recent idea of mix-and-

match vaccination strategies [13], [14].

II. RELATED WORK
A financially inexpensive yet effective way to measure the

success of vaccination from a dynamical point-of-view is

by applying the classical Susceptible-Infected-Recovered

(SIR) model. In fact, additional sets of Ordinary Differential

Equations (ODE) can be included as part of the full SIR

formulation to model the number of vaccinated individu-

als and their roles in the resulting dynamical system. This

is the strategy adopted by many researchers, to simulate

and understand the impacts of previous pandemics. For in-

stance, Alexander et al. [15] investigated the spread of in-

fluenza from the so-called Susceptible-Vaccinated-Infected-

Recovered-Susceptible (SVIRS) model, while Counotte et

al. [16] studied the epidemics of Zika virus, by rearranging

the SIR model to account for vaccination. Other interesting

mathematical advances on SIR-based models with vaccina-

tion were also presented by Sun and Hsieh [17], Sinha et

al. [18], and Mathur and Narayan [19].

Most recently, modified SIR-type models with vaccina-

tion compartments have been employed for dealing with

the COVID-19 pandemic. The so-called SEIRD model was

employed by Roy et al. [20] to investigate the best vaccine

allocation strategy in the New York State, while Fudolig and

Howard [21] introduced a multi-strain version of the SIR

model to study some variations in the reproduction number

of the disease. Based on the advance of the SARS-CoV-2

vaccines, Saad-Roy et al. [22] presented a very robust investi-

gation concerning the single or double doses of immunizers,

including the analysis of different scenarios in terms of trans-

mission and vaccine immunity. Similarly, Harizi et al. [23]

applied a compartmental model to investigate the dynamical

behavior of COVID-19 spreading in Canada under various

daily vaccination rates and vaccine efficacies. An alternative

SIR-type model covering impulsive vaccination strategies

has been discussed by Etxeberria-Etxaniz et al. [24], while

the mass vaccination in Greece was analyzed by Rachaniotis

et al. [25]. The vaccination was also considered as part of a

feedback immunization control rule in the model studied by

De la Sen et al. [26], while Mak et al. [27] assumed a two-

dose vaccine model to explore vaccine rollout policies.

An effective way to assess and forecast the number of cases

and deaths by COVID-19 is by applying deep learning, such

as Artificial Neural Networks (ANN). Most recently, popular

deep learning architectures like Recursive Neural Networks

[28]–[32] and Convolutional Neural Networks [33], [34]

have been successfully used for forecasting COVID-19 time-

series without the inclusion of compartmental models of in-

fections dynamics [35]. However, concerning the vaccination

data, the fresh literature on purely ANN-based methods is

very scarce [36]. Indeed, many important issues are still open

and deserve a deeper investigation, for example, the impact

of COVID-19 vaccine efficacy on epidemic curves, the ef-

fect of vaccination rate according to the number of doses

administered per day, the influence of not-fully vaccinated

people in the dynamics of the virus spread, etc. In addition,

the possibility of learning unknown parameters only from the

raw data of infected, recovered, deaths, and vaccinated is an

important trait of our unified approach that is not present in

purely ANN-based methods. Indeed, our methodology does

not require any prior knowledge of specific epidemiological

data such as, for example, the transmission rate, to generate

the forecasts and approximations for the model’s parameters.

Therefore, aiming at addressing some of the issues

raised above, in this work we propose a hybrid compart-

mental model based on a Susceptible-Vaccinated-Infected-

Recovered-Death (SVIRD) formulation that combines vac-

cination dynamics with an effective ANN-based design for

parameter estimation. Unlike classical deep learning methods

which usually learn the time-series of cases and deaths, our

approach learns the unknown functions of the epidemiologi-

cal model while still allowing for constructing different vac-

cination scenarios by just redefining new control parameters

such as vaccine efficacy and the speed of immunization.

III. MATERIALS AND METHODS

In this section, we introduce our data-driven SVIRD-based

approach, quality metrics, and the data collection used to run

the experiments.

A. A SVIRD-BASED MODEL INTEGRATING

VACCINATION DYNAMICS AND PARAMETER LEARNING

Motivated by the SIR-based framework recently published

in [10], we formulate and solve the following system of
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ODEs that includes vaccination dynamics:

dS

dt
= −ν1S − β(t)IS,

dV̄1

dt
= ν1S − β(t)IV̄1 − α1V̄1,

dV1

dt
= α1V̄1 − β(t)IV1(1− θ1)− ν2V1,

dV̄2

dt
= ν2V1 − β(t)IV̄2(1− θ1)− α2V̄2,

dV2

dt
= α2V̄2 − β(t)IV2(1− θ2),

dIs

dt
= β(t)IS − (γd + γr)Is,

dIv,1

dt
= β(t)I(V1(1− θ1) + V̄1)− γrIv,1,

dIv,2

dt
= β(t)I(V2(1− θ2) + V̄2(1− θ1))− γrIv,1,

dRs

dt
= γrIs − ν1Rs,

dRv,1

dt
= γrIv,1 + ν1Rs − αν2Rv,1,

dRv,2

dt
= αν2Rv,1 + γrIv,2,

dD

dt
= γdIs.

(1)

Due to the data-driven capability for parameter fitting,

the model splits the population of infected and recovered

into vaccinated and non-vaccinated so that we can track the

vaccinated population over time.

An illustrative representation of the mathematical model

can be seen in Figure 1. Susceptible individuals are repre-

sented by S, while V̄1 and V̄2 account for the vaccinated

populations that received the first and second doses, re-

spectively, but are not yet fully immunized due to the time

delay necessary for the effectiveness of the vaccine. Since an

individual can be infected after receiving the first dose, we

have denoted this group by Iv,1. Similarly, Iv,2 represents

the group of individuals vaccinated with the second dose.

Moreover, in the mathematical model, I = Is + Iv,1 + Iv,2
gives the infected individuals, where Is accounts for the non-

vaccinated individuals. After the vaccine has taken effect,

vaccinated individuals are moved to V1 and V2 (subscript 1

for the first dose, and 2 for the second shot). Finally, Rv,1 and

Rv,2 are the recovered individuals that have been vaccinated

with doses 1 and 2, respectively, while D denotes the total

of deaths. Here, we assume that the vaccine has complete

effectiveness in severe cases, which means that deaths come

from non-vaccinated individuals. For a list of parameters and

variables, see Table 1.

In our approach, the Livermore Solver for ODEs with

Automatic Method Switching (LSODA) was employed for

numerically solving the mathematical model (1).

Below, we provide the main steps of our computational

methodology, including the redesign of the learning pipeline

previously presented in [10] to account for vaccination data.

FIGURE 1: Representation of the SVIRD-based model.

TABLE 1: Basic notation.

Notation Description

S(t) Number of susceptible at time t

Is(t) Number of infected from susceptible subgroup at time t

Iv,j(t) Number of infected from subgroup Vj , j = 1, 2 at time t

I(t) Sum of all subgroups Ij at time t

Rj(t) Number of recovered from subgroup j = s, v1, v2 at time t

R(t) Sum of all subgroups Rj at time t

D(t) Number of deaths at time t

V̄i(t)
Number of vaccinated but not yet immunized at
time t, i = 1,2 doses

Vi(t) Number of immunized at time t, i = 1,2 doses

β(t) Transient transmission rate

βnet(t) Prediction for the transmission rate at time t

γr Rate of recovered

γd Rate of mortality

ν1 and ν2 First and second dose vaccination rates, respectively

θ1 and θ2 First and second dose efficacies, respectively

αi Time delay for vaccine dose effectiveness, i = 1,2 doses

Rt(t) Time-dependent effective reproduction number

M Pre-specified training period

p Desirable forecast period

Yi and Ỹi
Real and predicted daily values w.r.t. a given
target variable

1) Architecture of the Artificial Neural Network

In order to learn the transient behavior of the epidemiological

parameters, we employ an Artificial Neural Network (ANN).

Our architecture is composed of a hidden layer, with ten

neurons, and a Sigmoid as activation function. The output

layer is fully connected to the hidden layer through a single

neuron with no bias weights, while the Rectified Linear Unit

(ReLU) is taken as activation function to learn the β(t)
values. The unified ANN architecture and the mathematical

model are illustrated in Figure 2. It is important to high-

light that our unified methodology falls within the class of

hybrid machine learning + SIR-based approaches, as the
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ANN is combined with a mathematical model of infectious

disease to estimate the time-dependent parameters used for

the computation of epidemiology metrics such as the Rt(t),
as well as for COVID-19 time series forecasting. Notice

that the advantage of using ANN instead of any other more

complex learning design lies in the simplicity and versatility

of ANN in successfully learning the unknown parameters of

the SVIRD model while still requiring as input only the raw

data of infected, recovered, deaths and vaccination to produce

the forecasts of various epidemiological data, including Rt(t)
and vaccinated people with doses 1 and 2.

FIGURE 2: Representation of the simplified SVIRD-based

framework and the Artificial Neural Network.

2) Obtaining the model’s parameters

The epidemiological parameters β(t), γr and γd are com-

puted using a learning strategy based on the real data, by

minimizing the following loss function:

L(βnet(t), γr, γd, ν1, ν2) =
∑

l∈L

l, (2)

where

L = {lI , lR, lD, lv,1, lv,2, lsum},

lI =
1

M

M
∑

i=0

∥

∥

∥
log(Ii)− log(Ĩi)

∥

∥

∥

2

2

,

lR =
1

M

M
∑

i=0

∥

∥

∥
log(Ri)− log(R̃i)

∥

∥

∥

2

2

,

lD =
1

M

M
∑

i=0

∥

∥

∥
log(Di)− log(D̃i)

∥

∥

∥

2

2

,

lv,1 =
1

M

M
∑

i=0

∥

∥

∥
log(V1,i)− log(Ṽ1,i)

∥

∥

∥

2

2

,

lv,2 =
1

M

M
∑

i=0

∥

∥

∥
log(V2,i)− log(Ṽ2,i)

∥

∥

∥

2

2

,

lsum =
1

M

M
∑

i=0

∥

∥

∥
log(T̃i)

∥

∥

∥

2

2

,

Ĩi = Ĩs(ti) + Ĩv,1(ti) + Ĩv,2(ti),

R̃i = R̃s(ti) + R̃v,1(ti) + R̃v,1(ti),

Ṽj,i = Ṽj,i +
˜̄Vj,i + Ĩvj + R̃vj

, j = 1, 2,

T̃i = S̃i + Ĩi + R̃i + D̃i + Ṽ1,i + Ṽ2,i.

In Equation (2), we make use of the notation Xi and

X̃i to represent, respectively the exact and the numerical

solutions at the discretized time ti of a given target variable.

Notice that, in the absence of available data of the vaccinated

individuals who got infected, we take the number of vaccine

shots when computing lv,1 and lv,2.

In order to assign time variation to the transmission rate,

βnet(t) is computed from the network-based architecture. As

a result, the trainable parameters of the epidemic model are

properly learned and computed by solving the following

optimization problem:

argmin
W,b,γr,γd

L(βnet(t), γr, γd), (3)

where {W, b} are the ANN weights.

3) Predicting the ODE variables
Since we have computed the epidemiological parameters in

the previous step, we then apply the numerical solver LSODA

for estimating the final forecasts for t ∈ [0,M + p], where p

is the desirable forecast period [10].

4) Improving data fitting capability
A moving window-based strategy has been employed to

detect and remove data outliers. The rationale is to calibrate

the net weights, bias, and parameters γr, γd , ν1 and ν2 for

different simulation intervals Mi. This step is accomplished

by running Steps (2) and (3) for each Mi, i = 1, ..., n, where

n is a pre-defined value representing the number of windows.

In the experiments, we take as time windows 20, by setting

the most recent data and taking Mi days before for each

running window. For implementation details, see [10].

5) Filtering outliers and getting the final estimates
For each window, we filter out outliers by comparing the

results from Step (3) with the actual data for each target

variable. This is performed using the MAPE metric (see

Equation (5)). We then determine whether a training window

should be discarded or not according to the MAPE calcu-

lated. Finally, we compute the geometric mean of the outputs

corresponding to the same day to get the final estimate.

B. EFFECTIVE REPRODUCTION NUMBER

Since the effective reproduction number Rt(t) is a very

important measure used in infectious diseases, we analyze

how the new variables inserted into the mathematical model

influence it. Formally speaking, Rt(t) is defined as the quo-

tient between the transmission and recovery rates weighted

by the percentage of the susceptible population [10].

4 VOLUME 4, 2016
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Notice that, in our SVIRD formulation, vaccinated indi-

viduals are still susceptible to contagion, but they are subject

to a lower rate of infectivity due to the vaccine. Following

the multi-group model of the reproduction number given by

Driessche and Watmough [37], Rt(t) can be computed as:

Rt(t) =
β(t)

γr

[

V̄1 + (1− θ1)(V1 + V̄2) + (1− θ2)V2

]

+

+
β(t)

γr + γd
S

(4)

C. DATA SETS AND QUALITY EVALUATION METRICS

FIGURE 3: Geographic location of the investigated regions.

The data collection used in our experiments comprises

several data resources and public repositories, which vary

according to the region/country studied. Below, we detail the

data sets employed in the analysis and simulations.

• Israel dataset: COVID-19 confirmed cases and deaths

data were downloaded from the well-known Johns Hop-

kins University (JHU) data repository [2], which is

available at https://coronavirus.jhu.edu/map.html. Con-

cerning vaccination data, it was collected from the Israel

Ministry of Health website, at https://www.gov.il/en/

departments/guides/information-corona.

• Serrana’s town dataset: Times-series of confirmed

cases, recoveries, and deaths data were obtained from

the COVID-19 health bulletins of Serrana’s local

government, hosted at http://www.serrana.sp.gov.br/

coronavirus. The total number of vaccine doses admin-

istered per day was obtained from the São Paulo State

government website, at https://www.saopaulo.sp.gov.br/

planosp/simi/dados-abertos, while the vaccination time-

series used to simulate a regular immunization cam-

paign was taken from the online tracking platform SP

Covid-19 Info Tracker [10], available at http://www.

spcovid.net.br.

• São Paulo State dataset: Data acquired from the São

Paulo State government website, including confirmed

cases, recoveries, deaths, and the number of immunized

people per day for each type of vaccine dose.

• Brazil dataset: Time-series taken from the Brazilian

Ministry of Health website, at https://covid.saude.gov.

br. The administered doses per day were obtained from

the Vaccinometer-SUS, a real-time platform of Brazilian

government hosted at https://localizasus.saude.gov.br.

The quality of the predictions were assessed via well-

established quality evaluation metrics such as Mean Absolute

Percentage Error (MAPE) [38], [39] and Normalized Root

Mean Square Error (NRMSE) [10]:

MAPE(Yi, Ỹi) =
1

n

n
∑

i=1

∣

∣

∣

∣

∣

Yi − Ỹi

Yi

∣

∣

∣

∣

∣

× 100, (5)

NRMSE(Yi, Ỹi) =
1

n

√

∑n

i=1
(Yi − Ỹi)2

Y
, (6)

where Yi and Ỹi represent the observed and estimated values

of a given variable in a time-series of n entries, while Y is

the average of Yi.

IV. RESULTS, SIMULATIONS AND DISCUSSION
In this section, we present and discuss the forecast results,

simulated scenarios, and the main findings emerging from

our data-driven analysis. Parameters θ1, θ2 and α used to

run the learning steps of the SIR model were taken from

the literature as reported in Table 2. The vaccination rates ν1
and ν2 were set according to the total number of vaccinated

people per day for each type of vaccine dose as observed in

each region/country studied.

TABLE 2: Efficacy of different vaccine types.

Vaccine
Efficacy

Dose 1

Efficacy

Dose 2

Efficacy

Delay
Source

Coronavac
(Sinovac)

θ1 = 5.98% θ2 = 66.48% α = 1

14
[40]

Pfizer
(BioNTech)

θ1 = 52.00% θ2 = 95.00% α = 1

21
[41]

AstraZeneca
(Oxford)

θ1 = 64.00% θ2 = 70.40% α = 1

14
[42]
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(a) Cases (b) Deaths (c) Vaccinated people (dose 1).

(d) Vaccinated people (doses 1 and 2). (e) Active cases (f) Rt(t)

FIGURE 4: Israel validation results. (a) Confirmed cases, (b) deaths, (c) vaccinated people who received at least one vaccine

dose, (d) two doses, (e) active cases, and (f) effective reproduction number. Training period from February 17th 2021 to March

18th 2021.

A. VALIDATION WITH REAL VACCINATION CAMPAIGNS

In order to assess the proposed methodology, we take as

benchmark the well-established vaccination data from Israel,

as it has already immunized a large number of people with

the Pfizer vaccine [41]. Also, the accuracy of the SIR-

based model is attested by analyzing the massive vaccina-

tion rollout of Serrana’s town: a provincial city of 45,000

inhabitants located in the State of São Paulo, Brazil. Very

recently, Serrana became the first fully immunized city in

the world as a result of Project S [11], [43], a Brazilian

pilot study conducted by the São Paulo State government in

cooperation with Instituto Butantan [12] designed to address

important issues regarding mass vaccination effects of the

Coronavac/Sinovac immunizer. Finally, the results obtained

from the recently published data-driven model [10] (called

here “SIRD”) are also presented for the sake of comparison,

since it is a robust SIR-based approach that does not include

any vaccination dynamics in its formulation.

1) Israel vaccination campaign

Figure 4 shows the forecasting results, under a 14 days’ time

horizon, for several Israeli COVID-19 curves. One can verify

that our model fits the real scenario as precisely as the SIRD

method [10]. However, since the SIRD approach does not

take into account a data-driven vaccine compartment, the ef-

fects of the transmission rate are only assigned to the learned

parameter β(t), which attempts to capture the different stages

of the virus spreading. On the other hand, our model allows

for properly dealing with an immunization campaign, that

includes the tuning of the vaccination parameters as well as

understanding the role of the vaccinated individuals on the

full dynamics of the disease. The reproduction number also

follows similar trajectories for both predictors, indicating that

active cases and the effective reproduction number Rt(t)
significantly decrease when a massive vaccination rollout is

combined with a high-efficacy vaccine. Finally, concerning

the quantitative verification listed in Table 3, once again both

models produce very similar results, as the highest computed

MAPE is of the order of less than 1%, i.e., a very small

prediction error.

TABLE 3: Average MAPE and NRMSE for the two-week

forecasting period plotted in Figure 4.

Variable Metric
Proposed

Model

Data-Driven

SIRD

Cases
MAPE 0.370 0.276

NRMSE 0.004 0.003

Deaths
MAPE 0.467 0.389

NRMSE 0.006 0.005

Vaccinations
(Dose 1)

MAPE 0.888 -
NRMSE 0.011 -

Vaccinations
(Doses 1 and 2)

MAPE 1.476 -
NRMSE 0.009 -
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(a) Cases (b) Deaths (c) Vaccinated people (dose 1).

(d) Vaccinated people (Doses 1 and 2). (e) Active cases (f) Rt(t)

FIGURE 5: Serrana’s town validation results. (a) Confirmed cases, (b) deaths, (c) vaccinated people who received at least one

vaccine dose, (d) two doses, (e) active cases, and (f) effective reproduction number. Training period from March 4th 2021 to

April 2nd 2021.

2) Serrana’s town vaccination campaign

Figure 5 presents the fitting and forecasting results con-

cerning Serrana’s massive vaccination campaign. Since the

adult residents of Serrana have been immunized with the

Sinovac vaccine (Coronavac), we take θ1 and θ2 as in Table 2.

By visually inspecting the results, both methods follow the

trajectories of real data. Moreover, the models have learned

the changing trend of active cases, which is reflected by Rt(t)
turning less than 1.0 in the second half of March. The vacci-

nation curves were also captured by our approach, even at

high immunization rates as those of Project S [11]: over 67%

of Serrana’s adult population had been vaccinated with one

shot of Coronavac by March 3rd. Finally, the quality metrics

listed in Table 4 indicate a good agreement between the real

and the estimated data, as the highest MAPE and NRMSE

values are much smaller than 10% and 0.2, respectively.

TABLE 4: Average MAPE and NRMSE for the two-week

forecasting period plotted in Figure 5.

Variable Metric
Proposed

Model

Data-Driven

SIRD

Cases
MAPE 0.449 0.537

NRMSE 0.005 0.006

Deaths
MAPE 1.733 1.131

NRMSE 0.023 0.015

Vaccinations
(Dose 1)

MAPE 3.520 -
NRMSE 0.038 -

Vaccinations
(Doses 1 and 2)

MAPE 3.404 -
NRMSE 0.037 -

B. SIMULATION-BASED VACCINATION SCENARIOS

We now assess the impact of different vaccination scenarios

for Serrana’s town, São Paulo State, and Brazil. More pre-

cisely, we simulate a variety of potentially realistic scenarios

of vaccinations, by varying in our data-driven technique both

the vaccination rates and the immunization efficacies.

1) Assessing the impact of vaccination speed and vaccine
efficacy on a fully vaccinated population

We start by investigating how the vaccination speed can

influence the epidemic curves in a population almost fully

immunized as the one in Serrana. For this purpose, we take

two evaluation scenarios: (i) the real data from Serrana,

including its true vaccination rates as quickly leveraged by

Project S with the Coronavac vaccine, and (ii) the same data

as in (i), but now replacing the Serrana’s vaccination rates for

another time-series which follows the “standard” vaccination

rollout as observed in Dracena – another small town in the

state of São Paulo about the same size of Serrana. We also

simulate the use of several vaccine efficacies according to

data reported by the vaccine producers (see Table 2).

The blue and orange lines in Figures 6(a)-(c) give the

learned data and future estimates in a time horizon of two-

months for scenarios (i) and (ii), respectively. The vacci-

nation speed has positively affected both confirmed cases

and deaths. Indeed, after two months, it is expected that the

“orange campaign” reaches around 140 deaths against 89
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(a) Cases (b) Deaths (c) Rt(t)

(d) Cases (e) Deaths (f) Rt(t)

FIGURE 6: Serrana’s town scenarios results. (a)-(d) Confirmed cases, (b)-(e) deaths, and (c)-(f) effective reproduction number.

Training period from March 20th 2021 to April 18th 2021.

(a) Cases (b) Deaths (c) Rt(t)

FIGURE 7: São Paulo state vaccination speed scenarios. (a) Confirmed cases, (b) deaths, and (c) effective reproduction number.

Training period from March 3rd 2021 to April 1st 2021.

for the blue one representing the real immunization program

of Serrana. Therefore, the reduction in the total number of

COVID-19 fatalities is around 38%, for these two scenarios.

Concerning Figure 6(c), immunizing faster reduces Rt(t)
by 29% after two months, which is another bonus from

accelerated vaccination.

The performance of three vaccine efficacies, Coronavac

(blue), AstraZeneca (orange) and Pfizer (green), are dis-

played in Figures 6(d)-(f). Due to the moderate efficacy of

Coronavac, a higher number of cases is observed, while

AstraZeneca and Pfizer prevent the virus from spreading

more efficiently. At the end of the forecasting interval, the

estimates from orange and green lines produce 292 and 306
cases less than the blue one. In contrast to the reduction in

the number of cases, deaths avoided by all three immunizers

remain at the same level as time advances, thus indicating

they are capable of ensuring high protection against COVID-

19 mortality. Finally, Rt(t) assigned to Coronavac decreases

by 31% and 54% when it is compared with AstraZeneca and

Pfizer, respectively.

2) Assessing the impact of vaccination speed on a partially
immunized population

We now evaluate the impact of different immunization rates

in a much bigger population: São Paulo State, which is the

most populous state in Brazil, home to around 46 million

people, i.e., the same as Spain. Notice that the vaccination

rollout in São Paulo is still in progress so that the percentage

of vaccinated people with at least one vaccine dose reached

20% only recently. To design this experiment, in Figure 7
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(a) Cases (b) Deaths (c) Rt(t)

(d) Cases (e) Deaths (f) Rt(t)

FIGURE 8: São Paulo state and Brazil COVID-19 vaccines scenarios. (a)-(d) Confirmed cases, (b)-(e) deaths, and (c)-(f)

effective reproduction number. Training period from March 3rd 2021 to April 1st 2021.

we take the real data from March 3rd to April 1nd, to train

the model, and then simulate the next three months of the

pandemic. Four vaccination speed rates were simulated: the

blue one is the real data, and then rates are set to 0.5x

(orange), 2x (green), and 5x (red). Confirmed cases decrease

slowly as the vaccination advances, except for the real speed

against the 5x campaign: the cases drop from around 3.9

to 3.4 million, a reduction of 13%. Similarly, deaths are

substantially mitigated as more people are vaccinated in an

increasingly short period, dropping from 141, 000 (blue) to

131, 000 (green) and 111, 000 (red). Finally, by accelerating

the vaccination, the transmission rate is also pulled down.

Thus, this experiment confirms how important it is to speed

up vaccination, as done in Israel, UK, and USA.

3) Assessing the impact of different COVID-19 vaccines

Figure 8 displays how vaccine efficacies can influence the

infectivity of SARS-CoV-2 in São Paulo and Brazil. To-

gether with Coronavac (purple), AstraZeneca (red) and Pfizer

(green) efficacies, we take two combinations of mixed ef-

ficacies (blue and orange), to simulate the vaccination roll-

outs with multiple types of vaccines in São Paulo and Brazil.

Table 5 lists several combinations of vaccines, by computing

the weighted average between their real efficacies and the

number of administrated doses.

First, considering São Paulo’s case study, efficacies related

to AstraZeneca, Pfizer, and the combination θ1 = 37% with

θ2 = 72% make the confirmed cases to go down more

quickly compared to the purple and blue curves. Indeed,

green and red campaigns perform similarly, producing the

TABLE 5: Mixed vaccine proportions and their resulting

efficacies used to run the experiments in Figures 8 and 9.

Brazilian vaccine distribution (in blue) taken from Ministry

of Health - Brazil [44] on March 31, 2021.

Coronavac AstraZeneca Pfizer
Resulting

Efficacy
Color

80% 20% 0%
θ1 = 18%
θ2 = 59%

blue

40% 30% 30%
θ1 = 37%
θ2 = 72%

orange

100% 0% 0%
θ1 = 6%
θ2 = 56%

purple

0% 100% 0%
θ1 = 64%
θ2 = 70%

red

0% 0% 100%
θ1 = 52%
θ2 = 95%

green

lowest number of cases, i.e., 362k and 360k against 398k

from Coronavac. Moreover, the first dose efficacy plays a key

role in the immunization process. Deaths are also mitigated

when taking vaccines of greater efficacy. For example, a

campaign purely based on Coronavac vaccine reaches around

1.43K deaths at the end of the period against 1.34k and

1.33k deaths from campaigns with Pfizer and AstraZeneca.

A similar pandemic signature is observed in Brazil: if one

assumes the current scenario (blue line), from Figure 8 and

Table 6, the highest reduction of cases and deaths are deliv-

ered by the AstraZeneca vaccine with the current immuniza-

tion speed, and with Pfizer when boosting 5x the vaccination

speed. Finally, Rt(t) drops significantly more than 50% if the

speed is increased by 5x with θ1 = 52% and θ2 = 95%.
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(a) Cases (b) Deaths (c) Rt(t)

(d) Cases (e) Deaths (f) Rt(t)

FIGURE 9: São Paulo state and Brazil COVID-19 vaccines and vaccination speed scenarios. (a)-(d) Confirmed cases, (b)-(e)

deaths, and (c)-(f) effective reproduction number. Training period from March 3rd 2021 to April 1st 2021.

TABLE 6: Vaccine efficacy comparison from the current

scenario (θ1 = 18%, θ2 = 59% - Blue line from Figure 8).

Efficacy
Cases Deaths

São Paulo Brazil São Paulo Brazil

Baseline 1,395,106 4,217,642 66,339 191,676

θ1 = 37%
θ2 = 72%
(Orange)

1,241,105
(-11.0%)

3,955,485
(-6.2%)

62,326
(-6.0%)

186,396
(-2.8%)

θ1 = 52%
θ2 = 95%

(Green)

1,137,064
(-18.5%)

3,783,811
(-10.3%)

59,605
(-10.2%)

182,920
(-4.6%)

θ1 = 64%
θ2 = 70%

(Red)

1,113,243
(-20.2%)

3,713,921
(-11.9%)

58,743
(-11.5%)

181,273
(-5.4%)

θ1 = 6%
θ2 = 56%

(Purple)

1,474,225
(+5.7%)

4,353,357
(+3.2%)

68,407
(+3.1%)

194,424
(+1.4%)

4) Assessing the impact on increasing the vaccination speed
as the vaccine efficacy changes

Next, we evaluate the combined impact of accelerating the

vaccination speed as θ1 and θ2 vary. To design this experi-

ment, we assume in Figure 9 that the vaccination advances 5x

faster than the real immunization campaign in São Paulo and

Brazil. In contrast to the results from the current vaccination

rates, as previously discussed in Figures 6 and 8, all the

vaccines in Figure 9 and Table 7 significantly contribute to

the flattening of the curves, making the gaps between them

much more prominent with the increased vaccination. Also,

from Table 7, one can check that the reduction in cases and

Rt(t) are more pronounced than deaths, as expected, given

the COVID-19 vaccines are highly effective against deaths.

TABLE 7: Vaccine efficacy comparison by taking as baseline

the blue line from Figure 9.

Efficacy
Cases Deaths

São Paulo Brazil São Paulo Brazil

Baseline 925,808 3,303,194 36,511 135,479

θ1 = 37%
θ2 = 72%
(Orange)

722,785
(-21.9%)

2,848,722
(-13.8%)

33,476
(-8.3%)

129,701
(-4.3%)

θ1 = 52%
θ2 = 95%

(Green)

538,536
(-41.8%)

2,404,922
(-27.2%)

30,648
(-16.1%)

124,115
(-8.4%)

θ1 = 64%
θ2 = 70%

(Red)

610,734
(-34.0%)

2,549,897
(-22.8%)

31,348
(-14.1%)

125,126
(-7.6%)

θ1 = 6%
θ2 = 56%

(Purple)

1,026,201
(+10.8%)

3,524,649
(+6.7%)

38,043
(+4.2%)

138,380
(+2.1%)

Finally, in Table 8, we discuss the reduction of COVID-19

rates in São Paulo and Brazil for a three-month forecasting

period with their actual immunization campaigns against the

hypothetical scenarios with the vaccination speed increased

by 5x. From the tabulated results, notice that the total number

of cases and deaths are significantly attenuated as more

people are vaccinated over the period considered. In fact,

even though the most significant falls in confirmed cases have

been found with the Pfizer vaccine, all immunizers clearly

reduce deaths to similar levels, especially in Brazil (see the

last column in Table 8).
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TABLE 8: Vaccine efficacy comparison by taking as baseline

the current scenarios in São Paulo and Brazil.

Efficacy
Cases Deaths

São Paulo Brazil São Paulo Brazil

Baseline 1,395,106 4,217,642 66,339 191,676

θ1 = 18%
θ2 = 59%

(Blue)

925,808
(-33.6%)

3,303,194
(-21.7%)

36,511
(-45.0%)

135,479
(-29.3%)

θ1 = 37%
θ2 = 72%
(Orange)

722,785
(-48.2%)

2,848,722
(-32.5%)

33,476
(-49.5%)

129,701
(-32.3%)

θ1 = 52%
θ2 = 95%

(Green)

538,536
(-61.4%)

2,404,922
(-43.0%)

30,648
(-53.8%)

124,115
(-35.2%)

θ1 = 64%
θ2 = 70%

(Red)

610,734
(-56.2%)

2,549,897
(-39.5%)

31,348
(-52.7%)

125,126
(-34.7%)

θ1 = 6%
θ2 = 56%

(Purple)

1,026,201
(-26.4%)

3,524,649
(-16.4%)

38,043
(-42.7%)

138,380
(-27.8%)

V. LIMITATIONS OF THE STUDY
Despite the good properties and results, there are two as-

pects to be observed when using our methodology. First, the

more accurate the data source used, the better the model’s

assertiveness. For instance, the excessive delay in publicly

reporting COVID-19 cases by Brazilian Government sources

may negatively impact the training step of our approach due

to the large peaks artificially created in the collected data.

Another issue is related to the vaccine efficacies took

to perform the simulations. Although we have adopted the

efficacies as reported in the pioneering studies conducted

by the vaccine producers, other more recent works have

also investigated the efficiency of the doses under different

populations and immunization circumstances. However, new

vaccination scenarios could be easily built just by re-setting

these new vaccine efficacies into the dynamic SVIRD model.

VI. CONCLUSION
In this work, we provided several simulation-based eval-

uations of the pros and cons of COVID-19 vaccination

campaigns in Brazil, São Paulo State, and Serrana’s town.

Our analysis concentrated on assessing the impacts of the

immunization speed and vaccine efficacy in the epidemic

curves of confirmed cases, deaths and infectivity rate, for at

least three types of immunizers. The study was conducted

by applying a SIR-based model combined with a Machine

Learning strategy, yielding a new data-driven methodology

used to fit the epidemic curves as well as to predict the

behavior and trends of the time-series.

As discussed in Section IV, the use of different vaccines

indicates that, between them, the difference in confirmed

cases is more pronounced than in the deceased. In fact,

we found that the protection against SARS-CoV-2 deaths is

similar among all immunizers, in line with published clinical

studies. Another finding is that the speed in administering

new shots of vaccine is of paramount importance to pull

down the deaths and infectivity levels of the disease, even

for those COVID-19 immunizers with moderate efficacy. For

example, we have found that confirmed cases and deaths in

Brazil may be pruned to around 16% and 27%, by adopting

an immunization campaign purely carried out with a vaccine

of moderate efficacy as long as the speed of vaccination is

accelerated.

Finally, as shown in Figure 8 and 9, our methodology

can be successfully used to perform numerical investigation

concerning the recent strategy of mix-and-match vaccination,

as the one in progress in the UK according to the Com-COV

Study Team [13].
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