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Abstract
Residents of low-income multi-family housing can have elevated exposures to multiple
environmental pollutants known to influence asthma. Simulation models can characterize the
health implications of changing indoor concentrations, but quantifying the influence of
interventions on concentrations is challenging given complex airflow and source characteristics. In
this study, we simulated concentrations in a prototype multi-family building using CONTAM, a
multi-zone airflow and contaminant transport program. Contaminants modeled included PM2.5
and NO2, and parameters included stove use, presence and operability of exhaust fans, smoking,
unit level, and building leakiness. We developed regression models to explain variability in
CONTAM outputs for individual sources, in a manner that could be utilized in simulation
modeling of health outcomes. To evaluate our models, we generated a database of 1000 simulated
households with characteristics consistent with Boston public housing developments and residents,
and compared the predicted levels of NO2 and PM2.5 and their correlates with the literature. Our
analyses demonstrated that CONTAM outputs could be readily explained by available parameters
(R2 between 0.89 and 0.98 across models), but that one-compartment box models would
mischaracterize concentrations and source contributions. Our study quantifies the key drivers for
indoor concentrations in multi-family housing and helps to identify opportunities for interventions.
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Introduction
Pediatric asthma prevalence and the frequency of severe attacks have been shown to be
elevated in low-income urban populations (Crain et al., 1994; Joseph et al., 1996; Spiegel et
al., 2006; Moorman et al., 2007). While asthma has a complex etiology, multiple studies and
expert reports (NAS, 2000; EPA, 2004; EPA, 2006; Sharma et al., 2007) have focused on
the potential influence of indoor environmental exposures. Interventions that can reduce
indoor exposures and consequent health implications are therefore of great interest.

While there is an extensive empirical literature on indoor pollutant concentrations and
predictors, one of the challenges of this literature is that it is difficult to disentangle the
various contributing factors and to quantify the tradeoffs between indoor and outdoor
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sources given changes in ventilation or other household characteristics. For example,
measurement studies demonstrated that NO2 tends to have greater concentrations indoors in
the presence of gas stoves (Lee et al., 1998; Zota et al., 2005), indicating that efforts to
improve venting of gas stoves or to increase ventilation in general will reduce NO2
concentrations. However, increasing general ventilation increases indoor NO2
concentrations from outdoor sources, particularly in urban settings with high traffic. For
pollutants with multiple indoor and outdoor sources such as NO2 and PM2.5 the quantitative
effect of specific interventions on the relative influence of indoor and outdoor sources is
challenging to ascertain from field studies. This challenge is further exacerbated in multi-
pollutant contexts, where similar root causes could influence concentrations of multiple
contaminants.

For these reasons, models simulating indoor concentrations are often applied. Indoor
concentrations of airborne contaminants can be estimated by basic principles, where
concentrations are a function of penetration efficiency, air exchange rate (AER, also termed
air change rate), decay rate, indoor source strength and unit volume (Long et al., 2001;
Pepper and Carrington, 2009). However, many low-income urban residents live in multi-
family housing, where conditions can be more complex and may not be well represented by
a single compartment model. For example, the airflow in multi-story apartment buildings
lacking mechanical ventilation generally moves from lower-level to upper-level apartments,
leading lower-level apartments to generally have more outdoor air, lower humidity, and
draftier conditions, while upper-level apartments have higher humidity and pollutant levels
(NAS, 2000). In a building with central air conditioning or window AC units the reverse
would occur during the cooling season. Moreover, indoor sources vary substantially across
apartments and over time, including between-season and within-season differences.

More detailed simulation models of the residential environment have been developed to
model indoor air quality (IAQ) in a variety of building types, including complex
environments like multi-family housing. One well-validated simulation tool that has been
applied extensively is CONTAM (NIST, Gaithersburg, MD)
(http://www.bfrl.nist.gov/IAQanalysis/), a multi-zone airflow and contaminant transport
program that has been used for applications such as modeling the effect of indoor
environmental interventions on concentrations of multiple contaminants in inner-city
housing (Emmerich and Howard-Reed, 2005b) and the effect of air cleaning systems on
indoor concentrations of PM2.5 (Myatt et al., 2008; Macintosh et al., 2010). Outputs from
this model include time-resolved ventilation rates, pollutant concentrations, and relative
humidity for individual units within a building. For this model, 209 prototype buildings
(single family and multi-family) have been constructed to be representative of the US
housing stock as a whole, and these prototype buildings are embedded within the CONTAM
model and are available for use (Persily et al., 2006).

While CONTAM and similar models are ideal in many respects, these models cannot
necessarily be integrated directly within models simulating the health consequences of
indoor environmental interventions. For example, in discrete event simulation models
(DEM) – used to model a complex system which evolves over time given changes in state
variables that occur at defined points in time (Law and Kelton, 2000) – IAQ would need to
be characterized on an hourly basis for years across thousands or millions of homes with
varying characteristics across numerous interventions. This is computationally and
logistically challenging with models such as CONTAM. However, if approaches could be
developed to extract the findings from CONTAM in a manner that is both physically
interpretable and applicable in health risk simulation models, then the insights from these
more complex multi-compartment models can be integrated with DEM models and used to
design interventions.
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In this study, we used CONTAM to simulate a range of building characteristics and
occupant behaviors and determine their influence on indoor relative humidity, NO2 and
PM2.5 concentrations related to various source types. We then built regression models to
predict relative humidity and indoor NO2 and PM2.5 concentrations by source type based on
housing characteristics, occupant behavior, and meteorological conditions. To evaluate these
regression models, we constructed a sample of 1000 homes based on characteristics
consistent with Boston public housing developments and their residents, and compared
estimated pollutant concentrations and relative source contributions with values reported in
the IAQ literature. This application informs our ultimate objective to simulate the health
benefits of indoor environmental interventions in low-income multi-family housing in
Boston. This approach provides a mechanism for developing indoor exposure models in the
context of discrete event simulation or other health risk assessment studies.

Materials and methods
Simulation model

We used CONTAM 2.4c to estimate pollutant concentrations and relative humidity in a
typical multi-family housing unit under a range of conditions. We selected the template for
apartment building 26 to simulate a building typical of Boston public housing – 4 stories,
1940–1969 construction, and naturally ventilated (Persily et al., 2006). A family of 2 adults
and 2 children were simulated living in each 65.3 m2 apartment, which included a bedroom,
bathroom, living room, and kitchen (Figure 1).

Contaminant sources and sinks
We modeled NO2 and PM2.5 as contaminants in CONTAM, given literature linking both to
lung function decrements among asthmatic children (Horak et al., 2002; Delfino et al., 2004;
Gauderman et al., 2004; Trenga et al., 2006; Delfino et al., 2008). Based on a review of the
literature (Özkaynak et al., 1996; Lee et al., 1998; Zota et al., 2005), we focused on sources
of each pollutant anticipated to be the dominant contributors in most cases. Sources of NO2
included gas stoves used for cooking, gas stoves used for supplemental heating in the winter,
and outdoor infiltration; sources of PM2.5 included smoking, cooking, and outdoor
infiltration. PM2.5 emissions from the oven when used to heat the house were considered
negligible. Removal rates for deposition and decay were estimated for each room by
multiplying the rates by air density at standard temperature and pressure, and by room
volume. Table 1 presents the emission and decay/removal rates used for each contaminant
source. In addition, we modeled relative humidity as a potential proxy of mold growth,
given that mold or persistent moisture has also been associated with lung function in
asthmatic children (Williamson et al., 1997). Indoor sources of relative humidity included
occupant behaviors such as breathing, showering, cooking, and dish washing (Table 1).

Outdoor air pollution and meteorological data
Boston hourly air pollution data were obtained from state monitors recorded between
01/01/1995 and 10/31/2009. For PM2.5 data were available from the Harrison Av./Dudley
Square station located in the Roxbury neighborhood of Boston. For NO2 the data available
was the average of three monitors located in Boston (Harrison Av., Kenmore Sq., and
Breman Street) and two monitors in nearby urban communities (Chelsea, Lynn). We
constructed a file with hourly averages over 365 days of mean NO2 and PM2.5
concentrations using all the data available between 1995 and 2009 at the time of our
analysis. Hourly values of solar radiation and weather conditions (e.g. temperature, relative
humidity, wind speed and direction) for a typical year were downloaded from the TMY2
dataset (1961– 1990: Typical Meteorological Year 2, National Solar Radiation Data Base,
National Renewable Energy Laboratory). While there are modest mismatches in time, this
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approach provides a reasonably representative set of hourly outdoor pollutant and
meteorological conditions.

CONTAM simulations
We conducted a factorial design to allow us to span the array of conditions that might be
observed in low-income multi-family housing. The key dimensions in our CONTAM
factorial design were gas stove use (2 times/day or 3 times/day), apartment location (1st

floor or 4th floor), season (spring, summer, fall, winter), exhaust fan use in the bathroom
during showering and in the kitchen during cooking (on/off), and house leakiness (wall
leakage area per unit area: 1.2, 3.7, 5.0, or 13.1 cm2/m2– hereafter described as leakiness
categories 1 through 4). We ran CONTAM across all combinations of these above
dimensions. The lowest category of wall leakage area approximated the LEED Green
Building Rating System airtightness standard of 8.1 cm2 of leakage area per 9.3 m2 of
enclosure area, corresponding to an average air exchange of 0.33 h−1. The next two wall
leakage values corresponded to average air exchange rates of approximately 0.85 and 1.2
h−1, consistent with measurements in Boston public housing units (Zota et al., 2005). The
highest leakiness category was intended to represent a house with significant leakage,
consistent with a home with open windows all day (Johnson, 2002). Fan airflows were 85
m3/h and 170 m3/h for the bathroom and kitchen respectively. All cases were simulated for
7-day periods each season. Temperature indoors was set to 298K – while higher than the
typical indoor set point, empirical studies in Boston public housing have found systematic
overheating and measured average daily temperatures between 296 and 301K (Brugge et al.,
2003). Variables were only modified in the apartments under study (2 out of 16 apartments).
In the remaining apartments variables were kept constant: the bathroom and kitchen fan
were always operated during cooking and showering events, the stove was used for 3
cooking periods per day, the oven was not used for supplemental heat in the winter, and no
dishwasher was operated. The CONTAM output files included mixing ratios (mass of water
vapor per unit mass of dry air, used to calculate relative humidity), air pollutant
concentrations per room per source, and flow rates into and out of each apartment wall, in
half hour time increments.

Statistical analysis
We used SimReadW (NIST, Gaithersburg, MD) to convert CONTAM output files to text
and Excel files. We used SAS (Proc Means, version 9.1, SAS Institute Inc., Cary, NC) to
calculate 24-hour average indoor pollutant concentrations per source and pollutant across all
apartment rooms. Mixing ratio values were converted to relative humidity values using
ASHRAE psychrometric equations (ASHRAE, 2009).

We built regression models using SAS (Proc GLM) where the dependent variable was the
log-transformed daily 24-hour average relative humidity or pollution concentration per
source and per pollutant (NO2 from cooking, NO2 from using the oven to heat the house,
NO2 from outdoors, PM2.5 from cooking, PM2.5 from smoking, and PM2.5 from outdoors).
To make our regression models physically interpretable, we built predictors consistent with
IAQ modeling equations or concepts.

For NO2 and PM2.5, we first built predictors based on the standard single-compartment box
model utilized previously (Özkaynak et al., 1997; Long et al., 2001; Baxter et al., 2007).

(eq. 1)
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where P = penetration efficiency (dimensionless), a = AER (h−1), k = decay rate (h−1), E =
source strength (µg/h), V = unit volume (m3).

For infiltration from outdoors, the box model term is a product of outdoor concentrations
and Pa/(a+k). For PM2.5, we assumed that P = 0.99 and k = 0.18 h−1 in the summer and
spring, and that P = 0.8 and k = 0.19 h−1 in the fall and winter, as estimated elsewhere (Long
et al., 2001). For NO2, we assumed that P = 1 and that k = 0.87 h−1 (Emmerich and Persily,
1996).

For indoor sources, concentrations should be predicted well by a term that corresponds to E/
(a+k). We omitted unit volume, as the unit volume is constant across runs. For indoor
sources where source strength did not vary across runs (PM2.5 from ETS and NO2 from
supplemental heating), the term used as a predictor in our regression model was therefore 1/
(a+k). For cooking, for which utilization did vary across runs, the term was E/(a+k), where
E=the NO2 or PM2.5 source strength associated with the stove. For PM2.5 generated by ETS,
we used a k of 0.1 h−1 (Klepeis and Nazaroff, 2006).

After conducting univariate regressions of log-transformed NO2 and PM2.5 concentrations
from CONTAM as a function of these predictors, we constructed multivariate linear
regression models using stepwise regression, including covariates that were significant at p
< 0.05. Candidate covariates included terms that could explain differences between multi-
compartment CONTAM outputs and the predictors derived from box model concepts. This
included unit level, given the influence of a stack effect (warm air moving upward in the
building due to temperature-driven differences in air density); fan presence and operability,
which can vent concentrations from cooking and other specific sources; season, given
possible additional influences of indoor-outdoor temperature differences; 24-hour average
AER, given the possibility of ventilation effects not fully captured by the simple box model
predictor; and outdoor pollutant concentrations.

For relative humidity, CONTAM cannot track separate sources, and predictors such as
temperature are expected to dominate; therefore, the focus on predictors derived from the
structure of Equation 1 was not directly relevant. We built a single multivariate regression
model for the log-transformed total relative humidity, incorporating the following indoor
and outdoor covariates: outdoor temperature/humidity, season, fan use, apartment level,
inverse AER, and an interaction term between stove use and fan use as candidate predictors.
Model-building was conducted in a stepwise fashion as described above.

Simulating concentrations in Boston public housing
To evaluate the applicability and interpretability of our regression models, we developed a
program in R (R 2.12.1, The R foundation of Statistical Computing) to generate households
that mimicked characteristics typical of Boston public housing. We assigned the houses
characteristics based on previously published literature on Boston public housing or inner-
city housing and simulated an ensemble of houses (n=1000) for a year. Household
characteristics included:

• In 34% of houses with children at least 1 adult smokes (Digenis-Bury et al., 2008),
with 50% of them light smokers and 50% heavy smokers,

• 89% of households own a gas stove (Kattan et al., 1997),

• 38% use the stove for heating in the winter (Brugge et al., 2001), assuming that the
supplemental heat was turned on only on days when the 24-hour average outdoor
temperature was below 273K,

• 13% have a working exhaust fan in the kitchen (Kattan et al., 1997),
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• 20%, 50% and 30% of units fall in leakiness categories 1 through 3 respectively
(Zota et al., 2005); in the summer, the AER associated with each leakiness category
increased by 0.4 h−1 to simulate window opening, which was the change in AER
reported in the heating versus non-heating season by Zota et al.

• Cooking time was estimated as 16 minutes per stove use (32 min/day and 48 min/
day for households where cooking occurred 2X/day and 3X/day respectively),
based on current values reported in the EPA Exposure Factors Handbook (EPA,
2009).

Each day a random value was drawn from normal distributions of outdoor NO2 and PM2.5
(averaged from Boston hourly pollution data as described above), outdoor temperature and
relative humidity (averaged from TMY2 data), and AER (calculated from CONTAM
simulation output, stratified by season and leakiness category), and these values were used
to estimate indoor relative humidity and NO2 and PM2.5 by source. We evaluated the
distribution of concentration outputs, in aggregate and by source type, and compared these
results with values reported in the indoor pollution literature.

Results
Eight hundred and ninety six values of 24-hour average pollutant concentrations and relative
humidity were simulated in CONTAM (4 leakiness categories × 2 apartment levels × 2 fan
settings × 2 daily stove uses × 4 seasons × 7 days). Table 2 shows the range of values
generated for each source of PM2.5 and NO2. Values are high, reflecting the simulated
activity patterns where all households had a gas stove, a heavy smoker, used the oven for
heating during the winter, and cooked on the stove 2 or 3 times a day. The values are clearly
not representative of typical annual averages, but represent the distributions generated with
our factorial design. 24-hour average simulated indoor relative humidity was 31.4% (SD=
12.9), 69.8% (SD= 14.5), 44.8% (SD=13.5), and 20.1% (SD= 8.9) for spring, summer, fall,
and winter respectively.

Table 3 shows the NO2 regression models derived from the CONTAM simulation runs for
each source, including a univariate R2 term per covariate as well as a partial model R2 for
the stepwise multivariate model. Table 4 presents the same models for PM2.5. Model R2

ranged between 0.89 and 0.98.

The term derived from the single-compartment box model was positive and statistically
significant in all models, though its predictive power varied across models. The lowest
predictive power in multivariate models was seen for NO2 and PM2.5 from cooking, given
the importance of an operating kitchen fan in predicting indoor concentrations.

The box model term performed quite well for NO2 from gas stove heating (in a model fit to
a subset of winter observations) and from infiltration from outdoors, with slightly weaker
performance for PM2.5 from ETS and infiltration from outdoors.

Even with the inclusion of a term derived from box model concepts, a separate term for
AER was statistically significant in all multivariate models. The term had modest
explanatory power in most cases, especially for infiltration from outdoors, but added
significantly to predictive power for NO2 from cooking and PM2.5 from ETS. For all indoor
sources, the AER term had a negative coefficient, indicating a potential systematic bias
when applying the box model term in isolation.

In addition, level (upper, lower) was significant in all models, with a negative coefficient for
indoor sources (i.e., higher concentrations at the upper level) and a positive coefficient for
infiltration from outdoors. Season demonstrated modest predictive power in a subset of
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models, and none of the meteorological covariates (temperature, relative humidity) were
significant.

Table 5 shows the regression model predicting indoor relative humidity. The regression
model for indoor relative humidity had an R2 of 0.94 (Table 5), and included season and
inverse AER as well as the meteorological covariates outdoor relative humidity and
temperature. Fan use and lower level of the building were significant in the multivariate
model but they contributed less than 1% to the model R2.

For the simulated population of 1000 households with characteristics typical of inner city
housing, mainly Boston public housing, Figures 2A and 2B present box plots of 24-hour
daily averages of NO2 and PM2.5 contributions per source, with the asterisks representing
concentrations reported in the literature for each pollutant and source. For NO2, cooking
contributes more than either heating with the oven or infiltration from the outdoors, with a
mean contribution of 28.4 µg/m3 (versus 3.3 µg/m3 for heating with the oven and 14.1 µg/
m3 for infiltration from outdoors). Similarly, for PM2.5, cooking is the largest contributor to
modeled indoor concentrations, with a mean contribution of 25.6 µg/m3 (versus 10.5 µg/m3

for smoking and 7.6 µg/m3 for infiltration from outdoors). Mean AER over the simulated
year was 0.53, 1.2, and 1.6 h−1 for leakiness categories 1, 2, and 3, respectively. These
values are slightly larger than the AERs corresponding with the wall leakage values,
consistent with the influence of window opening in the summer and other ventilation
pathways, and remain within the range of values reported for this type of housing (Zota et
al., 2005).

While this rank ordering is true when comparing median concentrations, there is significant
variability across simulated homes in relative source contributions, especially for indoor
sources. When we compared quartiles of simulated indoor and outdoor NO2 and PM2.5
concentrations, residents’ exposure in the lowest NO2 quartile was 3% from heating the
house with a gas oven in the winter, 29% from cooking with a gas stove, and 68% from
outdoors. On the other hand, in the highest quartile, 12% of the exposure was from using the
gas oven to heat the house, 68% from cooking with a gas stove, and 20% from outdoors. Of
note, this represents the distribution on an annual average basis – the contribution from
heating the home with a gas oven is significantly greater during the coldest days of the
winter, and zero the rest of the year. For PM2.5, residents from households in the lowest
quartile were exposed to PM2.5 principally from cooking (62%), followed by outdoor
concentrations (37%) and smoking (1%); exposure in the highest quartile came from
cooking (46%), smoking (44%) and outdoors (10%).

In the highest NO2 quartile almost 100% of households owned a gas stove, used the gas
oven for supplemental heating in the winter, and didn’t operate the fan while cooking.
Conversely, in the lowest quartile only 44% of households owned a gas stove and 49%
didn’t operate the fan while cooking. In both NO2 quartiles there was a wide distribution of
AER. For PM2.5, households in the lowest quartile were mostly non-smoking (98%) and
used the stove twice a day (74%), while in the highest quartile 91% were either light or
heavy smokers, and 64% used the stove three times a day. Fewer households were classified
as high AER in the high versus low PM2.5 quartiles.

Discussion
The regression models describing the CONTAM simulation outputs explained between 89%
and 98% of variability and were able to capture the distribution of concentrations predicted
by CONTAM. Beyond their predictive power, the regression models were physically
interpretable and provided some interesting insights about the value-added of more complex
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IAQ modeling. Specifically, if CONTAM pollutant concentration outputs were perfectly
correlated with estimates from a simple one-compartment box model, it would imply that a
one-compartment model would have no greater uncertainty than CONTAM itself. However,
a regression parameter based on one-compartment box model concepts was not the only
predictor of indoor pollution, reinforcing that multi-family housing indoor air pollution
dynamics are complex, and justifying the need to use advanced simulation programs (even
given the subsequent need to develop regression models from these programs) to more
accurately predict indoor concentrations. The box model parameter explained between 29%
and 92% of the indoor pollution variability, depending on the modeled source.

As would be expected, operating a kitchen fan during cooking had a large impact on NO2
and PM2.5 concentrations (explaining 60% and 43% of the variability in multivariate
models, respectively). This effect is uncertain given limitations in CONTAM, where kitchen
exhaust fans are operated as general room exhaust, and not as a point-source exhaust with
empirical data on capture efficiency. The assumption that the room is well-mixed with
general exhaust may underestimate the influence of an operable exhaust fan proximate to the
combustion source, but the lack of a formal term for capture efficiency could overestimate
the removal rate. In spite of these uncertainties, other studies have shown that having an
operable fan during cooking has a large impact on indoor air pollutants (Li et al., 2006),
making fan operation and maintenance a target for intervention studies. The true effect of
the fan would depend on airflow, how well the fan is running, and its capture efficiency, and
these factors should be included in future intervention models. Other studies have shown
that having an operable fan during cooking has a large impact on indoor air pollutants (Li et
al., 2006), making fan operation and maintenance a target for intervention studies. For all
indoor pollutant sources (cooking, ETS, heating) and for relative humidity, higher
concentrations were modeled in the upstairs apartments compared to downstairs. Apartment
level was likely a proxy for stack effect during the heating season or periods of stove use.
For outdoor concentrations this trend was reversed, due to the stack effect moving air with
lower concentrations of outdoor pollutants from the downstairs apartment to the upstairs,
and replacing it with outdoor air.

AER was the third variable that was a significant predictor in all models, an interesting
finding given its inclusion in the box model parameter. While the explanation for the
independent significance of this term is not immediately obvious, it was generally in the
anticipated direction for air exchange rates (i.e., for indoor sources higher AER produced
lower pollution concentrations, though the coefficient was positive for outdoor PM2.5 and
negative for outdoor NO2). This indicates that the simple box model does not fully capture
the influence of air exchange rates in multi-family housing. With the exception of ETS
PM2.5, once the box model term was included, the independent AER term was significant
but only improved the model R2 by 1% to 4%. For ETS PM2.5 AER improved the model R2

by 20%. Both AER and season, which was significant in some of the models, likely
explained residual variability due to unmeasured meteorological conditions or housing
characteristics.

Outdoor temperature was the most significant predictor of indoor relative humidity (R2 =
0.72). In the multivariate model an inverse term for AER explained 12% of the variability
after controlling for season and outdoor temperature. This likely represents the influence of
infiltration, with higher air exchange rates (and greater ventilation) associated with lower
indoor relative humidity. Outdoor relative humidity was less significant both in univariate
and multivariate models. Season, apartment level, and fan presence and operability were
significant covariates but only marginally improved the model R2 as their effects were
mostly accounted for by the other covariates.
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While we were able to explain the vast majority of variability in CONTAM outputs, this
does not by itself imply that the CONTAM estimates themselves are accurate. Our
regression models are only useful for health risk simulation if the estimated concentrations
are reasonable. Formal external validation is not possible given the hypothetical nature of
our investigation and somewhat unique characteristics of our target population, but we can
compare our estimated source contributions for households characteristic of low-income
multi-family housing with corresponding values from the literature.

For PM2.5 from ETS, we estimated mean 24-hour average concentrations of 20.6 µg/m3

(SD=8.8) for households with light smokers (12 cigarettes/day) and 39.4 µg/m3 (SD=16.1)
for households with heavy smokers (24 cigarettes/day). These estimated values assumed that
the smoker was in the house the entire time they smoked. Once this fact is accounted for,
and given the small unit sizes in our study, these values are in general agreement with
previously published simulation studies as well as values measured in field studies.
Modeling data from the American Housing Survey, Chahine et al. estimated a mean
concentration of 16.3 µg/m3 ETS PM (SD=16.9) in households with smokers, where the
daily mean number of cigarettes smoked was 14.9 (Chahine et al., 2010). Using CONTAM,
Myatt et al. modeled a median and mean concentration of ~12 µg/m3 and ~17.5 µg/m3

respectively, based on smoking 8 cigarettes/day (Myatt et al., 2008). Klepeis et al. used a
box model and reported concentrations between 6.6 and 49 µg/m3 with smokers consuming
30 cigarettes/day indoors and outdoors (Klepeis and Nazaroff, 2006). In field studies,
Dockery et al found that contact with one smoker adds 20 µg/m3 to PM2.5 personal exposure
(Dockery and Spengler, 1981); and Ozkaynak et al. found 30 µg/m3 higher PM2.5
concentrations in homes with smokers (Özkaynak et al., 1996) compared to non-smokers.

Turning to PM2.5 associated with cooking, there is more variability in the empirical
literature and more challenges in comparing studies given the importance of exhaust fan use,
cooking time, and type of cooking (i.e., frying vs. grilling vs. boiling). We estimated that
households with a working fan had mean PM2.5 contributions from cooking of 10.9 µg/m3

(SD=4.3), versus 27.8 µg/m3 (SD=11.1) in houses with non-working fans. In contrast,
Baxter et al found that cooking with a gas stove more than 1 hour/day increased PM2.5 on
average 5.7 µg/m3 (Baxter et al., 2007), Özkaynak reported an increase in personal exposure
of 13 µg/m3 in households that cooked for more than 1 minute (Özkaynak et al., 1996), and
Brunekreef et al found that cooking increased indoor PM2.5 concentrations by 11.65 µg/m3

in Amsterdam and by 1.86 µg/m3 in Helsinki (Brunekreef et al., 2005). Our estimates appear
somewhat higher than these studies. This could be due to our high percentage of homes
without a kitchen exhaust fan (the published studies did not report details on whether an
exhaust fan was in use), or related to appreciable uncertainty in PM2.5 cooking emission
rates. We used 1.56 mg/min as reported by Burke et al, but values have been reported as low
as 0.0017 mg/min and as high as 17 mg/min (Emmerich and Persily, 1996; Özkaynak et al.,
1996; Persily, 1998; Burke et al., 2001; He et al., 2004; Olson and Burke, 2006). While this
imposes some challenges in interpreting and utilizing our outputs, our modeling structure is
such that we could rapidly test alternative emission rates and adjust in the event that relevant
validation data were available. Moreover, given the smaller residence volumes in our
simulation as compared to many previous studies, a more significant influence would be
expected from any indoor source.

For NO2, the most significant contribution to concentrations was cooking with a gas stove,
which contributed an average of 28.4 µg/m3 (SD=14.5). When stratified by kitchen exhaust
fan use, in households with a working fan cooking contributed 11.5 µg/m3 (SD=5.9) versus
31 µg/m3 (SD=0.01) in households with non-working fans. In comparison, field studies have
shown that households that use gas stoves have 11.1–37.1 µg/m3 higher concentrations than
households with electric stoves (Moschandreas, 1992; Lambert et al., 1993; Lee et al.,
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1998), and households using a gas stove more than 1 hour/day increased NO2 concentrations
by 10.6 µg/m3 (Baxter et al., 2007). Moreover, the total NO2 ratio in houses with working
fans versus non-working fans in our study was 1.7, similar to the ratio of 1.4 reported
elsewhere (Li et al., 2006), with the slightly higher values potentially attributable to unit size
as well as factors such as AER.

Finally, for NO2 from heating with a gas stove, comparisons with values in the literature are
more challenging, given limited reporting and relatively coarse information available in the
literature. Our mean NO2 contributions from the stove during the winter were 13.4 µg/m3,
including homes that did and did not use the gas oven for supplemental heating. We
assumed that the 38% of houses that used the oven for heating in the winter always had it on
when the average 24-hour temperature outdoors was below 273°K, although use is likely
more sporadic depending on the heating system performance and operation. In a study in
Boston public housing, Zota et al measured indoor NO2 values 31.6 µg/m3higher during the
heating season compared to non-heating season, attributable to both lower air exchange rates
during the winter and the use of gas stoves for supplemental heating. Univariate regression
models estimated an average contribution from heating with gas stoves of 14.9 µg/m3,
across observations including the heating and non-heating season. Our estimates are
therefore reasonably consistent with the empirical literature.

The average fractions of pollutants that penetrated indoors were 0.4 (range 0.2–0.5) and 0.6
(range: 0.4–0.8) for NO2 and PM2.5 respectively, reflecting losses due to deposition and
decay. The PM2.5 fractions are similar to those reported in other studies: 0.7 (Özkaynak et
al., 1996), ~0.65 (Long et al., 2001), and 0.8 (Baxter et al., 2007). For NO2 our values were
lower than those reported in the literature: 0.5 (Monn et al., 1997), 0.7 (Levy et al., 1998),
0.6 (Lee et al., 1998), 0.5 (Baxter et al., 2007).

There are some limitations to our approach. We constrained the CONTAM simulation to
model a constant indoor temperature of 298K because of the inability to vary temperature in
real-time in a manner that corresponded with occupant behaviors, potentially not capturing
variations in pollutant concentrations driven by outdoor/indoor temperature differences. We
accounted for window opening during the summer by adjusting the AER directly, rather
than incorporating an hourly window opening schedule, which only grossly captures
variations in pollutants and excludes potential hourly variations. We likely overestimated the
moisture content in the air by not adjusting for water vapor storage in building materials and
furnishings, a phenomenon which has been modeled with moderate success, and is still
undergoing improvement (Emmerich et al., 2002). However, CONTAM has been
extensively tested and validated, including in applications to quantify the effects of
interventions on multiple contaminants in a townhouse (Emmerich et al., 2005), the effect of
central forced-air heating and cooling on indoor air quality (Emmerich and Persily, 1996),
and the effect of air cleaning systems on multiple indoor pollutants (Myatt et al., 2008;
Macintosh et al., 2010). Another limitation is the use of regression models to explain the
complex dynamics of air movement in the building, which may not capture some extreme
cases, though the extremely high R2 indicates that we do not have substantial outliers.
Finally, given the small unit volumes assumed in our analysis and our focus on a small
multi-family dwelling consisting entirely of corner units, the quantitative findings regarding
source contributions may not generalize to other homes, though the analytical approach
could be readily extended to these settings.

In spite of these issues, our modeling approach would allow us to estimate the effectiveness
of interventions on populations with different housing and behavioral characteristics without
having to simulate each scenario in CONTAM, which often involves significant time and
effort, and without relying solely on simple box models that may not capture important
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dynamics in multi-family housing. For example, to calculate the effect of fixing all the
kitchen fans in Boston public housing, we simulated a new random set of 1000 households,
and set the percent of working fans to 100%. Results showed that on average total NO2
concentrations would drop from 45.9 µg/m3 to 31.8 µg/m3 (−31%) and PM2.5
concentrations would drop from 42 µg/m3 to 28.8 µg/m3 (−34%). This type of analysis can
be used directly in simulation models estimating the exposure and health risk implications of
housing-based interventions, informing future policy initiatives. The modeling approach we
presented can be used to study the effect of interventions on individual pollution sources and
total pollution concentrations. The methods can be applied to any building type and
pollutant, and when coupled with estimates of the costs of interventions and the health
benefits of concentration changes, can directly inform policy decisions regarding indoor
environmental interventions.

Practical implications

Many low-income urban asthmatics live in multi-family housing that may be amenable to
ventilation-related interventions such as weatherization or air sealing, wall and ceiling
hole repairs, and exhaust fan installation or repair, but such interventions must be
designed carefully given their cost and their offsetting effects on energy savings as well
as indoor and outdoor pollutants. We developed models to take into account the complex
behavior of airflow patterns in multi-family buildings, which can be used to identify and
evaluate environmental and non-environmental interventions targeting indoor air
pollutants which can trigger asthma exacerbations.
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Figure 1.
CONTAM schematic of simulated apartment unit in a multifamily building.

Fabian et al. Page 14

Indoor Air. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
24-hour daily averages of A) NO2 and B) PM2.5 contributions per source from a sample of
1000 simulated households, estimated using regression models with input characteristics
typical of Boston public housing. The asterisks represent typical concentrations reported in
the literature for each pollutant and source (Dockery and Spengler, 1981; Lambert et al.,
1993; Özkaynak et al., 1996; Levy et al., 1998; Brugge et al., 2003; Hynes et al., 2003; Zota
et al., 2005; Sarnat et al., 2006; Baxter et al., 2007; Myatt et al., 2008; Chahine et al., 2010).
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Table 1

Contaminant source and sink emission rates and schedules used as inputs for CONTAM simulations.

Contaminant
source

Emission/removal
rate

Reference Schedule

PM2.5 from cigarettes (ETS) 0.33 mg/min (10 mg/cig* 2
cig/hr)

(Klepeis et al., 2003) 7:00–19:00, 1 cigarette smoked every half
hour

ETS PM2.5 deposition −0.1 h−1 (Klepeis and Nazaroff,
2006)

24 hours

PM2.5 from cooking 1.56 mg/min (Burke et al., 2001) Weekday: 7:00–7:30, 12:00–12:30,
17:30–18:30 Weekend: 8:30–9:30, 11:30–
12:30, 17:30–18:30a

PM2.5 deposition from cooking and
outdoors

−0.19 h−1 (Long et al., 2001) 24 hours

NO2 from gas stove during cooking 56 µg/sec (Persily, 1998) Same as PM2.5 cooking schedule

NO2 from using oven for heating 28 µg/sec (Persily, 1998) 6:00–22:00 daily during winter

NO2 decay from all sources −0.87 h−1 (Emmerich and Persily,
1996)

24 hours

Water vapor from showering 670 mg/s (Persily, 1998) 10 minute showers @ 6:00 & 6:30 on
weekdays; 9:00 and 9:30 on weekends

Water vapor from cooking 138.9 mg/s (Persily, 1998) Same as PM2.5 cooking schedule

Water vapor from dishwasher 83.3 mg/s (Persily, 1998) 19:00–20:00 daily

Water vapor from breathing

Children Awake: 11.1 mg/s (Persily, 1998) 6:30–20:00 on weekdays, 8:00–20:00 on
weekends

Sleeping: 6.11 mg/s 20:00–6:30 on weekdays, 20:00 to 8:00
on weekends

Adults Awake: 15.3 mg/s (Persily, 1998) 6:00–22:00

Sleeping: 8.42 mg/s 22:00–6:00

a
In simulations where the stove was used twice a day only usage during breakfast and dinner hours was simulated
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