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Abstract. We present a case study on the use of robustness-guided and statistical

model checking approaches for simulating risks due to insulin infusion pump us-

age by diabetic patients. Insulin infusion pumps allow for a continuous delivery of

insulin with varying rates and delivery profiles to help patients self-regulate their

blood glucose levels. However, the use of infusion pumps and continuous glucose

monitors can pose risks to the patient including chronically elevated blood glu-

cose levels (hyperglycemia) or dangerously low glucose levels (hypoglycemia).

In this paper, we use mathematical models of the basic insulin-glucose regula-

tory system in a diabetic patient, insulin infusion pumps, and the user’s interac-

tion with these pumps defined by commonly used insulin infusion strategies for

maintaining normal glucose levels. These strategies include common guidelines

taught to patients by physicians and certified diabetes educators and have been

implemented in commercially available insulin bolus calculators. Furthermore,

we model the failures in the devices themselves along with common errors in the

usage of the pump. We compose these models together and analyze them using

two related techniques: (a) robustness guided state-space search to explore worst-

case scenarios and (b) statistical model checking techniques to assess the proba-

bilities of hyper- and hypoglycemia risks. Our technique can be used to identify

the worst-case effects of the combination of many different kinds of failures and

place high confidence bounds on their probabilities.

1 Introduction

The goal of this paper is to combine physiological models of the insulin-glucose reg-

ulatory system in diabetic patients with medical device models of infusion pumps and

continuous glucose meters to perform in silico risk assessments. Modern treatments

for type-1 and 2 diabetes mellitus require frequent, periodic monitoring of blood glu-

cose levels and the subcutaneous delivery of artificial insulin. Developments in medical

device technologies have enabled software-controlled insulin infusion pumps that can

deliver precise amounts of insulin in user programmable patterns. Likewise, advances

in sensor technologies have enabled continuous glucose monitors (CGM) that can be

used to sense the concentration of glucose subcutaneously. These technologies have en-

abled the development of automatic and manual control strategies, vastly improving the

ability of patients to achieve normal glycemic control [12,19,37].
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However, the use of these devices and the control strategies are prone to hazards

arising from device, software and usage errors. A comprehensive list of these hazards

has been compiled by Zhang et al. [43]. These risks primarily arise due to factors such

as (a) failures in insulin pumps due to software errors, occlusions, and pump failures;

(b) calibration and dropout errors in the glucose monitors; and (c) usage errors includ-

ing discrepancies between planned and actual meals, incorrect insulin-to-carbs ratios,

sensitivity factors, and basal insulin levels. These hazards can expose the patient to sig-

nificant levels of hypoglycemia (low levels of blood glucose) or hyperglycemia (high

levels of glucose), each of which leads to dangerous complications including loss of

consciousness for hypoglycemia and ketacidosis for significant hyperglycemia. The

long term consequences of elevated post-prandial glucose levels include kidney damage

(nephropathy) and eye damage (retinopathy). Given the severity of these risks, a careful

study of the various kinds of faults involved in the infusion process and the associated

risks is of great importance.

In this paper, we create mathematical models of the overall infusion process by mod-

eling the components involved in an infusion. Our model incorporates physiological

models of the gluco-regulatory system [22,11,7,36,9,27,29], models of the various de-

vices involved, the user’s infusion strategy [34] and some of the possible faults that can

arise during the infusion process [43]. We specify metric temporal logic (MTL) prop-

erties [25] for the executions of this model which include (a) absence of hypoglycemia

(G(t) ≥ 3 mmol/L), (b) absence of significant hyperglycemia, (G(t) ≤ 20 mmol/L),

and (c) settling of the blood glucose level to a normal range 3 hours after a meal

(∀ t, t ≥ 150 ⇒ G(t) ∈ [4, 10] mmol/L). Unfortunately, the resulting models are

nonlinear and include discrete mode switches due to the user and device models. Exist-

ing symbolic verification tools are inadequate for exhaustively exploring the behaviors

of the overall model. Therefore, we adapt two recent approaches based on simulations:

Robustness-Guided Model Checking: We use robustness-guided sampling, assum-

ing that faults are non-deterministic [28,4] to explore the possible worst case scenarios

involving a combination of faults. Robustness guided sampling is based on the idea of

providing real-valued robustness semantics to formulas in metric temporal logic [30,16,17].

The robustness of a trace w.r.t a given specification can be used as an objective function

for a global stochastic optimization approach that seeks to minimize the robustness to

falsify a given temporal property. This is a suitable approach in cases where the model

is infinite state and non-linear. Such models are generally not amenable to existing

symbolic verification techniques. In this paper, we employ this scheme to search for

combinations of faults that can cause severe hyperglycemia, hypoglycemia and delayed

return to normal glycemic levels following a meal.

Statistical Model Checking: We use statistical model checking by associating prob-

abilities with faults to quantify the risk of hyper- and hypoglycemia with some con-

fidence interval bounds [42,10,44]. Statistical model checking (SMC) repeatedly sim-

ulates a stochastic system while evaluating probabilistic temporal logic queries with

high confidence. SMC approaches allows us to place bounds on the probability that a

formula holds for a given stochastic system.

The models described in this paper are integrate inside the Matlab Simulink/Stateflow(tm)

modeling environment. We use our tool S-Taliro which incorporates robustness-guided



state-space exploration using many different global optimization engines including Monte-

Carlo search [28], Ant-colony optimization [3], genetic algorithms and cross-entropy

sampling [32]1. Recently, we have extended S-Taliro to support Bayesian Statistical

Model Checking (SMC) [23,44]. Using S-Taliro, we examine numerous fault scenar-

ios involving a combination of faults to analyze the worst-case scenarios arising from

these situations and to quantify the risk of hyper or hypoglycemia, assuming some prior

probabilities for the various faults.

To our knowledge, the use of statistical and robustness-guided model checking to

analyze infusion risks in the insulin infusion pump setting is novel. Previously, there

have been attempts at quantifying risks involved in model-predictive controllers (MPC)

for overnight glycemic control using a simulation environment [40,20]. These simula-

tions derive a risk score for hypoglycemia risk using numerous simulations. However,

no confidence intervals are derived for the risk scores. The use of SMC in this paper

provides a more systematic and potentially less computationally expensive approach.

Jha et al. employ statistical model checking to discover parameters for a PI controller

for managing insulin infusion pumps using the Bergman minimal model [24].

Assessing risks in infusion pumps has received increasing attention recently [43,5,39,38].

Our previous work considered the effects of infusion risks in a hospital setting using

drug infusion pumps and linear phramacokinetic models [33]. Therein, we were able

to employ bounded-model checking techniques for linear hybrid automata to drive the

worst-case search. Currently, the state-of-the-art in symbolic verification techniques are

inapplicable to our model which involves non-linear dynamics with switching.

2 Overview

We provide a brief overview of the problem and the proposed solutions.

Insulin Infusion Scenario: Consider a commonly occurring scenario of planning a

meal for a patient suffering from type-1 (insulin dependent) diabetes. The patient uses

an insulin infusion pump to deliver an appropriate bolus dosage of insulin 2 before the

meal commences. The planning process requires the patient to decide on the following

parameters:

1. The insulin bolus amount to be infused through an insulin infusion pump,

2. The timing of the bolus relative to the planned meal time,

3. The width of the bolus,

4. The timings and amounts of any planned corrective dosages to accommodate higher

than normal post-prandial blood glucose levels.

Typically, patients suffering from diabetes undergo training by physicians, certified

diabetes educators and numerous books on the topic to arrive at suitable strategies for

planning meal infusions [34]. A typical calculation that is often automated by an insulin

bolus calculator involves the steps detailed below using the planned meal data:

1 S-Taliro can be downloaded for free from https://sites.google.com/a/asu.edu/

s-taliro/.
2 A bolus dosage is a fixed amount of a drug that is delivered over a relatively short period of

time to achieve a near-term effect.

https://sites.google.com/a/asu.edu/s-taliro/
https://sites.google.com/a/asu.edu/s-taliro/


– Divide the amount of carbohydrates in the meal by a personal insulin-to-carbs ratio

to obtain an appropriate bolus,
– Decide on the timing, shape and width of the bolus based on the Glycemic Index

(GI) of the planned meal and the blood glucose reading measured prior to the meal,
– Decide on a correction bolus a few hours after the meal by measuring blood glucose

levels and dividing it by a personal insulin sensitivity factor.

There are many rules of thumb for deciding upon an appropriate insulin-to-carbs

ratio or an insulin sensitivity factor. Often, the patients are required to carefully monitor

and adjust these ratios until they can achieve good glycemic control. However, there are

numerous risks involved in a typical infusion that can lead to elevated blood glucose

levels (hyperglycemia) or very low levels (hypoglycemia). A few commonly occurring

faults are summarized below (Zhang et al. provide an exhaustive list of hazards [43]):

1. Software errors in the insulin pump, affecting its ability to deliver insulin of the

specified amount and at the specified rates.
2. Calibration errors in the glucose monitors, whose readings are used to compute the

correction bolus.
3. Mismatches between the planned meal used in the bolus calculations and the actual

meal consumed.
4. Incorrect timing of the insulin dosage.
5. Incorrect usage of insulin infusion pump (eg., entering a wrong dosage, incorrect

bolus shape, unit errors).
6. Failures due to occlusions or pump hardware faults.

The systematic study of the effects of the faults on the overall infusion process

is necessary to find and remedy common causes that may result in significant hyper-

glycemia ( elevated blood glucose levels) causing dangerous conditions such as ketaci-

dosis, or hypoglycemia (low blood glucose levels) that may lead to a loss of conscious-

ness or a dangerous coma in the worst case. For instance, it is natural to ask questions

such as (a) what are the worst-case effects of a particular single fault or a combination

of faults? (b) given probabilities of individual faults, what is the overall probability of a

severe hypoglycemia?

While it is possible to predict the qualitative effects of a single fault in isolation,

the combined effect of multiple faults are often be hard to predict quantitatively. Nat-

urally, a clinical study with real patients using the pump with various controls is the

gold standard for providing answers to some of the questions above. However, such

studies are expensive, requiring a large set of participants since some of the faults occur

infrequently.

An emerging line of research consists of modeling the various components involved

in the infusion: the infusion pump, the user’s meal planning strategies, physiological

models of the insulin-glucose regulation, the glucometer incorporating models of the

various faults that may occur [40,27,29]. Such models can then be analyzed for finding

worst-cases and their likelihood. This can often point the way towards improving the

process to make it safer for patients.

Modeling and Simulation: Figure 1 shows the basic components that are modeled in

this scenario and the interactions between these models. Our approach integrates mod-

els of the insulin-glucose regulatory system [22,40], meal absorption models [41], a
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Fig. 1. Key components in modeling meal insulin infusion pump usage scenario.

minimal infusion pump model, glucose meter models [40,15] and a model of the pa-

tient’s usage of the pump to cover meals. The latter model is based on an understanding

of common pump usage recommendations by physicians and certified diabetes educa-

tors [34]. These sub-models are integrated to yield a Matlab Simulink(tm) model.

Figure 2 shows a set of possible blood

Fig. 2. Variation of plasma glucose (left)

and plasma insulin (right) concentrations

with varying calibration errors and infu-

sion timings. The reference trajectories

with no infusion faults is highlighted.

glucose and insulin levels over time ob-

tained by running simulations with ran-

domly chosen glucose monitor calibration

errors and discrepancies between planned

and actual meals. The shaded region shows

acceptable limits for glucose levels. We

note that presence of errors and faults have

the effect of potentially causing hyperglycemia

as well as hypoglycemia. However, repeated

simulations do not suffice to explore worst-

case scenarios. If simulations are performed

uniformly at random, the number of sim-

ulations required to uncover these scenar-

ios is often prohibitively large. The anal-

ysis techniques used here explore the worst

case outcomes using state-space exploration guided by trace robustness [28,4] and es-

timate the probability of hypo- and hyperglycemia, given the probabilities for the indi-

vidual machine faults and user errors [42,23].

3 Background

We first provide some brief background on diabetes mellitus and its treatment using

intensive insulin therapy. More information on topics related to diabetes can be obtained

from clinical textbooks on this topic [35].

Insulin-Glucose Regulatory System Diabetes mellitus is the generic name for a class

of diseases where critical parts of the natural glyco-control system fail. Type-1 diabetes
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Fig. 3. (a,b) Commercial insulin infusion pump models, (c) blood glucose monitor and

(d) continuous sub-cutaneous glucose monitors.

results from the loss of pancreatic insulin secretion due to to auto-immune destruction

of insulin producing β cells in the pancreas. Likewise, type-2 diabetes results from

insulin sensitivity, wherein damage to insulin receptors in the cells makes the action of

insulin weaker, resulting in the inability of the pancreas to keep up with the demand.

Diabetes is a commonly occurring ailment in the developed world as well as the de-

veloping world. A common treatment for chronic diabetes involves the external delivery

of artificial insulin (or insulin analogs) directly through a syringe, or sub-cutaneously

through an insulin infusion pump. The everyday delivery of insulin is controlled by the

patient with advance knowledge of their activities such as diet and exercise. Further-

more, diabetic patients are required to monitor their blood glucose levels intermittently

through “finger stick” blood glucose monitors, or recently by continuous glucose mon-

itors (CGMs) that provide a continuous reading of the subcutaneous glucose levels.

Insulin Infusion Pump and Continuous Glucose Monitors

We will now review some of the basics of insulin infusion pumps and blood glucose

monitors. The monograph by Chee and Fernando contains further details [9].

An insulin infusion pump is a device that delivers insulin at a programmable rate

over time. Insulin infusion pumps have been shown to deliver insulin accurately even

when the requested rate of delivery is very small. This allows the pump to deliver insulin

continuously throughout the day at a basal rate to counteract the endogenous produc-

tion of glucose in the body. Furthermore, pumps also allow for various bolus doses of

insulin to be infused before or just after meals to limit the occurrence of hyperglycemia

following a meal. The shape, width and amount of the bolus can be fine tuned according

to the planned meal. Starchy foods such as rice have a high glycemic index, requiring

rapid infusion of (short-acting) insulin while fat and protein-rich foods have a lower

glycemic index, requiring an infusion with a spread out peak (eg., square-wave bolus).

A continuous glucose monitor (CGM) provides frequent estimates of the blood glu-

cose level by sensing the amount of glucose subcutaneously in the interstitial fluid.

Currently available CGM devices provide readings that can be quite accurate. Further-

more, these devices can communicate wirelessly with a computer or an insulin pump to

transmit readings directly. CGMs have proven useful in providing feedback to diabetic

patients and their physicians to improve the patient’s ability to achieve normoglycemia.



Model Name Type Vars Remarks

Ackerman Affine 2 Two compartment linear model [2,1]

Bergman Nonlinear 3 2 insulin + 1 glucose compartment [7,6]

Cobelli Nonlinear ∼ 11 Comprehensive model including

glucagon submodel and renal function model [11,13]

Sorensen Nonlinear ∼ 19 Comprehensive physiological model with compartments

for brain, vascular, kidney, renal and peripheral systems [36].

Hovorka Nonlinear ∼ 11 Comprehensive model incorporating

endogenous glucose production and renal flitration [22,21,40].

Table 1. Commonly used mathematical models of insulin-glucose regulation.

4 Modeling Insulin Infusion

In this section, we present the overall model developed for insulin infusion. Figure 1

shows the overall model for the insulin infusion setup. The setup consists of an insulin

infusion pump used to deliver insulin to the patient to counteract the effect of a meal.

The meal itself is modeled based on the meal time, duration and its “glycemic factor”

that dictates the time from the start of the meal to the peak in blood glucose. The gut

absorption of the meal is modeled using a simple linear two compartment model pro-

posed originally by Worthington [41]. Finally, the model incorporates a user model that

attempts to capture the user’s insulin infusion and correction dosages. An ideal user

model is first formulated and calibrated based on the best practices advocated in many

guide books that are used by patients using infusion pumps (Cf. [34], for instance). We

then attempt to model various user mistakes such as discrepancies between the planned

meal and the actual meal, calibration errors in glucose readings, mis-timing of the cor-

rection dosages, miscalibration of basal insulin levels, insulin-to-carbs ratio and insulin

sensitivity factors.

We will now describe the construction of each of the sub-models in detail.

4.1 Glucoregulatory Models

There have been numerous attempts to derive mathematical models of the regulation of

glucose by insulin in diabetic patients. In this paper we employ the Hovorka model [22,21,40]

originally proposed by Hovorka and co-workers. We note that there are many other

models that are widely used. A few of the notable models are summarized in Table 1.

We refer the reader to many comprehensive surveys on this topic including Cobelli et

al. [12], Hovorka [19] and the monograph by Chee and Fernando [9]. Comparing pre-

dictions obtained by various models of the insulin-glucose regulatory system in our risk

assessment framework is an important future work.

The Hovorka model refers to a modeling approach that has been used to model the

regulatory system based on tracer studies during a standard intravenous glucose toler-

ance test [22]. The test measures the amount of insulin and the time needed to restore

normal plasma glucose concentrations after the direct infusion of an unit of glucose

under fasting conditions. Data from this test were fitted to a model that considers the



dQ1(t)
dt

= −
[
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Q1(t)
+ x1(t)

]

Q1(t) + k12Q2(t)− FR(t) + EGP0(1− x3(t)) + Ug(t)
dQ2(t)

dt
= x1(t)Q1(t)− [k12 + x2(t)]Q2(t)

dS1(t)
dt

= UI(t)−
S1(t)

tmax,I
dS2(t)

dt
= 1

tmax,I
(S1(t)− S2(t))

dI(t)
dt

= S2(t)
tmax,IVI

− keI(t)
dxj(t)

dt
= ka,jxj(t) + kb,jI(t), j = 1, 2, 3

G(t) = Q1(t)
Vg

F c
01(t) =

{

F01, if G ≥ 4.5mmol/L
F01G(t)

4.5
, otherwise

FR(t) =

{

0.003(G(t)− 9)VG, if G ≥ 9mmol/L
0, otherwise

Fig. 4. Hovorka’s model for insulin-glucose regulatory system. See [9] for an explana-

tion and comparison with other models. Inputs to the model are UI(t) the rate of insulin

infusion and Ug(t), the rate of plasma glucose infusion. The output is G(t) the blood

glucose concentration.

various factors affecting glucose concentration: its uptake by cells, its endogenous pro-

duction, renal clearance and production due to meal absorption. The complete ODE

(with details omitted) is summarized in Figure 4. A detailed explanation is available

elsewhere [21,40,9].

The parameter values for a group of “virtual patients” are summarized by Wilinska

et al. [40]. These parameter sets capture the observed intra- and inter subject variations

seen in real-life patient studies. The Hovorka model has been the basis of a model-

predictive controller that has been designed to automatically regulate overnight insulin

levels in diabetic through an insulin infusion pump and subcutaneous measurements

of glucose concentrations through continuous glucose monitors [21]. The controller

has been extensively simulated in-silico to estimate the risk of hypoglycemia [40] and

recently has been tested successfully in clinical trials [20].

Meal Sub-Model The meal sub-model is part of the overall glucoregulatory model

described by Hovorka et al. to model the rate of absorption of the meal into the blood-

stream by the digestive system. We use a two compartment model

dG1(t)

dt
= −

G1(t)

tmax,G

+B · UD(t) and
dG2(t)

dt
=

1

tmax,G

(G1(t)−G2(t)) .

HereG1(t), G2(t) model the amounts of glucose in the two hypothetical compartments,

B refers to the bio-availability of the meal (taken to be 0.8 in our simulations), UD(t)
refers to the meal input in terms of millimoles of glucose ingested at time t, and tmax,G

refers to the time to peak glucose absorption rate. In general, tmax,G is a function of the

meal glycemic index, wherein meals with high glycemic indices such as starch cause

the glucose absorption to peak relatively quickly, while meals with lower glycemic

indices such as protein and fat rich meals result in relatively flatter peaks that appear

slowly. Throughout our simulation, we will use tmax,G as being synonymous with the

glycemic index of the chief carbohydrate source in the consumed meal. The input Ug(t)

of glucose to the bloodstream resulting from the meal is given by Ug(t) =
G2(t)
tmax,G

.
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Fig. 5. Schematics for insulin delivery profiles supported by most insulin infusion pump

models: (left) basal, (middle) spike bolus and (right) square wave bolus.

Recently, Dalla Man et al. consider non-linear models of gut absorption wherein the

rate constant of glucose absorption from the gut is itself dependent on the amount of

glucose present. This model is shown to fit tracer meal data better than the Worthington

model [14,26].

Glucose Monitors The glucose monitor model periodically samples the output of the

insulin-glucose regulatory model to simulate readings of the subcutaneous glucose. We

assume that the value read by the glucose monitor is subject to a systematic calibration

error. Calibration errors in continuous glucose monitors (CGMs) have been studied by

Wilinska et al. (ibid.), Castle and Ward [8] and Cobelli and co-workers [15]. CGMs

need periodic re-calibration using traditional “finger stick” blood glucose readings. It is

conceivable, however, that the user may often delay this process leading to significant

calibration error wherein the reading may be off by as much as 40-50%. Our setup

models a fixed calibration error parameter that can be set at the start of the simulation.

The assumed calibration error for each simulation can occur in either direction. Apart

from calibration errors, “dropouts” have been commonly reported wherein the reading

from the CGM is attenuated for brief stretches of time. The simulation of “dropouts”

due to physical sensor errors is not currently considered in our setup.

Insulin Pump Sub-Model The pump model is itself quite simple: it supports (a) basal

delivery of insulin at a fixed rate and upon receiving a command, it provides a spike

bolus dosage of a given amount, shape and width. Figure 5 schematically presents the

basic modes supported by infusion pumps. Our model has “hardwired” bolus profiles

representing a unit bolus amount over a unit time, in the form of lookup tables that sum-

marize fractions of requested amounts against sub intervals. Given a particular amount

and time, the values from the lookup table are scaled appropriately and the insulin in-

puts UI(t) to the gluco-regulatory models are set.

Insulin pump faults include inaccurate doses delivered due to hardware or software

errors, stoppages due to occlusions or pump failure. These can also be modeled during

the infusion by using input parameters that specify the times and durations of the various

faulty situations.

4.2 User Infusion Control Strategy Model

Typically, the infusion pump is used to deliver a continuous flow of short-acting insulin

through the day, and intermittent bolus infusions to cover the glucose level increase



after a meal. Correction doses of insulin are administered to correct for higher than

normal levels immediately before a meal and/or a few hours after a meal. This section

is based on information available from diabetes education websites and books. We refer

the reader to the book by Scheiner for more information [34].

Basal Insulin Requirement Basal insulin refers to a constant flow of insulin deliv-

ered by a pump all day to compensate for endogenous glucose production. The basal

insulin level IB requires periodic calibration by the user based on glucose levels ob-

served during the night 3-4 hours after dinner. An appropriately calibrated basal level

IB ensures that the increase in blood glucose level during an extended period of fasting

(eg., during the night well after dinner) is as small as possible.

A typical recommendation for basal insulin for “moderately active” adult with type-

1 diabetes is IB(U/day) = 0.4×weight in kilograms. Starting from this rule of thumb,

the basal levels are adjusted with feedback obtained by frequent monitoring of blood

glucose levels to fine tune a basal insulin requirement.

Calculating Pre-Prandial Insulin Bolus In order to adjust for the increase in post-

prandial glucose levels, a bolus dose of insulin is delivered through the pump before the

meal. The amount and width of a bolus infusion can be directly programmed by the user

or calculated by the pump using the planned meal parameters as inputs. The inputs to

the calculation include (1) grams of carbohydrates (CHO), (2) glycemic index (GI) of

the major CHO source in the food, and (3) personal ratio for insulin-to-carbohydrates.

The bolus size is calculated as follows:

pre-meal bolus amt.(U) = amt. of CHO(gms) × insulin-to-carbs ratio(U/gm) .

Additionally, based on the current blood glucose reading a correction bolus may

also be required. The correction bolus uses the formula

correction bolus(U) =
G(t)−Gdesired

sensitivity
, if G(t) > Gdesired .

Here G(t) refers to the current blood glucose reading, Gdesired refers to the desired

level, and sensitivity is a parameter that is discovered by calibration during the initial

period of pump usage by the patient.

There are many different “rules of thumb” for arriving at an initial estimate of the

basal insulin requirement, the insulin-to-carb ratio and the sensitivity factor. A starting

guess at the insulin-to-carbs ratio is given by 850
weight(kgs) . An initial sensitivity factor

is obtained using the formula
total daily insulin reqd. (mmol/L)

94 . Often starting from

these values, the patient is asked to carefully adjust these values over a period of weeks

to achieve robust control of their blood sugar levels.

Timing the Bolus: Another key parameter is the timing of the bolus relative to the

meal time. The recommended time for the pre-meal bolus depends on the glycemic

index (GI) of the meal. For instance, high glycemic index meals (starches such as rice,

potatoes, white bread) require the bolus infusion 30− 40 minutes pre-meal while lower

glycemic index foods require an infusion that starts with the meal. Another parameter

is the shape and the width of the infusion. Typically starch heavy meals are covered by



a spike bolus while a low GI meal rich in fat and proteins is covered by a square wave

bolus. Insulin infusion pumps incorporate infusion modes that can support these bolus

shapes including combinations for meals that combine various food types.

Overall infusion control model: The infusion control model incorporates a program

that calculates the pre-meal bolus requirements using the insulin-to-carbs ratio and the

correction insulin using the sensitivity factors. These factors are “calibrated” for the

insulin-glucose regulation model using the robustness guided state-space exploration

technique described in Section 5. The timing and shape of the bolus are determined

by classifying the planned meal GI into three categories high, medium and low [34].

The models developed for this paper and the analysis results will be made available for

download as part of the S-Taliro tool.

5 Robustness Guided Search

In this section, we present the basic concepts used in the analyses of models with respect

to metric temporal logic properties [4]. We present the details of our analysis method-

ology at a high level. More details are available from our prior work which deals with

the problem of using robustness guided state-space exploration to find falsifying traces

for MTL specifications of non-linear hybrid systems [28,17].

5.1 Metric Temporal Properties and Trace Robustness

Table 2. Metric Temporal Logic (MTL) Operators and their formal semantics at time

t = t0. σ : [0, T ] 7→ R
n refers to a continuous time signal, I refers to a real time inter-

val, AP refers to a set of atomic proposition symbols, O maps each atomic proposition

to a subset of Rn.

Formula ϕ Semantics (σ, t0,O) |= ϕ Remarks

⊤ true Tautology

p ∈ AP σ(t0) ∈ O(p) Atomic Proposition holds.

ϕ1 ∧ ϕ2 (σ, t0,O) |= ϕ1 ∧ (σ, t0,O) |= ϕ2 Conjunction

ϕ1 ∨ ϕ2 (σ, t0,O) |= ϕ1 ∨ (σ, t0,O) |= ϕ2 Disjunction

¬ ϕ (σ, t0,O) 6|= ϕ Negation

�Iϕ (∀t ∈ I)((t0 + t < T ) ⇒ (σ, t0 + t,O) |= ϕ) ϕ is Invariant in I
♦Iϕ (∃t ∈ I)((t0 + t < T ) ∧ (σ, t0 + t,O) |= ϕ) ϕ eventually holds in I

ϕ1UIϕ2
(∃t ∈ I)((t0 + t < T ) ∧ (σ, t0 + t,O) |= ϕ2 ∧
(∀t′ ∈ [0, t)) (σ, t0 + t′,O) |= ϕ1)

ϕ1 until ϕ2

Metric Temporal Logic (MTL) is a formalism to specify temporal properties of

continuous time signals [25]. Table 2 summarizes the syntax and semantics of MTL

formulae. MTL formulae can be used to succinctly express key properties of desirable

post-prandial blood glucose levels. Let t = 0 model the start of a meal and we assume



No Hypoglycemia ϕhypo �[0,400](G ≥ 3)
No significant hyperglycemia ϕhyper �[0,400](G ≤ 20)
Glucose levels settle after digestion ϕsettle �[200,400](G ∈ [3, 10])

Table 3. MTL specifications for normal post-prandial glycemic control.

t = 400 to be end of the simulation period being considered. G(t) is a signal modeling

the blood glucose concentration in terms of mmol/L at time t. Table 3 shows the three

properties of interest to us along with their descriptions.

Our goal is to find executions of the overall infusion process model that falsify

at least one of the properties in Table 3. Here each execution trace corresponds to a

different values of planned vs. actual meal data, and calibration error. However, there

are potentially infinitely many executions for various values of the input parameters and

the models for the insulin-glucose regulatory system are non-linear. Therefore, we use

robustness metrics over execution traces to define an objective function over traces to

guide us in the search for a falsifying input.

5.2 Trace Robustness

The robustness of signals obtained by simulating hybrid systems is a useful concept

that generalizes the standard true/false interpretation of MTL formulae to real valued

semantics. Informally, robustness provides a measure of how far away a given trace

is from satisfying or violating a property. Real-valued semantics for temporal speci-

fications were considered by Rizk et al. for applications in systems biology [30] and

independently by Fainekos and Pappas for testing control systems [16,17]. Figure 6 il-

lustrates the main idea behind the robustness value of a trace σ w.r.t a MTL formula

ϕ. Informally, the robustness value ε indicates the size of the smallest cylinder that can

be drawn around σ so that any other trace σ′ contained inside this cylinder also has the

same valuation for the property as ϕ. I.e, σ′ satisfies ϕ iff σ does.

Formally, the robustness of a trace σ w.r.t a formula ϕ, denoted R(σ, ϕ), is a real

number such that

1. If R(σ, ϕ) > 0 then σ |= ϕ. Likewise, if R(σ, ϕ) < 0 then σ 6|= ϕ.

2. IfR(σ, ϕ) = ε, then any trace that lies inside a cylinder of radius |ε| defined around

σ will also have the same outcome for the property ϕ as σ.

Details on the systematic calculation of robustness values from a sampled continuous-

time trace σ and a bounded-time MTL formula ϕ are available elsewhere [17]. The

approach to falsification of a property ϕ given a model M is to minimize the objec-

tive R(σ, ϕ) over all traces σ of the model M. As noted in our previous work [28],

this optimization problem is non-convex for most systems and furthermore, the objec-

tive R(σ, ϕ) cannot be written down in a closed form. However, it can be evaluated

for a given trace σ. Our previous works have explored the use of various global opti-

mization techniques such as Monte-Carlo simulation using Simulated Annealing [28],

Ant-Colony Optimization [3], Genetic Algorithms and more recently the Cross-Entropy



Fig. 6. Illustration of robustness of time trajectories. The trajectory is required to lie

inside the union of the two rectangles. A “cylindrification” around each trajectory is

shown such that the any trace in cylindrification has same outcome w.r.t trace as the

original trajectory. Leftmost trajectory satisfies property with strictly positive robust-

ness due to larger cylindrification radius, middle trajectory satisfies but with a small

robustness value while rightmost trajectory violates property with negative robustness.

Parameter Ideal Actual Remarks

Meal Time (mins) 40 [0, 80] discrepancy between planned (t=40) and actual meal time.

Meal Carbs (gms) 250 [150,350] discrepancy between planned and actual carbs ingested.

Meal tg,max (mins) 40 [20,80] meal start time to peak glucose absorption (planned vs. actual GI).

Meal Duration (mins) 30 [10,50] meal duration planned vs. actual.

Correction Bolus Time 200 [100,300] time when correction bolus is administered.

Calibration Error 0 [-0.3,0.3] CGM calibration error.

Table 4. Infusion faults and assumed ranges for minimal robustness search.

Method [32]. These techniques have been implemented in a Matlab toolbox called S-

Taliro [4], which supports state-space exploration of Simulink/Stateflow models with

MTL specifications.

6 Worst-Case Scenario Search

We fix a scenario consisting of a planned meal at time t = 40 minutes after the start of

the simulation, a planned duration of 30 minutes, and consisting of 200 grams of CHO

(∼ 850 calories) with tg,max = 40 minutes, indicating a high GI meal (eg., bread, rice

or pasta). Our goal here is to explore the risks to the patient arising from these faults

in the infusion process. We note that our general framework allows us to explore other

meal scenarios and a different set of faults, as well. The overall methodology for this

exploration involves the following steps: (a) Formulating MTL properties to falsify (Cf.

Table 3); (b) Calibrating the model, so that the MTL properties are satisfied robustly

under normal, fault-free situations; (c) Setting up various combinations of faults (Cf.

Table 4); (d) Using S-Taliro tool to search for falsifications of the properties in Table 3

in the presence of infusion faults; and (e) Repeating the analysis with various faults

disabled to understand the minimal set of faults that are responsible for a given scenario.



Fig. 8. Two minimal robustness scenarios for potential hypoglycemia risk. (left) meal

too late/infusion too early and (right) meal too early/infusion too late.

Even though our model allows for transient infusion faults, the study performed in

this section, does not include such faults. This is primarily due to the lack of available

data on the frequency and timings of pump failures.

Model Calibration: First, we calibrate

Fig. 7. Post-meal glucose on “calibration

parameters” found using S-Taliro.

the patient-specific parameters involved

in deciding the size of the infusion in-

cluding the basal insulin IB , the insulin-

to-carbs ratio and the sensitivity factor.

After fixing a planned meal as described

previously and disabling all faults, we per-

form this calibration by using S-Taliro

to search for parameter values that max-

imize (usually, falsification involves a min-

imization) the robustness of the correct-

ness property ψ : ϕhypo ∧ ϕhyper ∧
ϕsettle, as defined in Table 3. By maximizing the robustness, we are, in effect, search-

ing for a trace that (a) satisfies the property ψ, i.e, achieves ideal glycemic control and

(b) does so robustly with nearby traces also satisfying the property. The parameter val-

ues corresponding to the maximal robustness are chosen as the ideal parameters that

achieve the best overall control for a long enough time horizon. Figure 7 shows the

output of a fault-free execution using the calibration results to control the infusion.

The analysis using S-Taliro identified four dangerous scenarios, all characterized

by discrepancies between the meal times. The assumed sensor calibration errors of up

to 30% in either direction were found to have very little effect. Furthermore, analy-

sis performed here was repeated for many different “optimal” values of basal insulin,

insulin-to-carbs ratio, and sensitivity factor found by running the model calibration pro-

cedure. Each repetition yields the same qualitative results described in the paper, but

with slightly varying robustness values for G(t) (upto 20% variation seen). We will

now discuss these scenarios in detail.

6.1 Hypoglycemia Scenarios

We first study the effect of faults to falsify the property ϕhypo : �G ≥ 3. We performed

the search inside S-Taliro using our model implemented in Simulink/Stateflow (tm), the



Fig. 9. Glucose concentration for significant hyperglycemia (left) and failure to settle

(right). The fault-free output is shown as a dashed line.

calibrated values for the user’s strategy reported previously and the meal timings drawn

non-deterministically from the ranges specified in Table 4. The optimization was run

using the stochastic optimization algorithms based on Simulated Annealing (SA) and

Cross Entropy (CE) roughly twenty five times, each time using different random seeds

to produce different minimal robustness scenarios. Each run required approximately

3− 10 minutes with up to 1000 simulations per run.

Each optimization run discovered property violations that expose potential hypo-

glycemia. The minimal values of G were around G = 2.3. Examining these violations,

we found that each scenario falls in one of two distinct categories. Figure 8 shows the

blood glucose outputs for both scenarios.

Potential Hypoglycemia Scenario-1: By disabling various faults in turn, we identified

three sufficient faults for this scenario:

1. The planned meal time (t = 40) is significantly earlier than actual meal time (t ∼
70). Alternatively, the insulin bolus is delivered too early.

2. The planned GI (tmax,G = 40) is lower than its actual GI (tmax,G ∼ 20).

3. The actual amount of CHO ingested in this scenario is less than the planned amount

of CHO.

Additionally, the actual meal durations were slightly larger than planned.

Potential Hypoglycemia Scenario-2: This scenario is characterized by the following

combination of faults:

1. The planned meal time (t = 40) is significantly later than the actual meal time

(t ∼ 5). Alternatively, the bolus is delivered at or after the start of a high GI meal.

2. The meal’s planned GI is lower than the meal’s actual GI.

3. The actual amount of CHO ingested is lower than the planned CHO.

The actual meal durations were slightly less than the planned duration.

6.2 Scenario Analysis for Significant Hyperglycemia

Next, we consider scenarios for significant hyperglycemia G ≥ 25 that can lead to

dangerous conditions such as ketacidosis. Unlike hypoglycemia, this property is found

to be easier to falsify, requiring fewer iterations to find falsifying inputs. The minimal



robustness scenarios found by S-Taliro depend chiefly on two faults: (a) discrepancy

between planned meal GI (tmax,G = 40) and actual meal GI tmax,G ∼ 20 and (b)

discrepancy between planned meal CHO (= 200) and actual meal CHO (∼ 300). Other

faults have a minor impact on the maximum value of the blood glucose level G(t). In

such a scenario, the bolus of insulin is supplied too late and is insufficient to “cover”

the meal.

6.3 Scenario Analysis for Failure to Settle

Finally, we consider minimal robustness scenarios w.r.t failure to settle. Figure 9 (right)

shows the output glucose level for this scenario. The scenario depends on a combination

of two faults: (a) actual meal time significantly later than the planned time, and (b) the

actual CHO is higher than the planned CHO. In this scenario, the peak value of the

insulin precedes the peak gut absorption of glucose. Notice the initial dip in G(t) much

like the first hypoglycemia scenario followed by a delayed rise inG(t) that fails to settle

even after 6 hours.

6.4 Evaluation

We have thus far derived some situations that can cause significant hypoglycemia, hy-

perglycemia and failure to settle. Can the predictions made by our model be tested? The

gold standard evaluation would be to conduct clinical studies of patients to determine if

the violations observed can be borne in real life. While we are planning to conduct ex-

tensive patient studies with collaborators from medical sciences as part of our ongoing

work in this area, such studies require time and significant effort to carry out.

Preliminary evidence is available from web logs maintained by many diabetic pa-

tients to check if any of the situations reported by us are also confirmed by diabetic

patients. We surveyed many such weblogs and some of the scenarios such as scenario-1

for hypoglycemia and the scenario for failure to settle seem to be well known 3. How-

ever, barring a few exceptions incident reports by patients focused on the effects and

not the root causes.

7 Statistical Model Checking

We have, thus far, used robustness guided state-space explorations to explore the ex-

treme, worst-case scenarios that may happen in the infusion. However, it is equally

interesting to find out the probability that the infusion may result in a hypoglycemia, hy-

perglycemia or a failure to settle (Cf. Table 3). In order to do so, a simple approach is to

assume a probability distribution for each of the faults described in Table 4. We assume

that the faults are uniformly distributed within their intervals and independent of each

other. We then simulate the model by sampling faults from this distribution and find

out the fraction of executions that violate each property. However, if the probabilities of

3 For a discussion of meal timing from a patient’s perspective, see http://thethirstthatchangedmylife.

blogspot.com/2010/09/loading-on-carbs.html

http://thethirstthatchangedmylife.blogspot.com/2010/09/loading-on-carbs.html
http://thethirstthatchangedmylife.blogspot.com/2010/09/loading-on-carbs.html


Table 5. Results of SMC for estimating probability of avoiding hypoglycemia (left) and

hyperglycemia (right). Each entry shows the posterior probability estimate p̂ such that

the probability lies within [p̂− δ, p̂+ δ] with confidence (coverage) indicated by c.

δ = 0.05 δ = 0.01
Coverage (c) .95 .99 .999 .95 .99 .999

�G ≥ 3 0.75 0.7 0.74 0.73 0.72 0.72

�G ≥ 2.8 0.87 0.88 0.88 0.89 0.88 0.88

�G ≥ 2.7 0.91 0.92 0.93 0.93 0.93 0.93

δ = 0.05 δ = 0.01
Coverage(c) .95 .99 .999 .95 .99 .999

�G ≤ 25 0.97 0.97 0.96 0.97 0.97 0.98

�G ≤ 30 0.97 0.98 0.98 0.99 0.99 0.99

�G ≤ 35 0.97 0.98 0.99 0.99 0.99 0.99

these bad outcomes are tiny to begin with, the number of executions required become

prohibitively large. Recent advances in Statistical Model-Checking (SMC) have given

rise to techniques that can estimate these probabilities efficiently while running as few

simulations as possible. SMC was originally formulated by Younes and Simmons [42].

A promising extension involving the use of Bayesian reasoning, has been used to ap-

plied to problems in systems biology [23] and control systems verification [44]. Rather

than estimating the probabilities of hypoglycemia or hyperglycemia empirically, these

techniques use repeated simulations to bound the required probability inside an interval

of given half-width δ with a given confidence c. In addition to worst-case search, we

have extended S-Taliro to support Bayesian SMC. Existing techniques implemented in-

side S-Taliro such as the Cross-Entropy Method can be directly used to find a suitable

prior distribution to reduce the number of simulations required.

Table 5 shows the probability estimates for significant hypoglycemia with various

confidence levels and intervals around the probability. We find that hypoglycemia (G <
3) has roughly 30% chance of occurrence, while significant hypoglycemia (G < 2.7)

has an estimated 7% chance of occurrence with very high confidence. The probabilities

for hyperglycemia are also presented in Table 5. Once again, we estimate a 2.2% chance

of significant hyperglycemia G > 25 and 0.3% chance of finding G > 35 (which

exposes the patient to dangerous ketacidosis).

The findings of this section are qualitatively borne out by an informal analysis of

incidents reported by diabetic patients and some clinical studies [18]. The majority of

the infusion faults due to discrepancies between planned and actual meals result in

hypoglycemia. Hyperglycemia risks commonly occur due to silent pump failures that

were not modeled in this study.

8 Threats to Validity

In this section, we discuss some of the threats to validity and address remedial steps

taken to ensure that the results in this work are applicable to real-life situations.

With any result involving in silico simulations, there is a risk that we are observing

modeling quirks that are not reflective of what happens in reality. However, the mod-

els used here have been extensively evaluated against studies on real patients [22,20],

providing evidence for their validity.

Another concern is that we assume that the food ingested has a single carbohydrate

source with fixed (high) GI. While this can be a good approximation in some cases (eg.,



a meal consisting mostly of pasta or a CHO heavy drink), such meals are not advised

for diabetic patients. Insulin pumps provide combination boluses to offset for different

types of foods with varying GIs. We plan to investigate these effects as part of our

ongoing research. Mixed meal simulations have been considered in the past by Della

Man et al. [14,27]. The effects of exercise are also a factor. However, modeling physical

activity and its effect on the blood glucose regulation is an active area of research with

few established models [31].

A shortcoming of assigning probabilities on the occurrence of faults is that there is

no available mathematical evidence that the distribution of planned meal times vs. ac-

tual meal times are uniformly distributed in the interval of interest. Another assumption

is that of independence of the various faults. It is conceivable that a larger discrep-

ancy between planned mealtimes and actual mealtimes indicates a larger discrepancy

between the planned and actual meal CHO or GI. Building fault models based on ob-

servations of insulin infusion pump usage of real patients are critical to construct these

models. The probabilities reported by SMC are likely to change if we included more

types of faults such as pump failures in our study.

9 Conclusions

We have presented an in-silico evaluation of the risks involved in the infusion process.

Our approach has been two-fold: (a) using robustness-guided model checking to search

for potential worst-case scenarios. Here, we report on some scenarios causing hypo-

glycemia, hyperglycemia and failure of the blood glucose to settle to normoglycemia.

Some of our scenarios are borne out by patient reports reported online. (b) We use Sta-

tistical Model Checking to place small bounds on the risks with very high confidence.

Our future direction is to consider individualized risk studies. Here, we seek to

develop models and risk analysis fitted to individual patients. This can yield lifestyle

analysis tools that can help advise patients on the best pump calibration parameters to

maintain normal glucose levels.
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