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Simulating Ionosphere-Induced Scintillation for
Testing GPS Receiver Phase Tracking Loops
Todd E. Humphreys, Mark L. Psiaki, Joanna C. Hinks, Brady O’Hanlon and Paul M. Kintner, Jr.

Abstract—A simple model is proposed for simulating equato-
rial transionospheric radio wave scintillation. The model can be
used to test Global Positioning System phase tracking loops for
scintillation robustness because it captures the scintillation prop-
erties that affect such loops. In the model, scintillation amplitude
is assumed to follow a Rice distribution, and the spectrum of the
rapidly-varying component of complex scintillation is assumed
to follow that of a low-pass 2nd-order Butterworth filter. These
assumptions are justified, and the model validated, by comparison
with phase-screen-generated and empirical scintillation data in
realistic tracking loop tests. The model can be mechanized as a
scintillation simulator that expects only two input parameters: the
scintillation index S4 and the decorrelation time τ0. Hardware-
in-the-loop tests show how the model can be used to test the
scintillation robustness of any compatible GPS receiver.

I. INTRODUCTION

Increased dependence on the Global Positioning System
(GPS) and other satellite navigation systems makes users
vulnerable to signal loss or degradation caused by ionospheric
effects. Radio wave scintillation, the temporal fluctuation in
phase and intensity caused by electron density irregularities
along the propagation path, stresses a GPS receiver’s carrier
tracking loop, and, as severity increases, can lead to navigation
bit errors, cycle slipping, and complete loss of carrier lock [1]–
[9].

In anticipation of the 2011 solar maximum, when scintil-
lation effects will be more severe, there is interest in testing
civilian and military GPS receivers for scintillation robustness.
Such testing entails subjecting a receiver’s tracking loops to
realistic phase and amplitude scintillation. This can be done by
passing scintillation time histories through a software model
of the tracking loops [1], [2], [4], [8], [10], [11]; or by forcing
phase and amplitude variations in the output of a GPS signal
simulator [9], [12]; or, in the ultimate confrontation with
reality, by field testing receivers in a region prone to strong
scintillation [5]. The first two of these testing strategies can
give misleading results if the scintillation time histories are
not realistic. For example, in field testing on Ascension Island
during the 2000 solar maximum, researchers noted receiver
performance degradations much worse than those predicted
by simulations conducted prior to the campaign [5], [9].
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In a previous paper [1], the current authors propose a
receiver testing strategy that is based on drawing scintillation
time histories from a large library of empirical equatorial scin-
tillation data. The scintillation library includes severe complex
signal scintillation from the Wideband Satellite experiment
[13] and from specially-processed GPS data. The data reveal a
universal feature of strong equatorial scintillation: deep power
fades (> 15 dB) accompanied by abrupt, approximately half-
cycle phase transitions. These “canonical fades” are shown in
[1] to be the primary cause of loss of carrier lock in GPS
phase tracking loops.

Although a receiver testing strategy based on empirical
data is attractive for its realism, it nonetheless has several
drawbacks: (1) A test engineer is only at liberty to adjust
the scintillation behavior insofar as this behavior is repre-
sented in the recorded data; (2) thermal noise in the receiver
that was originally used to record the data can leave high-
frequency variations that make it difficult to precisely specify
the carrier-to-noise ratio of a given test (such is the case
in [1] for the scintillation library’s GPS data); and (3) the
empirical scintillation data is only stationary over short time
intervals, making impossible extended testing under consistent
scintillation statistics.

These limitations can be overcome by generating syn-
thetic scintillation via computer simulation. Techniques for
synthesizing scintillation include first-principles physics-based
ionospheric models [14]; phase screen models [15]–[17];
and statistical models [8]–[10]. For testing carrier tracking
loops, one seeks the simplest scintillation model—in terms
of number of parameters and computational expense—that
faithfully retains the scintillation properties that are relevant
to carrier tracking. This goal favors statistical models over the
computationally expensive and parameter-laden first-principles
and phase screen models.

Because statistical models are abstractions of the physics
that inspire them, extra effort must be made to ensure that their
outputs are realistic. As noted in [1], the methods used in [8]—
and likely in [9] and [10], though details are not provided—
shape the phase and amplitude spectra independently. This
practice tends to produce scintillation time histories that are
artificially easy to track because they do not manifest realistic
canonical fades. As demonstrated in the present paper, the key
to synthesizing realistic scintillation is to focus on properly
shaping the spectrum of the entire complex scintillation signal,
not the amplitude and phase data taken independently. The
proper spectral shape of the complex scintillation signal and
the general structure of the scintillation model proposed in
this paper are inspired by the model of equatorial scintillation
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effects on GPS phase tracking loops developed in [2]. The
result is a simple and computationally efficient technique for
simulating realistic equatorial scintillation. (References [1],
[2], and the current paper focus on equatorial scintillation
because it is particularly difficult to track.)

The next section develops the scintillation model. Develop-
ment is aided by analyses of empirical scintillation amplitude
distributions and power spectra. Thereafter, in Section III, the
model is validated by comparing its effect on phase tracking
loops with the effects of phase-screen-generated and empirical
scintillation. An example application of the scintillation model
(hardware-in-the-loop testing) is described in Section IV. The
proposed scintillation model is based on a connection between
cycle slips and data bit errors. This connection is only relevant
for squaring-type phase tracking loops; that is, for loops
designed to track bi-phase modulated signals. Such loops are
common in modern GPS receivers. The applicability of the
model to non-squaring (full-cycle) tracking loops is discussed
in Section V. The conclusions follow in Section VI.

II. SCINTILLATION MODEL

The scintillation model proposed here is premised on the
notion, advanced in [2], that the scintillation properties that
tend to induce cycle slips in squaring-type GPS phase tracking
loop designs also tend to cause bit errors in differential
detection of the 50 bps binary GPS navigation message that is
phase modulated onto the L1 carrier signal. In other words, if
the noise and the scintillation-induced phase change between
adjacent data bits (each 20 ms long) is so severe that one
cannot decide correctly whether a bit sign change occurred,
then a cycle slip is also likely. More precisely, it was shown
in [2] that, over a broad range of operating conditions, the
mean time between differentially-detected bit errors Te acts
as a lower bound to the mean time between cycle slips Ts

for squaring-type phase tracking loops with good scintillation
performance in the sense that on average Ts/2 < Te ≤ Ts. By
accepting Te as a rough proxy for Ts, one trades the difficult
problem of cycle slip prediction for the more tractable problem
of bit error prediction.

As outlined in [2], estimating Te for a given interval of
complex signal scintillation requires a model of the complex
channel response function z(t). One can think of z(t) as the
scintillation time history; its phase and magnitude are the
phase and magnitude changes imposed on the GPS carrier
signal by the scintillating communications channel.

The conjecture that underpins the proposed model can be
summarized as follows: The close connection between Te and
Ts implies that, if a model for z(t) accurately predicts Te,
then the same model can be used to synthesize scintillation
because it necessarily captures the scintillation properties that
cause cycle slipping, an important scintillation effect on GPS
phase tracking loops. It will be shown in Section III that this
conjecture is borne out by experiment.

Let α(t) ≡ |z(t)| and assume that the z(t) is normalized so
that Ω ≡ E[α2(t)] = 1. Then, when no scintillation is present,
z(t) = 1. An estimate of Te depends on two properties of z(t),
namely, its amplitude distribution p(α) and a measure of the

rapidity with which z(t) wanders about the complex plane [2].
This characterization becomes intuitive when one considers
that the abrupt phase shifts in z(t) that cause false sign changes
between adjacent data bits tend to occur when z(t) transits
rapidly through a small neighborhood of the origin. Thus, if
one knows the probability of being near the origin [given by
p(α)] and the average speed of z(t), one can predict Te.

In deriving Te, z(t) is typically assumed to have the form

z(t) = z̄ + ξ(t) (1)

where z̄ is the direct component, modeled as a complex con-
stant, and ξ(t) is the time-varying multipath component (see,
for example, [18] where the form is explicit and [19] and [20,
Sec. 8.2.5.2] where it is implicit). The multipath component
ξ(t), also referred to as the fading process, has an autocorre-
lation function defined by Rξ(τ) = 1

2E[ξ∗(t)ξ(t + τ)]. The
channel decorrelation time τ0 > 0 is defined as the value of
τ for which Rξ(τ)/Rξ(0) = e−1. A narrow Rξ(τ) (small τ0)
implies a scintillating channel that changes rapidly with time.
Hence, the shape of Rξ(τ)—most importantly, the width of
its main peak—defines the measure of z(t) rapidity mentioned
above.

To further develop the scintillation model, the form of p(α)
and of Rξ(τ) must be specified. This is the subject of the next
two subsections.

A. Amplitude Distribution

There does not exist at present a rigorous theory that
predicts the probability distribution of z(t). Only in certain
limiting cases have sufficient moment calculations been carried
out to completely characterize a first-order distribution [21],
[22]. It can be shown, for example, that when scintillation
severity enters the so-called saturation regime, the amplitude
distribution p(α) approaches a Rayleigh distribution. In gen-
eral, however, only numerical or empirical approaches have
proven tractable for defining the distribution of z(t).

In [22], several candidate distributions for z(t) were eval-
uated against scintillation data from the Wideband Satel-
lite experiment. The results of hypothesis test calculations
identified the Nakagami-m distribution as the best fit to the
empirical intensity (and amplitude) distributions. However, the
analysis is not definitive for severe equatorial scintillation at
frequencies near or above UHF because the data sets used
were short (20 seconds) and few (20 sets at UHF and 9 sets
at L-band). Furthermore, the exposition in [22] does not make
clear how time correlation in the empirical z(t) is handled in
the hypothesis testing analysis.

Drawing on the extensive collection of scintillation data in
the empirical scintillation library (introduced in [1]), a new
hypothesis testing analysis has been carried out to determine
an appropriate model for the amplitude distribution p(α). The
new analysis focuses on strong equatorial scintillation at UHF
and L-band frequencies, and limits the candidate models to
the popular Nakagami-m and Nakagami-n (Rice) distributions,
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given respectively by [20, Ch. 2]

pm(α) =
2mmα2m−1

ΩmΓ(m)
e−mα2/Ω (2)

pn(α) =
2α(1 + K)

Ω
I0

(
2α

√
K + K2

Ω

)
e−K−α2(1+K)/Ω

(3)

where α ≥ 0, Γ(·) is the gamma function, K ≥ 0 is the
Rician parameter, and m = 1/S2

4 ≥ 1/2. The quantity S4 is
the standard scintillation index defined by

S2
4 =

〈I2〉 − 〈I〉2
〈I〉2 (4)

in which I = α2 is signal intensity and 〈·〉 denotes time
average. The Rician K parameter is related to m and S4 by

K =
√

m2 −m

m−√m2 −m
=

√
1− S2

4

1−
√

1− S2
4

, S4 ≤ 1 (5)

It should be noted that the Nakagami-m distribution is de-
fined for m ≥ 1/2, which corresponds to S4 = 1/

√
m ≤ √

2.
At S4 = m = 1, the Nakagami-m and Rice distributions
both converge to the Rayleigh distribution. For S4 > 1,
the Nakagami-m distribution is defined whereas the Rice
distribution is not. This limitation of the Rice distribution is
not restrictive in practice because, aside from rare “focusing”
behavior, S4 takes on values near or below unity [21]. At
values of S4 less than unity, the Nakagami-m and Rice
distributions are similar, as illustrated in Fig. 1, where the two
distributions are shown to agree closely with with a histogram
(thick solid line) of representative Wideband UHF data from
the scintillation library.
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Fig. 1. Amplitude distribution of empirical scintillation data from the
scintillation library (thick solid line) compared with the Nakagami-m and Rice
distributions and with the amplitude distribution of scintillation data generated
by a phase screen model. For all distributions S4 = 0.87.

Also shown in Fig. 1 is the amplitude distribution of
scintillation data that were generated by a phase screen scin-
tillation model. In the phase screen approach to scintillation

modeling, the field fluctuations below the disturbed ionosphere
are calculated as if produced by a thin phase-changing screen
[21], [23], [24]. The model employed here is a modified
version of the phase screen model presented in [15]. The
modified version accommodates the development of amplitude
fluctuations within the irregularity slab by replacing the single
phase screen of [15] with a set of two phase screens separated
by 100 km, with the uppermost screen located 350 km
above the observation plane. The phase variations across each
screen are Gaussian and have a power-law-type spatial power
spectrum with an outer scale of 7 km and a spectral index of
ν = −3.4 (a rationale for this choice of ν will be given in Sec.
II-B). A wavelength corresponding to the GPS L1 frequency
(1575.42 MHz) is assumed.

The phase screen scintillation model has been validated
in several studies and has gained wide acceptance among
theoreticians and experimentalists [24]. In this paper, it is
exploited as an aid in studying the fading process spectrum
(next subsection) and in validating the proposed scintillation
model (Section III). However, for intermediate values of the
perturbation strength of the screen (defined by the parameter
Cs in [15]), that is, perturbation strength values which lead
to 0.6 < S4 < 1.0, the phase screen model tends to pro-
duce scintillation time histories whose amplitude distributions
depart markedly from empirical amplitude distributions, as
illustrated in Fig. 1. For perturbation strength values well into
the saturation regime (S4 ≈ 1) or in the weak scintillation
regime (S4 < 0.4), the phase-screen-generated and empirical
distributions agree closely. This behavior reinforces the prefer-
ence for a statistical scintillation model over the phase screen
model for testing carrier tracking loops.

To evaluate the goodness-of-fit of the Nakagami-m and Rice
distributions, average chi-square values were computed for
79 sets of Wideband UHF data and for 33 sets of GPS L1

data drawn from the scintillation library. The data sets, whose
lengths range from 50 to 300 seconds, correspond to relatively
stationary intervals of strong scintillation (S4 > 0.6). Intervals
were chosen by inspection from the library records. Only a
subset of the data samples from each interval was used in the
chi-square calculations. Each sample in the subset is separated
in time from adjacent samples by twice the decorrelation time
τ0 of the full interval. This ensures that data samples are
independent from each other, as assumed by the chi-square
technique. The length of each data set was chosen such that
each chi-square test operated on approximately 100 samples.
Thus, for slowly-varying scintillation (long τ0), longer data
sets were required to produce 100 independent samples. Parti-
tioning of the samples led to 8 chi-square degrees of freedom
(DOF) for the Wideband UHF data and 7 for the GPS L1

data (recall that the number of chi-square DOF is equal to the
number of bins used to partition the data in the calculation
of the chi-square statistic). In the results of the chi-square
tests, presented in Table I, the chi-square values are near the
respective chi-square DOF for both the Nakagami-m and Rice
distributions. This indicates that both the Nakagami-m and
the Rice distributions provide a good fit to the data, though
the Rice distribution retains a slight advantage for both data
sources.
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TABLE I
CHI-SQUARE VALUES FOR FITS TO NAKAGAMI-M AND RICE

DISTRIBUTIONS

Data Source Sets, DOF Nakagami-m Rice

Wideband UHF 79, 8 11.8 ± 8.8 9.0 ± 4.3
GPS L1 33, 7 8.42 ± 5.9 7.7 ± 5.7

While the goodness-of-fit results in Table I justify either a
Nakagami-m or a Rice model for the amplitude distribution,
the Rice model is easier to implement in practice: one has
only to assume that the fading process ξ(t) in Eq. (1) is
Gaussian, and a Rice distribution naturally results for the
amplitude α(t) = |z(t)|. Hence, in the proposed model, ξ(t)
is assumed to be a complex, zero-mean, stationary, Gaussian
random processes with autocorrelation function Rξ(τ). The
Rician K parameter relates the magnitude of z̄ to σ2

ξ ≡ Rξ(0):

K =
|z̄|2
2σ2

ξ

(6)

B. Autocorrelation Function

To complete the proposed scintillation model, the form of
the autocorrelation function Rξ(τ) must be specified. Equiv-
alently, one may specify Sξ(f), the power spectrum of the
complex fading process ξ(t), which is related to Rξ(τ) by the
Fourier transform. One would hope to bring the vast theory
developed over many years in the scintillation literature to
bear on the problem of modeling Sξ(f). But whereas the
scintillation model in Eq. (1) is perfectly adequate for purposes
of channel and receiver effects modeling, it is not valid in
general for scintillation because it fails to capture the naturally-
occurring low-frequency wander in the mean z̄. Thus, the
scintillation literature generally treats the complex scintilla-
tion signal z(t) as a whole. (For example, the theoretical
power spectra of the scintillation amplitude α(t) = |z(t)|
and intensity I(t) = α2(t) are, for weak scintillation, well
understood [21].) Of course, for strong scintillation, the direct
component z̄ is negligible and ξ(t) becomes equivalent to
z(t). Unfortunately, in the case of strong scintillation the
scintillation theory is on unsure footing [21]. Therefore, it
appears most practical to adopt an experimental approach to
specifying Sξ(f).

The following procedure has been used to determine the
structure of Sξ(f) based on empirical and phase-screen-
generated scintillation time histories. The phase of a complex
scintillation time history z(t) is high-pass filtered to remove
its low-frequency components. A zero-phase filter is employed
to preserve alignment of the phase and amplitude data. For
convenience, let zf (t) represent the filtered version of z(t).
The filter cutoff frequency is adjusted so that the mean of
zf (t), denoted z̄f , is near the value of z̄ predicted by the
Rician K parameter, itself derived from the measured S4 [cf.
Eqs. (4)-(6)]. Further small adjustments to the filter cutoff
frequency are made to roughly equalize the variances of the
quadrature components of ξf (t) = zf (t) − z̄f . Typical final
cutoff frequencies range from 0.05 to 0.4 Hz. It should be
emphasized that only the phase of z(t) is altered by such

filtering; the amplitude time history—and the amplitude and
intensity spectra—remain unchanged. Furthermore, the filtered
and the original scintillation time histories are equivalent from
the perspective of a carrier tracking loop. This is because
the naturally-occurring variations in the mean z̄ are much
slower than ordinary tracking loop response times. This has
been demonstrated by passing both z(t) and zf (t) through the
software tracking loops introduced in [2] and noting that the
loops perform equivalently (in terms of cycle slips and phase
error variance) when operating on either time history.

Using the above filtering technique, empirical and phase-
screen-generated scintillation time histories can be made to
conform to the model in Eq. (1), wherein the direct component
z̄ is constant. The form of Sξ(f) then becomes apparent in
the power spectra of the filtered time histories. Fig. 2 plots
Sξ(f) for scintillation generated by the phase screen model
described previously. Cases of weak and strong scintillation
are considered. For the weak scintillation case, a single phase
screen with a low perturbation strength (Cs = 1019 in the
parameterization of [15]) was used. For the strong scintillation
case, two phase screens, each with a high perturbation strength
(Cs = 1022), were used. The phase screen parameters were
otherwise equivalent for the two cases.
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Fig. 2. Comparison of amplitude and fading process power spectra in the
weak and strong scintillation regimes. All spectra are based on phase-screen-
generated scintillation data. For visual clarity, the strong and weak scintillation
spectra have been offset from each other by 10 dB.

For comparison with Sξ(f), Fig. 2 also plots the amplitude
spectrum Sα(f) derived from the same data for both the weak
and strong cases. The weak-scintillation amplitude spectrum
agrees closely with the model from weak scintillation theory
(given, for example, in [25]). At low frequencies, Sα(f)
is relatively flat up to a break point known as the Fresnel
frequency, fF . The value of fF increases with decreasing
wavelength of the propagating radio wave, with decreasing
height of the ionospheric irregularities, and with increasing
velocity of the radio line-of-sight ionospheric pierce point
relative to the irregularities. After breaking at fF , the weak-
scintillation amplitude spectrum manifests “Fresnel oscilla-
tions” and finally rolls off toward a high frequency asymptote
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fν , where ν is the spectral index of the phase screen and is
related to the spectral index p of the 3-dimensional irregularity
medium by ν = 1−p. Empirical values for p are approximately
4.4 [21], which explains the choice of ν = −3.4 for the
phase screen spectral index. For strong scintillation (upper
plots in Fig. 2), the amplitude spectrum also approaches fν at
high frequencies, but the spectrum is wider and the Fresnel
frequency is less distinct than for weak scintillation. This
“spectral broadening” of Sα(f) with increasing scintillation
strength is well documented in the literature [25].

One notes from Fig. 2 that, although Sξ(f) manifests no
Fresnel oscillations (in either the weak or strong case), and, for
strong scintillation, initially rolls off more steeply than Sα(f),
it nonetheless generally conforms to the shape of Sα(f). This
is consistent with the empirical findings presented in [26],
where it was shown that during strong scintillation [for which
z(t) ≈ ξ(t)], amplitude fluctuations dominate the spectral
shape of the quadrature components of z(t).

The plots in Fig. 2 suggest that Sξ(f) can be modeled
approximately as the frequency response of a low-pass filter
with a 2nd-order rolloff. For simplicity, let Sξ(f) be modeled
as the frequency response of a 2nd-order low-pass Butterworth
filter. In this case, Rξ(τ) is given by [18]

Rξ(τ) = σ2
ξe(−β|τ |/τ0)[cos(βτ/τ0) + sin(β|τ |/τ0)] (7)

where the factor β = 1.2396464 ensures that Rξ(τ0)/Rξ(0) =
e−1. Such a model falls within the two limiting forms for scin-
tillation spectra—the so-called Gaussian and f−4 spectra—
given in [27].

Panel (a) of Fig. 3 shows a representative empirical spec-
trum Sξ(f) that is based on data from the scintillation library
(S4 = 0.87), and compares this to the proposed 2nd-order But-
terworth model and to the Gaussian and f−4 models. The cor-
responding normalized autocorrelation functions Rξ(τ)/Rξ(0)
are given in panel (b). All models have been matched to the
decorrelation time τ0 of the empirical data.

The inset in panel (b) gives an expanded view of the first 40
ms of the autocorrelation plots. This critical window, equal in
length to two GPS data bits, determines the degrading effect of
bit-to-bit fluctuations in z(t) on differential bit detection [2].
Together with the amplitude distribution p(α), the shape of
Rξ(τ) over the first 40 ms completely specifies the probability
of error for GPS differential binary bit detection. Hence, it is
this 40-ms window that must be accurately captured in the
proposed model. In the frequency domain, this amounts to
accurately modeling the shape of Sξ(f) in the neighborhood
of the Fresnel frequency.

It can be shown that with a proper choice of τ0, any one of
the models in Fig. 3 can be made to closely match the first
40 ms of the autocorrelation function of a given Wideband
data record in the scintillation library. (The GPS data, which
contain some high frequency noise that slightly distorts Rξ(τ),
were excluded from these tests.) On average, however, the
2nd-order Butterworth filter provides the best fit; moreover, it
is the easiest to implement. This justifies its adoption in the
proposed scintillation model.
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Fig. 3. (a) Empirical fading process spectrum (thick line) compared
with the f−4, Gaussian, and 2nd-order Butterworth spectral models. (b)
Autocorrelation functions corresponding to the spectra in panel (a).

C. Scintillation Simulator Mechanization

The proposed scintillation model can be mechanized as
shown in Fig. 4. In this form, the model becomes a scintillation
simulator capable of generating realistic scintillation time
histories z(t). Although the model is presented here as a
continuous-time system, it is easily recast as a discrete-time
system for computer-based implementation. The model can
be implemented as either a batch or sequential process. For
simplicity, the discussion below assumes that the model’s input
parameters S4 and τ0 are constant over the simulation interval.
Besides being simple to describe and implement, this is also
the most useful case since it leads to output scintillation
data with stationary statistics. Tracking loop robustness to
scintillation is best evaluated with long, statistically stationary
scintillation time histories.

The scintillation simulator is driven by a stationary zero-
mean complex white Gaussian noise process n(t) with (two-
sided) power spectral density N0/2. The process n(t) passes
through a 2nd-order low-pass Butterworth filter with amplitude
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response function

|H(f)| = 1√
1 +

(
f
fn

)4
(8)

where fn = β/(
√

2πτ0) is the filter corner frequency, with β
as in Eq. (7) and τ0 being the desired decorrelation time. Let
the resulting zero-mean filtered noise process be denoted ξ̃(t),
with steady-state variance σ2

ξ̃
≈ fnN0. The (constant) value

of the direct component ˜̄z is computed as

˜̄z =
√

2σ2
ξ̃
K (9)

where K is derived from the desired S4 ≤ 1 via Eq. (5). The
direct component ˜̄z is summed with ξ̃(t), and the resulting
process z̃(t) is normalized by α̃ = E[|z̃(t)|] to produce the
synthetic scintillation time history z(t) = z̄ + ξ(t).

˜̄z
z̃(t)

S4

Compute ˜̄zτ0

n(t) z(t) = z̄ + ξ(t)ξ̃(t) 1
α̃

2nd-order
Butterworth
Filter

Fig. 4. Block diagram illustrating a straightforward mechanization of the
proposed scintillation model. Thick lines denote complex signal routing.

The 2nd-order Butterworth filter in Fig. 4 is most conve-
niently implemented as a discrete-time filter, and the noise
n(t) as a sequence of independent samples from a random
number generator. In such a discrete-time implementation,
the statistics σ2

ξ̃
and α̃ can easily be calculated as a sample

variance and a sample average, respectively, over a time
interval T À τ0. To ensure proper steady-state statistics of
the filtered noise process ξ̃(t), one must either allow the filter
to settle before using its output or implement an initialization
procedure based on a discrete Lyapunov computation of the
steady-state covariance matrix corresponding to the filter’s two
states.

The severity of the scintillation time history z(t) is deter-
mined by the values of τ0 and S4. In general, higher S4 and
lower τ0 lead to more severe scintillation. For reference, the
GPS data in the scintillation library—recorded using a sta-
tionary L1 receiver—manifest 0 < S4 . 1 and 0.5 ≤ τ0 < 2
seconds [1]. Receivers mounted on dynamic platforms will see
a broader range of τ0. Extreme scintillation in the library’s
Wideband UHF records manifests τ0 values as low as 0.09
seconds.

A convenient lumped scintillation severity index can be
obtained by calculating Te as a function of S4, τ0, and nominal
C/N0, as described in [2]. Then, when testing a typical GPS
phase tracking loop using a simulated z(t), a test engineer can
expect the mean time between cycle slips Ts to be roughly
equal to Te.

III. MODEL VALIDATION

The following strategy was adopted for validating the
proposed scintillation model. First, time histories of “truth”

scintillation were obtained. These were either generated using
the previously described phase screen model (with two phase
screens) or were drawn from Wideband UHF records in the
scintillation library. In the latter case, relatively stationary
scintillation intervals exceeding 150 seconds in length were
chosen. The scintillation library’s GPS data were excluded
from the validation tests because of their thermal noise
contamination. Nonetheless, as discussed in [1], there is no
qualitative difference between the Wideband UHF and GPS
scintillation data, apart from the noise contamination. In other
words, the shape of the autocorrelation function Rξ(τ) for
given values of S4 and τ0 is the same for the Wideband
UHF data as for the GPS data. Owing to the strengthening
of scintillation effects with decreasing carrier frequency [21],
UHF scintillation is, for the same line of sight, more severe
(higher S4 and lower τ0) than L-band scintillation. Hence, the
Wideband UHF data may be thought of as extreme L-band
scintillation and remains useful for testing receiver tracking
loops.

In the next step, the truth data were detrended as described
in Section II-B, and the S4 and τ0 parameters for each truth
set were estimated. The estimated value of τ0 is the value that
optimizes—in the least squares sense—the fit of the proposed
autocorrelation model [Eq. (7)] to the first 40 ms of the
empirical autocorrelation function.

Next, for each truth data set, 10 independent realizations of
synthetic scintillation were generated, each equal in length to
the truth set and matched to the S4 and τ0 parameters estimated
from the truth set. The truth set and the 10 synthetic realiza-
tions were then passed as inputs to the scintillation testbed
described in [1] and [2]. The dot-product four-quadrant arctan-
gent, decision-directed four-quadrant arctangent, two-quadrant
arctangent, decision-directed, and conventional Costas phase
detectors were evaluated. A phase tracking loop noise band-
width Bn = 10 Hz and an accumulation interval Ta = 10
ms were assumed. These values were found in [1] to lead to
good tracking behavior. For all tests presented, the additive
white noise that is typically used to simulate receiver thermal
noise was eliminated, effectively making the tracked signals’
carrier-to-noise ratios infinite. This was done so that the effects
of scintillation could be studied in isolation from the effects
of thermal noise.

The response of each phase tracking loop to the scintillation
was noted in terms of the phase error variance σ2

ϕ and the
number of cycle slips Ns over each test interval. Means and
standard deviations of σϕ and Ns were computed for the
synthetic data from tests using the 10 independent realiza-
tions. Results are presented in Table II for two phase-screen-
generated truth sets, and in Table III for eight empirical truth
sets. The results presented are for the decision-directed four-
quadrant arctangent phase detector, but are representative of
the results for all the phase detectors tested. In the tables,
T denotes the length of the test in seconds, and the spread
about the means of σϕ and Ns for the synthetic scintillation
represents one standard deviation.

In general, the tracking loops’ responses to the truth and
to the synthetic scintillation are very similar. Two excep-
tions are the second phase-screen-generated test, whose poor
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TABLE II
SCINTILLATION EFFECTS COMPARISON: PHASE SCREEN TRUTH DATA

Parameters Truth Scint. Synthetic Scint.

S4 τ0 (s) T (s) σϕ (deg) Ns σϕ (deg) Ns

1.0 0.28 328 16.3 60 16.8 ± 0.2 70.7 ± 7.3
0.79 0.33 328 5.2 3 9.2 ± 0.3 12.1 ± 3.3

TABLE III
SCINTILLATION EFFECTS COMPARISON: EMPIRICAL TRUTH DATA

Parameters Truth Scint. Synthetic Scint.

S4 τ0 (s) T (s) σϕ (deg) Ns σϕ (deg) Ns

0.87 0.18 200 16.4 32 17.5 ± 0.5 35.9 ± 4.7
1.0 0.36 265 14.1 37 15.0 ± 0.5 41.6 ± 5.9
0.69 0.18 174 12.7 12 11.8 ± 0.9 5.6 ± 1.6
0.87 0.26 225 11.6 23 12.7 ± 0.5 19.2 ± 4.6
0.61 0.47 162 3.96 0 3.63 ± 0.2 0.10 ± 0.3
0.96 0.09 81 28.5 60 32.7 ± 1.0 69.4 ± 5.8
0.95 0.26 123 14.1 21 15.6 ± 0.5 19.8 ± 3.7
0.51 0.71 138 2.12 0 1.60 ± 0.1 0 ± 0

correspondence can be attributed to the distortion of p(α)
mentioned in Section II-A, and the cycle slip count in the
third empirical test. In all other cases (besides the Ns = 0
cases for which a percentage difference is not defined but
the correspondence is obviously good), the σϕ and Ns values
for the synthetic scintillation are within 25% of those for
the true scintillation. On the whole, these results suggest
that, for testing the response of GPS phase tracking loops to
scintillation, the proposed scintillation model is useful and the
scintillation it produces is realistic.

IV. EXAMPLE APPLICATION

A hardware-in-the-loop test was conducted to demonstrate
how the proposed scintillation model can be used to test
GPS receivers for scintillation robustness. For this test, a
Matlab implementation of the scintillation simulator presented
in Section II-C was used to generate synthetic scintillation
under two scenarios: (1) S4 = 0.8 and τ0 = 0.8 seconds,
and (2) S4 = 1.0 and τ0 = 0.5 seconds. These scenarios
represent, respectively, moderately strong (more common) and
severe (less common) L-band equatorial scintillation such as
occurs after sunset during solar maximum in the neighborhood
of the geomagnetic equator, as evidenced by a survey of GPS
data in the empirical scintillation library introduced in [1].

Synthetic phase and amplitude time histories for each sce-
nario were averaged over 10-ms intervals, formatted as phase
and amplitude offsets in a time-stamped User Actions File,
and loaded into a Spirent GSS7700 GPS signal simulator. The
Spirent simulator was configured to generate a GPS signal
from only one GPS satellite, which, for convenience, was set
to behave as if it were geostationary so that phase variations
due to satellite motion would be eliminated. Once armed, the
Spirent simulator brought in data from the User Actions File to
drive 100-Hz phase and amplitude variations in its RF output.
Each scenario lasted 655 seconds.

Two GPS receivers, the Cornell GNSS Receiver Implemen-
tation on a DSP (Cornell GRID receiver) [28], and a com-

mercial scintillation monitor, were connected to the Spirent
simulator and tested for scintillation robustness under this
setup. Each receiver is equipped with a stable oven-controlled
crystal oscillator whose phase jitter is negligible compared to
the phase variations caused by the synthetic scintillation. Due
to differences in the RF front-ends of the two receivers, the
nominal C/N0 value was higher for the GRID receiver (51.8
dB-Hz) than for the commercial receiver (43.8 dB-Hz). Testing
was only conducted at the GPS L1 frequency.

Figure 5 shows the effects of the first 300 seconds of
Scenario 2 on the phase tracking behavior of the two receivers.
The jagged phase output of the commercial receiver (top panel)
reflects its tracking strategy of re-initializing its carrier phase
estimate whenever a phase anomaly (a phase error that exceeds
a predefined value) is detected. Not every phase anomaly
would have resulted in a cycle slip; hence, by dividing the
test interval by the number of times the phase estimate was
re-initialized, one arrives at a pessimistic estimate of the mean
time between cycle slips Ts over the interval. The bottom
panel of Fig. 5 shows the difference between the “truth”
phase generated by the scintillation simulator and the phase
measured by the Cornell GRID receiver (the plot has been
detrended to remove the effects of reference oscillator offset).
Several half-cycle slips are evident in the plot. Each slip can be
associated with a canonical fade in the synthetic scintillation
time history.
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Fig. 5. First 300 seconds of the phase time histories resulting from hardware-
in-the-loop scintillation simulation under Scenario 2. Top panel: Raw phase
output of a commercial scintillation monitor with nominal C/N0 = 43.8
dB-Hz. Bottom panel: Difference between the “truth” phase generated by the
scintillation simulator and the phase measured by the Cornell GRID receiver
with nominal C/N0 = 51.8 dB-Hz.

TABLE IV
HARDWARE-IN-THE-LOOP TEST RESULTS

Scenario 1 Scenario 2

Quantity GRID GSV4004B GRID GSV4004B

S4 0.8 0.8 1.0 1.0
τ0 (s) 0.8 0.8 0.5 0.5
C/N0 (dB-Hz) 51.8 43.8 51.8 43.8
Te (predicted, s) 109 30 15 9
Ts (actual, s) 164 26 10 5
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Table IV summarizes the results of the hardware-in-the-loop
tests. Here, Te refers to the mean time between differentially-
detected navigation bit errors that would be expected to occur
during each scenario, based on S4, τ0, and the nominal C/N0.
As discussed before, Te can be thought of as a rough predictor
of Ts for properly configured squaring-type phaselock loops.
The GRID results in Table IV confirm this connection between
Te and Ts. Also, the GRID Ts values closely match the mean
time between cycle slips detected in off-line tests in which
the scintillation testbed introduced in [1] was applied to a
phaselock loop identical to that in the GRID receiver and
was driven by the original Scenario-1 and Scenario-2 synthetic
scintillation time histories (mean Ts values over 10 runs were
139 ± 26 seconds for Scenario 1 and 10 ± 0.6 seconds for
Scenario 2). One can conclude from this that the hardware-in-
the-loop testing technique does not introduce any significant
effects not already modeled in the scintillation testbed.

V. APPLICABILITY OF THE SCINTILLATION MODEL TO
NON-SQUARING PHASE TRACKING LOOPS

The scintillation model proposed here is premised on a con-
nection between cycle slips and errors in differential detection
of the 50 bps binary GPS message that is modulated onto the
L1 C/A, L1 P, and L2 P signals. However, the new civilian GPS
signals at L1, L2, and L5 include “pilot” signals that are free of
navigation data bit modulation. Inclusion of these pilot signals
aids acquisition by allowing coherent integration beyond 20
ms and aids tracking by allowing use of non-squaring (full-
cycle) phase tracking loops, which, as noted in [2], extends
the mean time between cycle slips during severe scintillation
by roughly factor of 20. One might naturally inquire whether
the scintillation model proposed here is applicable for testing
non-squaring loops.

Validation tests like those presented in Section III have been
conducted to determine whether synthetic scintillation data
generated with the proposed scintillation model are realistic
for non-squaring tracking loops. Again, a phase tracking loop
bandwidth Bn = 10 Hz and an accumulation interval Ta = 10
ms were assumed, and “truth” empirical scintillation data
were taken from Wideband UHF records in the scintillation
library. Just as in Section III, it was found that when the
synthetic scintillation data are tuned to have S4 and τ0 values
close to those of a statistically stationary interval of “truth”
scintillation, the simulated and “truth” data lead to similar
phase error variance σ2

ϕ and mean time between cycle slips
Ts.

It is conjectured that the scintillation model applies equally
well to squaring and non-squaring GPS tracking loops because
the model matches the autocorrelation function Rξ(τ) of
empirical scintillation data over lag (τ ) values relevant to
tracking with typical GPS loop bandwidths (Bn ≈ 10 Hz). In
other words, matching the shape of Rξ(τ) over 0 ≤ τ ≤ 40
ms not only leads to a model that correctly reproduces the
bit error rate for differential binary bit detection, but also
leads to a fading process spectrum whose shape is realistic
in the neighborhood of a 10-Hz loop’s corner frequency
and above. This latter condition, along with the scintillation

model’s other properties, seems to ensure that the synthetic
scintillation appears realistic even to non-squaring tracking
loops. Longer matching intervals would be appropriate for
testing GPS receivers with Bn significantly less than 10 Hz.

It should be noted that to properly evaluate the scintil-
lation robustness of a multi-frequency GPS system requires
processing multiple scintillation time histories—one for each
signal frequency. The multiple time histories should reflect the
coherence bandwidth of the disturbed ionosphere. In particular,
the pairwise complex cross-correlation coefficients of the scin-
tillation time histories should fall off with frequency separation
and with increased perturbation strength as established in [29].
A scintillation model capable of generating realistic multi-
frequency scintillation will be the subject of future work.

VI. CONCLUSIONS

A scintillation model has been proposed that exploits the
close connection between differentially-detected data bit errors
and cycle slips in squaring-type GPS phase tracking loops. The
connection implies that, from the perspective of a tracking
loop trying to maintain lock during scintillation, the critical
scintillation properties are the amplitude distribution and the
autocorrelation function of the scintillation’s rapidly-varying
complex component. Studies presented here using phase-
screen-generated and empirical scintillation data show that the
amplitude distribution is well-modeled as a Rice distribution
and the the autocorrelation function is well-modeled as corre-
sponding to the frequency response of a low-pass 2nd-order
Butterworth filter. Such models can be easily combined and
mechanized as a scintillation simulator that takes as inputs
the scintillation index S4 and the decorrelation time τ0, and
outputs realistic scintillation. The mean time Te between errors
in differentially-detected data bits can be calculated from the
simulator inputs and the nominal C/N0, and serves as a
convenient lumped index of scintillation severity.

The proposed scintillation model has been validated in
comparison tests with phase-screen-generated and empirical
scintillation data. It has also been demonstrated how the model
can be used to evaluate the scintillation robustness of any
compatible GPS receiver in hardware-in-the-loop testing. Even
though the model is motivated by a connection between data
bit errors and cycle slips in squaring-type phase tracking
loops, it produces scintillation that is also realistic for non-
squaring (full-cycle) tracking loops such as those appropriate
for tracking the new data-free civilian GPS signals.
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