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Abstract—Delay-tolerant Networking (DTN) enables com-
munication in sparse mobile ad-hoc networks and other
challenged environments where traditional networking fails
and new routing and application protocols are required.
Past experience with DTN routing and application protocols
has shown that their performance is highly dependent on
the underlying mobility and node characteristics. Evaluating
DTN protocols across many scenarios requires suitable
simulation tools. This paper presents the Opportunistic
Networking Environment (ONE) simulator specifically de-
signed for evaluating DTN routing and application protocols.
It allows users to create scenarios based upon different
synthetic movement models and real-world traces and offers
a framework for implementing routing and application
protocols (already including six well-known routing pro-
tocols). Interactive visualization and post-processing tools
support evaluating experiments and an emulation mode
allows the ONE simulator to become part of a real-world
DTN testbed. We examine a range of published simulation
studies which demonstrate the simulator’s flexible support
for DTN protocol evaluation.

Index Terms—Delay-tolerant Networking, Simulation,
Performance Evaluation, Mobility

I. INTRODUCTION

Personal communication devices, such as cellular

phones, have enabled voice and data communications to

mobile users, achieving global connectivity via infras-

tructure networks (cellular, WLAN). Local connectivity

among the devices may additionally be obtained by

forming ad-hoc networks since the mobile devices are

virtually always turned on and have the necessary radio

interfaces, processing power, storage capacity, and battery

lifetime to act as routers. However, such usually sparse

ad-hoc networks generally cannot support the type of

end-to-end connectivity required by the classic TCP/IP-

based communications due to frequent topology changes,

disruptions, and network partitions caused by the node

movement. Instead, asynchronous message passing (also

referred to as store-carry-forward networking) has been

suggested to enable communication over the space-time

paths that exist in these types of networks (e.g., Delay-

tolerant Networking, DTN [10], Haggle [27]).
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The performance of such opportunistic networks may

vary significantly, depending on how the mobile nodes

move, how dense the node population is, and how far

apart the sender and the receiver are. Delivery latency may

vary from a few minutes to hours or days, and a significant

fraction of the messages may not be delivered at all. The

key factors are the routing and forwarding algorithms used

and how well their design assumptions match the actual

mobility patterns. No ideal routing scheme has been found

so far.

Simulations play an important role in analyzing the

behavior of DTN routing and application protocols. With

typically sparsely distributed nodes, DTN simulations ab-

stract from the details of the wireless link characteristics

and simply assume that two nodes can communicate when

they are in range of one another. This allows focusing

on the evaluation of the DTN protocols—an approach

we follow in this paper. Instead of fully modeling the

lower layers we make simplifying assumptions about the

data rates, the radio ranges, and thus the resulting transfer

volumes.

In sparse node populations, the space-time paths, which

are exploited by the store-carry-forward communications,

are composed of the encounters between the nodes. The

frequency, duration, and other characteristics of these

encounters are largely dependent on the underlying mo-

bility patterns. Evaluations of DTN protocols have used

a large variety of synthetic mobility models as well as

real-world mobility traces (which we review in section

II). While synthetically generated node mobility allows

for fine-tuning in many respects, this usually covers only

limited mobility characteristics. In contrast, real-world

traces often have only coarse temporal (e.g., scanning

intervals in the order of several minutes) or spatial resolu-

tion (e.g., location determined from WLAN access point

attachment) and coverage (e.g., only covering a campus

area) and may exhibit biases due to the user group chosen

for sampling.

All these approaches may provide complementary data

points when assessing the performance of DTN protocols.

What is important is that protocols are evaluated under

different settings and that these settings can be fine-

tuned to match the intended application scenario(s) as

closely as possible. In this paper we extend our previous

work [19] on the Java-based ONE simulator. We present

new mechanisms for modeling multiple interfaces on a

node, support for interference-limited links and a frame-
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work for modeling complex applications running on the

nodes. Furthermore, we provide an overview of concrete

use cases where the ONE has been successfully exploited

to study a variety of aspects related to opportunistic,

message-based communications. Finally we present a

performance study of the simulator.

Our contributions are twofold: 1) The ONE simulator

offers an extensible simulation framework itself support-

ing mobility and event generation, message exchange,

DTN routing and application protocols, a basic notion of

energy consumption, visualization and analysis, interfaces

for importing and exporting mobility traces, events, and

entire messages. 2) Using this framework, we imple-

mented an extensive set of ready-to-use modules: six

synthetic mobility models that can be parameterized and

combined to approximate real-world mobility scenarios,

six configurable well-known DTN routing schemes, a

set of base primitives to design application protocols,

a basic battery and energy consumption model, several

input/output filters for interacting with other simulators,

and a mechanism for the integration with real-world

testbeds. The ONE simulator is designed in a modular

fashion, allowing extensions of virtually all functions to

be implemented using well-defined interfaces.

This paper is structured as follows: In section II, we

review related work on DTNs and (related) simulations

for mobility. We introduce the architecture and different

features of the ONE simulator in depth in section III

and describe how ONE is used in emulation setups in

section IV. We show example use cases from published

simulation studies and comment on the simulator’s per-

formance in section V. Section VI concludes this paper

with a summary and points out future work.

II. RELATED WORK

In this paper, we focus on communication performance

in delay-tolerant ad-hoc networks comprising mobile

nodes. Delay-tolerant Networking [10] is increasingly ap-

plied to enable communication in challenging networking

environments, including sparse sensornets and opportunis-

tic mobile ad-hoc networks. The DTNRG architecture [5]

proposes a bundle layer as an overlay to bridge different

(inter)networks. Nodes communicate via asynchronous

messages of arbitrary size that are exchanged using the

store-carry-and-forward paradigm. Messages have a finite

TTL and are discarded when the TTL expires. They may

also get dropped by a node due to congestion, yielding a

best-effort service. Application protocols need to tolerate

the delays resulting from the challenged environment

and the risk that messages are not delivered in time or

not at all. Typical performance metrics for evaluating

DTN protocol performance are hence message delivery

probability and latency.

Numerous routing and forwarding schemes have been

proposed over the past years (refer to [35] and [23] for

overviews). Different mechanisms are usually applied de-

pending on whether the network is primarily of mobile ad-

hoc nature (e.g., mobile devices carried by humans) or is

based upon a (fixed or mobile) infrastructure (e.g., space

networks, bus networks). Obviously, mixed networks exist

as well, for example, with mobile users supported by

infrastructure nodes.

The primary difference between various DTN routing

protocols is the amount of information they have available

to make forwarding decisions [13]. Ad-hoc DTNs usually

apply variants of reactive protocols. Flooding protocols

such as epidemic routing [33] do not use any information.

Predictive protocols such as PRoPHET [21] use past

encounters of nodes to predict their future suitability to

deliver messages to a certain target whereas other proto-

cols also exploit further (explicitly configured) schedule

and context information per node [20]. Furthermore, they

differ in their replication strategies, i.e., how many copies

of a message they create which, in turn, has a direct im-

pact on the load incurred on the network. Some protocols

generate just a single copy [30] (e.g., First Contact [13],

Direct Transmission/Delivery [30]), others a fixed number

limited by the sender [31] [29] while epidemic [33] and

probabilistic [21] routing potentially create an “infinite”

number of messages. Scheduling strategies govern in

which order messages are passed when a communication

opportunity occurs between two nodes. Finally, queue

management strategies define when and which messages

are deleted, e.g., if congestion occurs.

For evaluating the performance of DTN routing proto-

cols, manifold settings have been used, mostly including

some type of node mobility. Mobility has been created

(a) from synthetic mobility models, (b) taken from traces

obtained from real-world measurements, and (c) by eval-

uating code in the real-world. While a few testbeds for

(c) exist (such as DieselNet [3]) their flexibility is usually

limited, large-scale operation “expensive”, and their use

is typically limited to those running the testbed. Such

testbeds may also be used to obtain real-world traces (b)

which can then be made available to other researchers.

Various projects have collected traces of contacts

(peers, times, durations, and possibly positions) between

Bluetooth devices [11], between users and/or wireless

access points [8], among others. The CRAWDAD project1

provides a repository where numerous real-world traces

are available.2 These traces offer insights into real-world

interactions between mobile users from different angles

and constitute a valuable data source for validating the

mobility and connectivity characteristics obtained from

synthetic models.

But also real-world traces have their limitations as—so

far—the population analyzed in these traces is naturally

very limited and may thus bias the results. Furthermore,

the time granularity is often limited in order not to drain

mobile device batteries too quickly: e.g., the Haggle

iMotes uses sensing intervals of 5 min so that many con-

tact opportunities may easily go undetected and contact

durations can only be assessed equally coarsely. While

this can be seen to reflect energy constraints, the scanning

1http://crawdad.cs.dartmouth.edu/
2The DieselNet traces are available at http://traces.cs.umass.edu.
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interval cannot be adjusted afterwards. Finally, the results

cannot be arbitrarily scaled, thus limiting what can be

evaluated.

The only option for flexible and scalable simulations

is thus (a) model-based synthetic mobility generation.3

Mobility models range from simple entity models such

as Random Waypoint to complex ones such as Random

Trip [2] to group mobility to community models with

major points of interest [4] to vehicular ones taking street

maps into account (e.g., [6]). Node velocity and pause

times may be adjusted to match pedestrians, vehicles, or

other node types and smooth turns, acceleration and de-

celeration may be added to obtain more realistic behavior

[1]. Specific models for vehicular networking furthermore

consider additional constraints from simple road setups to

real-world maps on one hand and simple non-interfering

vehicles to vehicular interaction (distance, speed) based

upon traffic flow models on the other. Approximations for

footpath construction in and around buildings are used to

make motion more realistic and transmission range and

performance is adapted to model walls between mobile

nodes [14].

In other areas (e.g., for epidemic spreading studies or

traffic planning), more complex simulation models have

been created mimicking the behavior of the population

of an entire city [22]. Depending on the precise setting,

the latter may not have the proper focus for evaluating

ad-hoc interpersonal communications: TRANSIMS, for

example, allows modeling a population and their inter-

action at certain locations or in vehicles, but does not

include details on the way between such locations, which

limits the suitability of the generated mobility data of

pedestrians. In the case of TRANSIMS, detailed vehicle

information could be made available and has been used

for investigating MANET protocols [22].

Mobility generators for simple models are available for

ns-2 and ns-3, as part of their respective toolsets or as

specific extensions (e.g., [2]); both ns-2 and ns-3 accept

suitably converted traces as input.4 The latter also holds

for various openly available DTN simulators (dtnsim [13]

and dtnsim25) and numerous ones tailored to specific re-

search needs, based upon OMNet++, OPNET, or entirely

newly developed6, all of which have rather limited support

for DTN routing protocols readily available. While ns-2

(and now ns-3) and OMNet++ offer sound generic open

simulation platforms for packet-based communications

and tools such as JANE [7] provide specific support

for MANETs, generic support for DTN simulation is

overall fairly limited. The ONE simulator contributes

an environment for DTN protocol evaluation, embedding

internal and external mobility models, different DTN

routing schemes, and interactive inspection (similar to

nsnam for ns-2) as well as post-processing.

3For an overview, see, e.g., [1], [4], [9] and the references therein.
4http://www.nsnam.org
5http://watwire.uwaterloo.ca/DTN/sim/
6E.g., Pydtn at http://www.umiacs.umd.edu/˜mmarsh/pydtn/ and

http://www-net.cs.umass.edu/˜ellenz/software.html.

III. THE ONE SIMULATOR

At its core, ONE is an agent-based discrete event

simulation engine. At each simulation step the engine

updates a number of modules that implement the main

simulation functions.

The main functions of the ONE simulator are the

modeling of node movement, inter-node contacts using

various interfaces, routing, message handling and ap-

plication interactions. Result collection and analysis are

done through visualization, reports and post-processing

tools. The elements and their interactions are shown

in Figure 1. A detailed description of the simulator is

available in [16] and the ONE simulator project page [32]

where the source code is also available.

Node movement is implemented by movement models.

These are either synthetic models or existing movement

traces. Connectivity between the nodes is based on their

location, communication range and the bit-rate. The rout-

ing function is implemented by routing modules that

decide which messages to forward over existing contacts.

Finally, the messages themselves are generated either

through event generators that generate random traffic

between the nodes, or through applications that generate

traffic based on application interactions. The messages are

always unicast, having a single source and destination host

inside the simulation world.

Simulation results are collected primarily through re-

ports generated by report modules during the simulation

run. Report modules receive events (e.g., message or con-

nectivity events) from the simulation engine and generate

results based on them. The results generated may be logs

of events that are then further processed by the external

post-processing tools, or they may be aggregate statistics

calculated in the simulator. Secondarily, the graphical user

interface (GUI) displays a visualization of the simulation

state showing the locations, active contacts and messages

carried by the nodes.

routing 

visualization and results 

simulation 

engine 

connectivity 

data 

external DTN  

routing sim 

internal routing 

logic 

routing 

data 

visualization,  

reports, etc. 

post processors 

(e.g. graphviz) 

graphs, 

charts, 

 etc. 

event generators 

External events file 

Message event generator 

etc. 

movement models 

Random waypoint 

External trace 

Map-based movement 

etc. 

Fig. 1. Overview of the ONE simulation environment

A. Node Capabilities

The basic agents in the simulator are called nodes.

A node models a mobile endpoint capable of acting as

a store-carry-forward router (e.g., a pedestrian, car or
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tram with the required hardware). Simulation scenarios

are built from groups of nodes in a simulation world.

Each group is configured with different capabilities.

Each node has a set of basic capabilities that are

modeled. These are radio interfaces, persistent storage,

movement, energy consumption, message routing and ap-

plication interactions. Node capabilities such as persistent

storage that involve only simple modeling are configured

through parametrization (e.g., peer scanning interval and

storage capacity). More complex capabilities such as

movement, routing and network interfaces are configured

through specialized modules that implement a particular

behavior for the capability (e.g., different mobility models

or interference-limited radio interfaces).

Modules in each node have access to the node’s basic

simulation parameters and state, including the position,

current movement path, and current neighbors. This al-

lows implementation of, e.g., geographic routing and

other context-specific algorithms. In addition, modules

can make any of their parameters available for other

modules in the same node through an intermodule com-

munication bus. This way, for example, a movement

module can change its behavior depending on the router

module’s state or a router module can adjust the radio

parameters based on the node inter-contact times.

The focus of the simulator is on modeling the be-

havior of store-carry-forward networking, and hence we

deliberately refrain from detailed modeling of the lower

layer mechanisms such as media access control (MAC)

algorithms or retransmissions due to corrupted link layer

frames. Instead, the radio link is abstracted to a communi-

cation range and bit-rate. The bit-rate is dependent on the

interface model and can be time-varying. Furthermore,

the context awareness and dynamic link configuration

mechanisms can be used to adjust both range and bit-

rate depending on the surroundings, the distance between

peers and the number of (active) nodes nearby as sug-

gested, e.g., in [14].

The node energy consumption model is based on an

energy budget approach. Each node is given an energy

budget which is spent by energy consuming activities such

as transmission or scanning and can be filled by charging

in certain locations (e.g., at home). An inquiry mechanism

allows other modules to obtain energy level readings and

adjust their actions (e.g., scanning frequency as in [34],

forwarding activity, or transmission power) accordingly.

Node movement capabilities are explained below in

section III-B and the message routing capabilities in

section III-C.

B. Mobility Modeling

Node movement capabilities are implemented through

mobility models. Mobility models define the algorithms

and rules that generate the node movement paths. Three

types of synthetic movement models are included: 1) ran-

dom movement, 2) map-constrained random movement,

and 3) human behavior based movement.

The simulator includes a framework for creating move-

ment models as well as interfaces for loading external

movement data (see III-F). Implementations of popular

Random Walk (RW) and Random Waypoint (RWP) are

included (see Figure 2, top right). While these models

are popular due to their simplicity, they have various

known shortcomings [4]. It is also possible to completely

omit mobility modeling and construct topologies based

on static nodes (see Figure 2, top left).

To better model real-world mobility, map-based mo-

bility constrains node movement to predefined paths and

routes derived from real map data. Further realism is

added by the Working Day Movement (WDM) model [9]

that attempts to model typical human movement patters

during working weeks.

Fig. 2. Various mobility models in the ONE.

1) Map-Based Mobility: Map-based movement models

constrain the node movement to paths defined in map data

(see Figure 2, bottom left). The ONE simulator release

includes three map-based movement models: 1) Random

Map-Based Movement (MBM), 2) Shortest Path Map-

Based Movement (SPMBM), and 3) Routed Map-Based

Movement (RMBM). Furthermore, the release contains

map data of the Helsinki downtown area (roads and

pedestrian walkways) that the map-based movement mod-

els can use. However, the movement models understand

arbitrary map data defined in (a subset of) Well Known

Text (WKT). Such data is typically converted from real-

world map data or created manually using Geographic

Information System (GIS) programs such as OpenJUMP.7

In the simplest map-based model, MBM, nodes move

randomly but always follow the paths defined by the map

data. This results in a random walk of the network defined

by the map data and thus may not be a very accurate

7http://openjump.org
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approximation of real human mobility. A more realistic

model is the SPMBM where, instead of a completely

random walk, the nodes choose a random point on the

map and then follow the shortest route to that point

from their current location. The points may be chosen

completely randomly or from a list of Points of Interest

(POI). These POIs may be chosen to match popular

real-world destinations such as tourist attractions, shops

or restaurants. Finally, nodes may have pre-determined

routes that they follow, resulting in the RMBM model.

Such routes may be constructed to match, e.g., bus, tram

or train routes.

2) Working Day Movement Model (WDM): While

high-level movement models such as RWP, MBM, and

SPMBM are simple to understand and efficient to use in

simulations they do not generate inter-contact time and

contact time distributions that match real-world traces,

especially when the number of nodes in the simulation

is small. In order to increase the reality of (human) node

mobility, we have developed the Working Day Movement

(WDM) model [9] for ONE.

The WDM model brings more reality to the node

movement by modeling three major activities typically

performed by humans during a working week: 1) sleeping

at home, 2) working at the office, and 3) going out

with friends in the evening. These three activities are

divided into corresponding sub-models between which the

simulated nodes transition depending on the node type

and the time of the day.

Beyond the activities themselves, the WDM model

includes three different transport models. The nodes can

move alone or in groups by walking, driving or riding a

bus. The ability to move alone or in groups at different

speeds increases the heterogeneity of movement which

has impact on the performance of, e.g., routing protocols.

Finally, WDM introduces communities and social re-

lationships which are not captured by simpler models

such as RWP. The communities are composed from nodes

which work in the same office, spend time in the same

evening activity spots or live together.

We have shown that the inter-contact time and contact

time distributions generated by the WDM model follow

closely the ones found in the traces from real-world

measurements [9].

3) Composite Movement Models: Since movement

models can be configured on per node basis, it is possible

to combine multiple different types of mobility models in

one simulation. This allows composite movement models

to be created where, for example, some nodes follow map

based movement along roads and others who walk around

randomly within, e.g., a shopping center or a park.

Figure 2 (bottom right) shows a composite movement

model made up of three clusters of nodes with a random-

walk movement model constrained to a specific area and

one group of nodes following a map based movement

model between the clusters. This results in a message

ferry scenario where nodes within separate clusters can

communicate with each other through the message ferries.

C. Routing

The message routing capability is implemented simi-

larly to the movement capability: the simulator includes

a framework for defining the algorithms and rules used

in routing and comes with ready implementations of well

known DTN routing protocols.

There are six included routing protocols: 1) Direct

Delivery (DD), 2) First Contact (FC), 3) Spray-and-

Wait, 4) PRoPHET, 5) MaxProp, and 6) Epidemic. This

selection covers the most important classes of DTN

routing protocols: single-copy, n-copy and unlimited-copy

protocols, as well as estimation based protocols.

Direct Delivery and First Contact are single-copy rout-

ing protocols where only one copy of each message

exists in the network. In Direct Delivery, the node carries

messages until it meets their final destination. In First

Contact routing the nodes forward messages to the first

node they encounter, which results in a “random walk”

search for the destination node.

Spray-and-Wait [31] is an n-copy routing protocol

that limits the number of message copies created to a

configurable maximum and distributes (“sprays”) these

copies to contacts until the number of copies is exhausted.

Both variants of Spray-and-Wait suggested by its authors

are included: in normal mode, a node gives one copy to a

contact, in binary mode half of the copies are forwarded.

Once only a single copy is left, it is forwarded only to

the final recipient.

Three routing protocols perform variants of flooding.

Epidemic [33] replicates messages to all encountered

peers, while PRoPHET [21] tries to estimate which node

has the highest “likelihood” of being able to deliver a

message to the final destination based on node encounter

history. MaxProp [3] floods the messages but explicitly

clears them once a copy gets delivered to the destination.

In addition, MaxProp sends messages to other hosts in

specific order that takes into account message hop counts

and message delivery probabilities based on previous

encounters.

Routing capabilities of simulators such as ns-2 or

dtnsim2 can also be used in conjunction with ONE.

Report modules can export mobility and connectivity data

to other programs (modules for ns-2 and dtnsim2 are

included) and external scripts are then used to import the

results of routing simulation back into ONE (script for

dtnsim2 is included).

If the external routing simulation was run with a contact

schedule created by the ONE simulator, as described in

section III-G, the whole process from node movement to

external simulator’s routing decisions can be visualized

and inspected using ONE.

Adding Routing Protocols: To evaluate new routing

protocols in the ONE simulator, a new routing module

needs to be created for the respective protocol. All routing

modules inherit basic functionality, such as simple buffer

management and callbacks for various message-related

events, from the MessageRouter module. These callbacks

are invoked by the simulator engine for all kinds of events,
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e.g., when a new message is created or a message is sent

to the node. A router module needs to handle these events

and also define actions to be carried out at every time step

and the behavior when a new node comes into or leaves

the node’s radio range.

The basic functionality for all these events is common

for the all currently implemented routing modules with

internal routing logic. It is simply re-used for new routing

protocols by extending the ActiveRouter module. This

module provides functions for checking if any of the

currently buffered messages are destined to a neighboring

node, offering sets of messages to neighboring nodes,

and dealing with successfully transferred and aborted

message transfers, and it implements FIFO and random-

ordering buffer management. For Epidemic, DD and FC

routers no functionality beyond this is needed, making

their implementations straightforward.

The following pseudocode listing shows how whole

Epidemic router’s logic is implemented in the callback

that is called on every simulation update round.

update()

if (isTransferring() OR

nrofMessages = 0 OR

nrofConnections = 0)

return

startedTransfer := exchangeDeliverableMessages()

if (startedTransfer)

return

tryAllMessagesToAllConnections()

end

Since the implementation of Epidemic router transfers

only a single message at a time, the update method does

not do anything if there is an ongoing transfer. Also, if

the routing module’s message buffer is empty, or the node

does not have any connections to other nodes, nothing

needs to be done. Next, the routing module checks if any

of the messages it has is for one of the nodes it is currently

connected to, and if so, it starts to transfer such a message

and returns from the method. Finally, all other messages

are offered on all connections and a transfer is started if

any of the connected nodes accept any of the messages.

More advanced routing modules may need to track

node contacts and therefore implement the node discovery

callback; e.g., PRoPHET and MaxProp perform their

own book-keeping on past encounters this way. Below

is shown the logic of the PRoPHET routing module’s

connection tracking callback.

changedConnection(Connection c)

if (NOT c.isUp())

return

peer := con.getOtherHost()

oldValue := predictions.get(peer)

predictions.put(peer, oldValue + (1 - oldValue) * P_INIT)

pForPeer := predictions.get(peer)

foreach (node, p in peer.getRouter().getPredictions())

pOld := predictions.get(node)

pNew := pOld + (1 - pOld) * pForPeer * p * BETA

predictions.put(node, pNew)

end

end

PRoPHET router updates the delivery predictions every

time a new connection comes up, so disconnection events

are ignored. The delivery prediction for the contacted peer

is updated as defined in the original PRoPHET paper [21].

Then, also transitive predictions are updated by asking

peer’s delivery predictions from its routing module, and

iterating through them while updating the values with

the transitive prediction formula. The update method of

PRoPHET is similar to Epidemic router module’s update,

but instead of trying all messages to all connections, the

messages are ordered by the delivery predictions and only

messages for which the peer has a higher probability of

delivery are forwarded. The message sending order is

routing module specific and hence implemented in the

PRoPHET module, but the routing framework provides

methods for trying a set of messages for a set of connec-

tions, which also the PRoPHET module utilizes.

State may also be attached to messages using a tagging

mechanism and thereby routing information may be for-

warded hop-by-hop across the network. For example, the

Spray-and-Wait router uses this mechanism to include a

copy count in every message. A message can be tagged

with multiple independent values, or even data structures,

that allow arbitrary routing, or any other, data to be

transferred with them.

When a simulation is run with the new routing module,

the generic report modules gather the same performance

data of the routing process as they do with the existing

modules, so that comparing the performance of the new

module to the existing ones is straightforward. In addition,

it is possible to create routing module specific report

modules that, e.g., read and interpret the data stored

in messages with the tagging mechanism or query for

parameters directly from the routing modules.

D. Application Modeling

In addition to mobility and routing modeling, ONE

includes support for modeling application layer interac-

tions. Two approaches are supported: high-level model-

ing of unicast and request-response interactions through

message generators, and more detailed modeling through

an application layer framework.

The message generator can be used to create traffic by

drawing the source, destination, size and interval from a

random distribution, or by reading them from an external

message event file. The message event files can be created

with the included tools or created based on real-world

traces. Simple, interactive request-response interactions

can be modeled by tagging the created messages to expect

a response. When such a message is received, the receiver

will generate a response message with a given size to the

originator.

While the message generator based application model-

ing enables modeling of simple unidirectional or request-

response interactions, more complex interactions can be

modeled by building an application module using the

application layer framework. The framework allows ar-

bitrary application layer logic to be implemented and

attached to the simulated nodes.
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The conventional sockets API is built around a send-

receive model with well-known source and destination

addresses. However, DTN applications often require more

complex interactions between the application layer and

the bundle transport layer. For example, application gate-

way nodes may wish to pick up all messages of a partic-

ular application and forward them to the classic Internet

(e.g., an email gateway [12]). Other applications may

wish to terminate the spread of a message based on some

application layer condition (e.g., search termination [24]).

In general, application layer logic may wish to receive,

inspect, modify or terminate any message regardless of

whether the host is the destination of the message.

The application layer framework allows the application

modules to: 1) receive messages (all messages or only

messages with a specific application identifier), 2) modify

messages by altering, appending or removing any values

or properties, 3) signal to the router that the message

should be dropped, 4) generate messages, and 5) execute

arbitrary logic and actions every time step. Any number

of application instances can be attached to a single host

in the simulation.

The messages inside ONE do not carry any applica-

tion payloads. Instead, generic name-value pairs, called

properties, can be attached to the messages. Applications

can model different types of messages by adding specific

properties, e.g., a ping message might have a property

named “type” with a value “ping” and the response

message may have the type “pong”. This allows arbitrary

protocol interactions to be implemented.

The application layer framework also includes support

for application specific report modules. The application

instances can raise application events with specific types

and parameters. Report modules can listen to these events

and create application-specific reports based on them.

Adding Application Protocols: To simulate a new ap-

plication with complex interactions, a new application

module and a report module must be constructed. The

application module can then be attached to any number

of hosts in the simulation scenario.

Every new application module inherits basic function-

ality from the base Application module. This includes

a callback for handling incoming messages, an update

callback for every simulation time step, and the ability

to raise application events that are communicated to

all the registered report modules. The new application

implements the callbacks to provide the custom applica-

tion behavior, and sends application events to the report

module.

To create a simple ping application, the application

module would implement the update callback to generate

ping messages at regular intervals. These messages are

handed to the router and forwarded in the simulation

similarly to all the other messages. The handle callback

is implemented to receive the ping messages and generate

a pong message in response. Furthermore, the application

module will generate events every time ping or pong

messages are created or received. The report module can

then calculate delivery probabilities based on these events.

The following listings demonstrate an implementation

of a simple ping application module.

handle(Message msg, DTNHost host)

if (msg.to = host AND msg.property("type") = "ping")

pongMessage.to := msg.from

pongMessage.property("type") := "pong"

host.sendMessage(pongMessage)

raiseEvent("RECEIVED_PING")

else if (msg.to = host AND msg.property("type") = "pong")

raiseEvent("RECEIVED_PONG")

end if

end

update(DTNHost host)

if (getSimulationTime() > nextSendTime)

pongMessage.to := getRandomHost()

pongMessage.property("type") := "ping"

host.sendMessage(pongMessage)

nextSendTime = getSimulationTime() + randomInterval()

raiseEvent("SENT_PING")

end if

end

E. Link Layer Modeling

The focus of ONE is in modeling the network layer

store-carry-forward interactions and the link layer is ab-

stracted to bit-rate and range. However, the simulator sup-

ports generic interfaces which can be used to model nodes

with multiple radios (e.g., Bluetooth, WiFi) or to create

links with time-variant characteristics (e.g., interference

limited links).

Each node within the simulator can be configured with

an arbitrary number of named interfaces, with each inter-

face having a different type and/or different parameters.

Nodes configured with the same interface can create

connections between each other. This allows nodes to be

configured with short range but high bit-rate interfaces

(e.g., Bluetooth) and with longer range but lower bit-

rate interfaces (e.g., cellular). Furthermore, it allows a

subset of nodes to create a backbone network by using a

long range interface for communication within the subset,

while using a short range interface to communicate with

other nodes.

Beyond a simple constant bit-rate interface, ONE in-

cludes an interference-limited interface. This interface

has time-variable bit-rate that is calculated based on the

number of other transmitting nodes within the vicinity of

the node. This leads to a more realistic radio model where

the interference from multiple simultaneously transmit-

ting nodes decreases the bit-rates for nearby nodes. The

interference modeling could be extended to include, for

example, location dependent variable bit-rate to model the

effects of fading due to buildings or other factors.

F. External Interfaces

An important feature of ONE is its ability to interact

with other programs and data sources. The simulator

has interfaces, e.g., for node movement, connectivity and

message routing traces.

It is possible to generate node movement using an

external program, such as TRANSIMS or BonnMotion8,

8www.cs.uni-bonn.de/IV/BonnMotion
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or from a real-world GPS trace such as the ones available

from CRAWDAD. Such a trace file needs to be converted

to a suitable form for the External Movement module.

The distribution package contains a simple script that can

convert TRANSIMS output to this format.

Instead of node locations, many real-world traces con-

tain only information about connections between nodes.

This kind of traces can also be imported to ONE and

used for routing simulations. For this purpose we have

created conversion scripts, e.g., for the DieselNet traces.

We have also generated connectivity traces from the real-

time location data of trams in the Helsinki area.9

Like node movement and connection traces, also mes-

sage traces can be imported to ONE. These may include

message creation and deletion events, and starting and

cancellation of message transfers. This functionality is

especially useful if ONE is used for analyzing traces

generated by other DTN routing simulators or even real-

world traces.

In addition to reading output of other programs, ONE

can also generate input traces for them. It has report

modules whose output is compatible with dtnsim and

dtnsim2 connectivity trace input. In a similar fashion, it

is also possible to create mobility traces using a mobility

report module. If properly formatted, these traces are

usable in, e.g., ns-2. This way ONE can function as a

general purpose mobility simulator.

While report files are an easy way to interact with other

programs, a report module can also communicate in real

time with them. This approach was used with real world

DTN integration, described in section IV.

G. Reporting and Visualization

ONE is able to visualize results of the simulation in two

ways: via an interactive Graphical User Interface (GUI)

and by generating images from the information gathered

during the simulation.

Figure 3 shows the GUI displaying the simulation

in real-time. Node locations, current paths, connections

between nodes, number of messages carried by a node,

etc. are all visualized in the main window. If a map-

based movement model is used, also all the map paths

are shown. An additional background image (e.g., a

raster map or a satellite image of the simulation area) is

shown below the map paths if available. The view allows

zooming and interactive adjusting of the simulation speed.

The GUI produces a filtered log of simulation events,

such as contacts and message transfers. Filters are used to

show only interesting events, or to pause the simulation

when a particular type of event occurs. Selecting a node

from a list or a log message opens it for closer inspection.

This allows retrieving further information about the mes-

sages a node is carrying and about the routing module’s

state.

While the GUI is good for getting an intuitive over-

all picture of what is happening during the simulation,

9http://netlab.hut.fi/tutkimus/dtn/theone/trace 1week 30m.txt.zip

Fig. 3. Screenshot of the ONE simulator’s GUI

more rigorous ways to visualize node relations, message

paths and performance summaries are provided by post

processed report files.

ONE includes report modules that can create

Graphviz10 compatible graph files. Figure 4 shows how

these graphs visualize node connections and the paths that

the messages have traveled in the network. Likewise, for

visualizing how messages are spread in the network as a

function of time, a message location report module can

provide this data and an animator script will turn the data

into a GIF animation.

p1
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t35
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w26

w22

c11

c13
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t32

c16 t34 t33 t31
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Fig. 4. Example message paths from node p1 to p2

The simulator includes a message statistics report mod-

ule that gathers statistics of overall performance (number

of created messages, message delivery ratio, how long

messages stay in node buffers, etc.). A post processing

script that plots the report module’s output is also in-

cluded.

H. Creating Simulation Scenarios

Simulation scenarios are built by defining the simulated

nodes and their capabilities. This includes defining the

basic parameters such as storage capacity, transmit range

and bit-rates, as well as selecting and parameterizing

the specific movement and routing models to use. Some

simulation settings such as simulation duration and time

granularity also need to be defined.

The simulator is configured using simple text-based

configuration files that contain the simulation, user in-

terface, event generation, and reporting parameters. All

10http:// www.graphviz.org/
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modules have their high-level behavior defined by their

Java code implementation, but the details of their behavior

is adjustable using the configuration subsystem. Many

of the simulation parameters are configurable separately

for each node group but groups can also share a set

of parameters and only alter the parameters that are

specific for the group. The configuration system also

allows defining of an array of values for each parameter

hence enabling easy sensitivity analysis: in batch runs,

a different value is chosen for each run so that large

numbers of permutations can be explored.

If configuring existing implementations of different

modules is insufficient for creating a specific scenario,

ONE can also be extended with new code. We have

introduced several hooks for extensions without a need

for any changes in other parts of the simulator code. This

allows sharing new modules as plugins and using them

with different versions without needing to patch rest of

the simulator. Routing modules, movement models, event

generators and report modules are all dynamically loaded

when the simulator is started. Hence, when creating a

new module, user only needs to create and compile a

new class, define its name in the configuration file, and

the simulator automatically loads it when the scenario

is started. All these modules can also have any number

of settings defined in the configuration files and these

settings are accessible to the module when it is loaded.

IV. REAL-WORLD DTN INTEGRATION

The ONE simulator has been designed to be used in

conjunction with DTN211 in order to provide a realistic

environment for testing and evaluating real-world DTN

applications. The DTN2 bundle router (dtnd) is the refer-

ence implementation of the DTNRG bundle protocol [28].

DTN2 implements convergence layers such as TCP, UDP

and Bluetooth, routing algorithms such as epidemic and

PRoPHET, and neighborhood discovery mechanisms such

as Bonjour. Applications can use the DTN2 API to take

advantage of the bundle delivery services provided by the

bundle router.

There are two interaction models between ONE and

the DTN2 reference implementation: 1) Controlling dtnds

through their console interface based upon connectivity

data exported by the ONE simulator, and 2) real-time

integration using the simulator to emulate all or parts

of a DTN. In the first approach, ONE is only used for

providing realistic, mobility model based connectivity

characteristics to a network of DTN2 nodes. In the

second approach, ONE is used to emulate all aspects of

a DTN network including mobility, routing, radio link

characteristics and node storage constraints while DTN2

is used mainly for providing the application interface.

A. DTN Controller

Traces generated by ONE’s connectivity report mod-

ules are suitable to control the link status between

11http://www.dtnrg.org/wiki/Code

dtnd instances. This requires an external DTN Controller

that reads the contact trace files produced by the ONE

simulator and controls the dtnds through their console

interfaces. The connectivity traces report each event of

a link between two nodes going up or down and the

time instance when it occurred. The controller reads these

events sequentially and instructs the corresponding dtnd

instances to open or close the specified link. Real-time

operation is achieved by scheduling the control commands

according to the trace file’s time-stamps.

This approach allows the network of bundle routers

to run independently of the ONE simulator instance.

This is practical for creating long lived, robust testbeds.

We have experimented with a DTN Controller (not part

of the ONE release) to create a testbed network that

simulates buses running between Ruoholahti in downtown

Helsinki and the Helsinki University of Technology in

Espoo roughly eight kilometers away. This was done by

generating a simulation scenario for ONE which modeled

buses traveling between the two locations over a 24

hour period and then running a simulation to produce

the connectivity trace. Our DTN2 controller uses the

trace to open and close links between dtnd instances

resulting in a connectivity pattern that resembles having

real bundle routers in the buses. The testbed is used for

experimenting with various applications, such as a DTN

camera application that takes and returns pictures upon

receiving a corresponding request.

B. DTN Emulation Support

In order to take advantage of all of the ONE simulator’s

features when creating an emulated environment for real

DTN applications, real-time integration with the DTN2

reference implementation is required. For this purpose

ONE implements the External Convergence Layer Inter-

face of DTN2. This allows the simulator to connect to

dtnd instances as an external convergence layer adapter,

appearing as a link in the DTN2 link table. Any bundles

passed onto this link by DTN2 will appear as new

messages in ONE. The simulator also controls dtnds via

the console interface to automatically set up the routing

to pass bundles to and from the link.

It is possible to connect any number of DTN2 instances

at the same time. Each instance is configured to match

a specific node inside the simulation with a mapping

from the Endpoint Identifiers (EIDs) used in the bundle

protocol to the node IDs used by the ONE simulator.

The EID mapping uses regular expressions allowing one

node to have any number of matching EIDs as well as

allowing one EID to match any number of nodes. When

a bundle arrives from dtnd, ONE matches the destination

EID against the configured EID to node ID mappings and

generates a bundle message to each matching destination.

After this the bundle messages are treated identically to

all other messages inside the simulation. Once a bundle

message reaches its destination inside the simulation it is

delivered to the dtnd instance connected to the destination

node.
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The DTN Emulation Support has been used to provide

a realistic scenario for demonstrating an implementation

of mail over DTN [12]. A simple scenario for the ONE

simulator was constructed that mimicked the layout of

an exhibition hall with a number of DTN-capable nodes

moving around the area. Multiple devices, such as Internet

tablets, running dtnd and DTN email applications were

connected to the simulator. As messages were sent from

these devices they appeared in the ONE simulation,

traveled around until they found their destination, and

then appeared in the real device they were destined to.

ONE was run in the GUI mode showing in real-time the

messages as they traveled between the nodes.

V. SIMULATOR USAGE

ONE has been used to evaluate a number of mobility

models, routing protocols, applications and other DTN

mechanisms. We do not show new simulation results

here, but refer to a number of simulations and results

from previous studies. New results for the simulator

performance are presented in Section V-B.

A. Use cases

ONE can be used to study the basic store-carry-forward

behavior by recording message delivery statistics such

as latencies and delivery probabilities and their distri-

butions in various scenarios. Such simulations help to

build understanding of the performance of a complete

DTN message delivery service under different routing

algorithms, mobility models and node characteristics.

Beyond the basic analysis of message delivery in dif-

ferent scenarios, more detailed studies of mobility models,

routing, applications, and other DTN mechanisms can be

done by extending various aspects of the simulator and

statistics reporting.

Basic Store-Carry-Forward Behavior: A previous tech-

nical report [17] describes the basic feature set of ONE.

The report presents simulations based on a scenario of

interpersonal communication between mobile users in

Helsinki downtown area using modern mobile devices.

The simulation scenarios use existing modules and no

custom extensions to the simulator are created.

The simulations include pedestrians, cars, trams and

stationary throw-boxes. A sparse scenario with 100 nodes

and a more dense scenario with 500 nodes is simulated,

both with six or less throw-boxes. Both personal area

networking (PAN) and wireless local area networking

(WLAN) with communication ranges of 10 and 30 meters

respectively are studied. The mobile nodes have buffer

sizes of 5 and 20 MB while the stationary throw-boxes

have buffer sizes of 50 and 200 MB.

Each node generates one message per hour on average.

The message sizes are randomly distributed between 100

KB and 2 MB. Both one-way and simple request-response

interactions are simulated.

Four of the movement models described in Section

III-B are studied: RWP, MBM, SPMBM, and RMBM.

The map based models use a map of downtown Helsinki

with an approximate size of 4.5 by 3.4 km. RWP move-

ment uses the same area but is not constrained by the

map. Epidemic, Direct-Delivery, PRoPHET, and multiple

variations of Spray-and-Wait algorithms are simulated.

The simulations are run over a number of combinations

of the above settings. The results show relative distribu-

tions of inter-contact times and contact durations. This

revealed, among other things, that the addition of higher

velocity nodes such as cars and trams and motionless

throw-boxes did not alter the contact duration distribution

significantly.

The results also show message delivery probabilities

and latencies for the various routing algorithms and

movement models. These reveal that delivery latencies

are in the order of half an hour to couple of hours, while

delivery probabilities range from less than 5% to over

35% depending on the configuration. Multiple parameters,

such as the mix of different node types, message size and

message lifetime, have observable impact on the message

delivery.

Further work by the authors [19] extend the above

simulations by introducing a new energy model to the

simulator along with explicit intervals for scanning for

neighbors. The simulations are also run with a larger map

(8.3 by 7.3 km) and use WDM mobility in addition to the

movement models used in the above report. The energy

model assumes each node has a battery with a limited

energy budget. Energy is subtracted from the budged

every time a node transmits or scans the area for other

nodes. Nodes that have exhausted their budged can no

longer communicate with other nodes.

The results of the simulations show that as the realism

of the mobility increases, the contact durations increase

as well. This is explained by the fact that in reality nodes

tend to stay close to each other for extended periods

of time when, e.g., traveling on a bus, working in an

office or spending time in a restaurant. The same effect

accounts for more realistic models being less susceptible

to adverse effects due to increasing scanning intervals.

Another observation is that in more realistic mobility

models some nodes tend to be more central than others

with more social interactions. This causes the batteries of

those nodes to drain more quickly than other nodes.

Mobility Modeling: ONE has been used both for mod-

eling increasingly realistic movement of mobile nodes and

as a generator of mobility traces for other simulators.

A study by F. Ekman et al. [9] introduces the WDM

(see Section III-B2 for explanation of the model) with

a set of ONE simulations that analyzes the impact of

lowering the abstraction level of the mobility model,

bringing in more realism to the node movement.

The simulations divide the Helsinki area into four

districts, each with a set number of homes, offices and

meeting spots. Three of these districts model primarily

residential areas while one models the downtown area.

There are bus lines both within and between the districts.

In total 1000 nodes, 200 offices and 24 meeting spots

within 7 by 8.5 km area are simulated. 50% of the nodes
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are able to travel by car, while the rest will travel by foot

or by bus. In addition, 10 nodes following the SPMBM

movement were used as background traffic.

The simulations are focused purely on the movement

of the nodes and the resulting inter-contact times, contact

durations, and contacts per hour. No routing or message

passing is considered. Comparisons are made against an

RWP model and real world traces.

The results of the simulations show that the new model

produces contact characteristics that are similar to those

observed in real-world traces, while the RWP model used

as a comparison could not produce such characteristics.

This implies that a synthetic mobility model with a low

abstraction level can create more realistic mobility than

models with higher abstraction levels. By changing the

map from Helsinki map to a Manhattan-like grid, the

results show that the underlying map had no significant

effect on the contact patterns.

Contact traces generated by the synthetic mobility

models in ONE have also been used by M. Pitkänen

and J. Ott [26] with another simulator to study caching

in opportunistic networks. The mobility model used was

SPMBM with 100 nodes roaming on the downtown

Helsinki map for 30 days.

Routing: J. Karvo and J. Ott use ONE simulations in

conjunction with theoretical considerations to study the

impact of timescales in the parametrization of estimation

based routing algorithms [15]. The study implements two

modified versions of existing ONE routing protocols,

PRoPHET and MaxPROP, which allows parametrization

by predefined values or by local estimation.

The simulations use the WDM scenario described

above, but scale down the number of nodes to 544. The

nodes generate messages with sizes uniformly distributed

between 1 KB and 1 MB and buffer sizes of 100 MB.

Simulations are run with different offered loads, ranging

from each node generating one message per day to eight

messages per day. The simulation time is one day (plus

warmup and cool-down periods), which captures one full

cycle of the daily WDM movement.

The simulation results show that for routing algorithms

that update and maintain historical delivery probability es-

timations, proper parametrization based on the timescales

inherent in the underlying mobility and connectivity is

important.

A. Keränen and J. Ott studied routing in a network

composed from commercial aircraft traveling between

international airports [18]. The simulations use data for

up to 248,469 flights between 3,879 airports. Since the

airline schedules are well known in advance a shortest-

path algorithm can be used to route messages within

the network. The results show that 90% of messages

sent from the Helsinki airport towards other international

airports will reach their destination within 24 hours,

while practically all messages will reach their destination

within 40 hours. Furthermore, the study also considers

the delivery of messages between the airport and the city

center using the WDM and concludes that over 99% of

messages could be delivered from the city to the airport,

while some 67% of messages could be delivered from the

airport to the city.

Application Modeling: As explained in Section III-D,

applications in DTN networks may require more com-

plex interactions than the simple send/receive interactions

modeled by the basic message generators in the simulator.

One example of such an application is a content search

service, which has been studied through ONE simula-

tions [24].

The simulator is modified by adding application layer

logic for evaluating search queries and match them against

content items stored in the node. Content items are then

distributed to the nodes according to the Zipf distribution.

The nodes generate queries which are spread in the

network and responses are generated by nodes that have

content items matching the query in their content stores.

Multiple criteria for terminating the spread of the search

query are simulated.

The simulations include four distinct scenarios based

on a static disc topology with 92 nodes, RWP with 125

nodes, SPMBM with 126 nodes on a Helsinki map, and

WDM with 544 nodes on a Helsinki map.

The simulations show that regardless of the search ter-

mination mechanism or scenario employed, only popular

content items a few hops away from the query originator

are likely to be found. Furthermore, the routing algorithm

has a significant role in determining the spread of the

query message.

Other DTN Mechanisms: Fragmentation of DTN mes-

sages has been studied using ONE simulations [25]. The

study includes custom modifications to the ONE message

delivery mechanism which allow multiple fragmentation

methods such as proactive fragmentation, reactive frag-

mentation along arbitrary boundaries and reactive frag-

mentation along predefined boundaries.

The simulations use SPMBM on a Helsinki map and

RWP movement in 1 by 1 km area as a comparison. 80

mobile nodes, 40 cars and 6 trams are simulated. The

nodes have 2 Mbit/s links and 100 MB buffers. Nodes

send messages of equal size (500 KB to 5 MB) every 30

seconds on average. The interval is adjusted so that the

offered load remains the same regardless of the message

size. All six routing protocols described in Section III-C

are used.

The results show that reactive fragmentation consis-

tently increases delivery ratio for large messages while

the delay stays the same. Fragmentation along predefined

boundaries performs slightly better than fragmentation

along arbitrary boundaries; most likely due to better

duplicate detection and the absence of trivially small

fragments. Proactive fragmentation performs worse than

no fragmentation at all in all scenarios.

B. Performance Observations

The ONE simulator offers a framework for evaluating

DTN protocols and, as such, its performance primarily de-

pends on the evaluated protocols and their computational
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and memory requirements. Naturally, the performance

depends on the size of the simulation area, the number of

nodes, their communication range, the mobility model,

and the scanning intervals which together govern the

frequency of connection events.

Simulations usually run much faster than real-time,

but complex simulation setups and large state space may

cause significant slowdown. The simulator continuously

reports the ratio of simulation time per second of real-

time elapsed, which gives some performance indication.

In our previous work [19] we used three rack-mounted

Linux PCs with multi-core Intel x86 CPUs (2.9–3.7 GHz)

and 8–128 GB of RAM (but most simulations also run on

commodity PCs or laptops). For a 1029 node scenario,

we observed mean simulation speeds ranging from 40:1

to well beyond 1000:1 depending on the PC, the mobility

model, and the routing protocols; only MaxProp was

notably slower (as low as 10:1 and less). Increasing the

scanning intervals impacts the number of encounters;

using 60 s reduced the simulation time by up to one fourth

in HCS and WDM. Finally, increasing the radio range

leads to more encounters and thus generates more events

to process, slowing down simulations depending on the

scenario (we observed a factor of 5–10 when moving from

10 m to 100 m radio range).

The routing protocols influence performance by the

number of message copies they create and thus FC,

DD, and SnW run faster than Epidemic and PRoPHET.

Sophisticated routing protocols, such as MaxProp, that

require a lot of state information per node and connec-

tion and perform complex processing, may slow down

simulations with a large number of nodes and frequent

encounters, also requiring a lot of RAM for the Java

Virtual Machine (JVM).

The simulation speed also depends on the simulation

time resolution, i.e., the intervals at which the simulation

time is advanced. This interval is adjustable and doubling

the interval may often make the simulation run almost

two times faster. We ran the above simulations with a time

resolution of 1.0 s, noting that earlier experiments yielded

similar simulation results for 1.0 s and 0.1 s [17]. For

scenarios with larger radio ranges and/or slowly moving

nodes, even coarser granularity may be sufficient.

To further test how the number of simulated hosts

effects the simulation speed, we ran a set of simula-

tions with SPMBM movement model using 10 × 8km

Helsinki downtown area map, First Contact router, and

the population divided evenly into two groups: pedestrians

and cars. Simulation time resolution was 0.1 seconds

and message generation interval 20–30 minutes (uniform

random distribution). We used a regular desktop PC with

AMD x86 CPU running at 2.81 GHz, 4 GB of RAM, and

a 32-bit Microsoft Windows operating system.

The simulation time was set to only 3 hours but we

observed that longer simulation times resulted in similar

results with the FC router. The total number of nodes was

varied from 100 to 3000 and the effect of node count to

simulation speed was measured to be roughly logarithmic,

as shown in Figure 5. The simulation with 100 nodes run

at almost 500 1

s
, while a 500 node simulation had average

speed of 70 1

s
. Increasing the node count to 1000 and 1500

decreased the speed respectively to 32 and 20 1

s
. The 3000

node simulation was still running at approximately 6
1

s
.
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Fig. 5. Simulation speed with different number of nodes

Most of the computational complexity of these simu-

lations came from finding out if two nodes are within

radio communication range from each other and moving

the nodes in the simulation area. For example, in the

500 node simulation, according to the NetBeans 6.5 Java

IDE’s profiler12, about 40% of the CPU cycles were spent

for checking the connectivity, 15% for updating routing

modules and 25% for movement simulation (mostly for

calculating the shortest paths). Also the JVM version

may have significant impact on the simulation speed: for

example, the simulation with 500 nodes run 14% faster

with Sun JVM version 1.6.0 13-b03 compared to version

1.6.0 01-b06.

The upper limit of reasonably simulated node count, at

least with currently available commodity hardware, lies

somewhere below half a million nodes. A simulation on

our test desktop PC with 500,000 nodes, using Random

Waypoint movement in 20 × 20km area, First Contact

router and without connectivity checking or messages,

was able to process around one update round every

second, resulting at speed of 1
1

s
with 1.0 second time

resolution. With connectivity checking enabled, same

speed is reached with around 200,000 nodes. Simulations

of this size require over a gigabyte of JVM heap, and

up to 1.5 GB of RAM in total, so 32-bit operating

system’s memory addressing capabilities, especially with

Windows13, start to limit simulation scenario sizes. We

also tested a 1 million node simulation on a 64-bit Linux

platform with 3.7 GHz Intel x86 CPU and 16 GB RAM.

This required over 3 GB of RAM for the JVM and

resulted in simulation speeds just below 0.1
1

s
.

If the node count is kept constant and we change

only the used routing protocol, the simulation speed will

give an indication on the relative computational load the

different routing modules cause. We tested this with 200

nodes and the SPMBM movement model. The simulation

time was increased to 18 hours since, especially for

12http://www.netbeans.org/features/java/profiler.html
13http://msdn.microsoft.com/en-us/library/aa366778.aspx
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some routing modules, the amount of required computing

increases when more messages are created during the

simulation. The results of this test are shown in Figure 6.
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Fig. 6. Simulation speed with different routing protocols

The SnW (binary mode with 6 copies), FC and

DD protocols are all approximately equally efficient,

while PRoPHET and Epidemic make the simulation take

roughly two times longer and MaxProp up to five times

longer. PRoPHET and Epidemic simulations become

slower over time since they generate a large number of

message replicates. PRoPHET requires more advanced

operations for to the probability calculations and message

sorting, but it compensates this by a smaller amount

(some 25% in this test) of started transfers and created

message replicas. MaxProp is clearly the heaviest of the

routing protocols and its speed also degrades most over

time. MaxProp’s shortest path calculation for messages

took some 20% of the CPU cycles but even more (over

50%) was spent on exchanging the delivery predictions

of different nodes. The amount of state MaxProp keeps,

especially the delivery prediction mappings, grow over

time when more nodes meet each other. Eventually all

nodes have full knowledge of each others’ prediction

mappings requiring in the order of the number of nodes

squared entries on each node.

Finally, we tested how much impact different move-

ment models have on the simulation speed. Figure 7

shows that there is not much difference between RWP

and MBM, but SPMBM and WDM make the simula-

tion around 20% slower because of the shortest path

calculations. WDM, even though notably more complex

model than SPMBM, is slightly lighter to simulate since

in WDM nodes are stationary for long periods of time

and do not thus require complex calculations that often.

All in all, the present version of the ONE simulator is

capable of supporting sizable simulation setups of some

thousand nodes with fairly complex movement models

and routing modules and still simulate their behavior

faster than real time. Even larger simulation scenarios are

possible if the simulation time resolution can be decreased

and/or only simpler routing modules with small amount

of state information are used.

VI. CONCLUSION

In this paper, we have presented the ONE simulator, an

opportunistic networking evaluation system that offers a
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Fig. 7. Simulation speed with different movement models

variety of tools to create complex mobility scenarios that

come closer to reality than many other synthetic mobility

models. GPS map data provides the scenario setting and

node groups with numerous different parameters are used

to model a wide variety of independent node activities and

capabilities. The Working Day Movement model allows

recreating complex social structures and features such

as scanning intervals add further aspects of reality and

heterogeneity to the modeling. All these aspects may

matter as our simple examples have shown. With its

flexible input and output interfaces, the ONE simulator

can incorporate real-world traces and feeds from other

mobility generators as well as generate mobility traces

for use by other simulators. Its DTN framework currently

includes six parameterizable DTN routing protocols and

two types of application messaging. Its visualization com-

ponent is used for instant sanity checks, deeper inspection,

or simply to observe node movements in real-time—

which broadens its applicability beyond DTN studies.

Particularly the integration with the DTN reference im-

plementation allows creating testbeds and emulations.

The ONE simulator still has numerous limitations and

will hardly ever be complete. In the short-term we intend

to examine support for broadcast and multicast addressing

so that the same message can be addressed and delivered

to multiple nodes. We also intend to increase support for

importing location data from external sources in standard

formats. The dependency on DTN2 for supporting real-

life DTN integration will be removed through a native

implementation of the relevant protocols. Furthermore,

message generation activity will need to take into account

group relationships and context information. Finally, fur-

ther refinements to the Working Day Mobility model are

needed to provide better modeling of buildings and of

traffic; we are interested in learning and importing from

other simulation environments.

We are using and continuously advancing the ONE

simulator in our ongoing DTN research, as a mobility

generator and as a full simulator, e.g., for our work on

opportunistic content caching in DTNs [26] and we apply

it in our DTN graduate course.14 We maintain an open

source distribution of the simulator; the current release

(1.4.0) includes all features described in this paper [32].

14TKK S-38.3151, https://noppa.tkk.fi/noppa/kurssi/s-38.3151/
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[9] EKMAN, F., KERÄNEN, A., KARVO, J., AND OTT, J. Working
Day Movement Model. In Proc. 1st ACM/SIGMOBILE Workshop

on Mobility Models for Networking Research (May 2008).

[10] FALL, K. A Delay-Tolerant Network Architecture for Challenged
Internets. In Proc. of ACM SIGCOMM (2003).

[11] HUI, P., CHAINTREAU, A., SCOTT, J., GASS, R., CROWCROFT,
J., AND DIOT, C. Pocket Switched Networks and Human Mobility
in Conference Environments. In Prof. of the ACM SIGCOMM

Workshop on Delay-Tolerant Networking (WDTN) (2005).
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