
Simulating Multi-Million-Robot Ensembles

Michael P. Ashley-Rollman

Carnegie Mellon University

Pittsburgh, PA 15213

Padmanabhan Pillai

Intel Labs Pittsburgh

Pittsburgh, PA 15213

Michelle L. Goodstein

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract—Various research efforts have focused on scaling
modular robotic systems up to millions of cooperating devices.
However, such efforts have been hampered by the lack of
prototype hardware in such quantities and the unavailability of
accurate and highly scalable simulations. This paper describes
a simulation framework for such systems, which can model the
execution of distributed software and the physical interaction
between modules. We develop a scalable, multithreaded version
of an off-the-shelf physics engine, and create a software execution
engine that can efficiently harness hundreds of cores in a cluster
of commodity machines. Our approach is shown to run 108x
faster than a previous scalable simulator, and permit simulations
with over 20 million modules.

I. INTRODUCTION

An effective simulator is an invaluable tool in development

of control software for all kinds of robots. It is particularly

crucial for large-scale modular robotics systems, like Claytron-

ics [1]. The Claytronics project envisions millions of tiny, sub-

millimeter robotic modules, called Claytronic atoms or catoms,

that work together to form physical structures and shapes,

essentially creating a form of programmable matter (Figure 1).

Software development for Claytronics suffers from two critical

issues. First, the sub-millimeter hardware does not yet exist.

Furthermore, building this hardware will be very expensive

as it requires access to semiconductor fabrication processes.

It is, therefore, unlikely to be developed until software has

been demonstrated to make effective use of the hardware

in simulation. Secondly, although physically larger prototype

robotic modules have been built, they do not exist in sufficient

quantities to thoroughly test and execute the very large-scale

distributed algorithms needed to control a real Claytronics

system.

A good simulation framework can address both of these

issues by providing a means to develop software before any

actual hardware is available and perform large-scale tests and

demonstrations of distributed algorithms before hardware is

mass-produced. Furthermore, a good simulation framework

can substantially improve the development process. For ex-

ample it can allow the programmer to inspect a synchronous

snapshot of distributed state, inject test messages or faults,

and perform distributed debugging operations not possible on

the raw hardware. Simulations can also speed up the devel-

opment process by allowing a broad range of parameterized

experiments to be scripted and run to quickly sample a design

space.

Developing a good simulator is not an easy task. The

requirements of Claytronics introduce substantial additional

Fig. 1. The Claytronics vision for self-actuated shape-shifting materials
composed of millions of tiny robotic modules called catoms, or Claytronic
atoms. Catoms can compute, communicate, roll about their neighbors, and col-
lectively act as a single robotic entity. Simulating the execution of distributed
software on millions of catoms and their physical interactions requires a highly
scalable and fast simulation framework.

challenges. In particular, the Claytronics vision seeks to create

systems of many millions of interacting catoms, so any simula-

tor must in itself be highly scalable. It must be able to simulate

the execution of code and communications between a large

number of robotic modules, although cycle-accurate modeling

of processors is not generally necessary. Similarly, it must

model both the kinematic and dynamic physical interactions

between the modules, as well as their actuators and external

forces on the system. Since Claytronics deals with shape

change and motion, good visualization support is needed to

assess system behavior.

Different experiments may require varying levels of fidelity.

In particular, large-scale tests of distributed software may not

require accurate physics modeling, and can make do with

simple approximations. Similarly, an experiment that runs

for a very long time may not require online visualization,

instead making use of occasional dumps to produce coarser

images. Thus, a modular simulation framework that allows

a user to turn off particular components or switch between

various implementations is a desirable feature. Furthermore,

using only the required modules for a given experiment may

allow improved speed or scalability.

In the rest of this paper, we first look at related approaches

to modular robotic simulations, followed by an introduction

to the original complete simulator for Claytronics. Next, we

present how we parallelize and improve scalability of the

physics engine used in the simulator. Following this, we de-

scribe our new, cluster-parallel simulation framework. Finally,

we evaluate how well our system performs and finish with

conclusions and a description of future work.

II. RELATED WORK

The modular robotics community has created a number of

simulators in recent years, each with different design goals.

Some of these simulators are designed only for particular hard-

ware such as Proteo [2] or PolyBot [3] while others, such as

USSR [4], are designed to work for arbitrary hardware models.

Regardless, with a few exceptions, these simulators are limited

in the number of modules they can handle. The USSR team,

for instance, acknowledges that their framework may only

support hundreds of modules which makes it unsuitable for

our purposes.

There are two modular robotics simulators which claim

to support ‘large’ numbers of modules. SRSim [5] has been

used to run experiments on up to one million modules [6].

These experiments, however, simulated neither physics nor

distributed execution. The simulator has a feature allowing for

a centralized program to control the movements of the mod-

ules. While this permits handling large numbers of modules,

it does not allow one to run distributed algorithms on them.

DPRSim [7] can support simulating physics and distributed

software execution on tens to hundreds of thousands of mod-

ules. Although this still falls short of the tens of millions we

are targeting, it is the simulator upon which our work is based

and will be discussed in greater detail below. Both of these

simulators are limited in their capabilities because they can

only run and harness the resources on individual machines.

Beyond the field of modular robotics, sensor networks

and robotics provide some candidates for usable simulators.

Unfortunately, TOSSIM [8], the de facto sensor network

simulator, scales only to thousands of nodes and lacks any

physics support. A multitude of simulators are used in the

general robotics field. Most of these are limited to execution

on a single machine and fail our requirement of supporting

millions of modules. One notable exception is Microsoft

Robotics Developer Studio [9], which is designed to make

use of multiple machines. However, we are not aware of any

efforts to support large number of robots, and there is little

information on its scaling properties.

III. DPRSIM: THE ORIGINAL CLAYTRONICS SIMULATOR

The first complete simulator developed for Claytronics is

called DPRSim [7]. It is an integrated system that includes

code execution, physics, interactive visualization, debugging

support, and a GUI-based world builder to construct experi-

ment scenarios (Figure 2). Although intended to be scalable,

the primary goal of its development was to create a working

simulation platform that is sufficiently feature-rich to write

Fig. 2. Screenshot of the original DPRSim simulator for Claytronics. It
incorporates simulation of distributed code execution, physics, visualization,
a world builder, and interactive debugging support.

initial prototype applications for Claytronics. A command-line

version also exists, which permits scriptable batch simulation

experiments to be conducted.

The simulator framework has three main components that

execute application code, simulate physics, and perform visu-

alization respectively. The simulator takes two files as input:

one that describes parameters of the experiment, and a second

that describes the world state, essentially the starting positions

of the catoms to be simulated. The main loop of the simulation

is based on an abstract notion of simulation tick. In each tick,

these three components are executed in turn to progress the

simulation. We note that the tick is not directly associated

with a specific notion of time; the user is free to define this as

desired, for example to rationalize simulated time, forces and

accelerations with real units.

Each tick, the visualization system is invoked to produce

a representation of the world state. The visualizer is custom

code that uses direct calls to OpenGL libraries, and can make

use of accelerated hardware to speed up rendering. In addition

to positions of the robotic modules, the system also displays

debugging information in the form of colors, text callouts,

lines, arrows, and overlay displays. If specified, a binary

representation of the world state or a snapshot of the rendered

scene can be saved to disk as well.

The core of the physics subsystem is the Open Dynamics

Engine (ODE) [10], an open-source package simulating rigid

body dynamics. This is a commonly used system for game

development as well as many robotics simulation projects [11].

In addition to collision detection and integration of forces to

compute catom motion, DPRSim uses the physics subsystem

to efficiently determine proximity information. This is used

to control which robots can communicate, determine sensor

readings, and compute forces due to electromagnetic / electro-

static actuation (necessary because ODE does not have native

support for EM fields).

Fig. 3. An ensemble of catoms transforming from a solid cube into a trumpet using a distributed metamodule-based shape change algorithm. This ensemble
includes in excess of 165,000 modules. A complete video is available at http://www.cs.cmu.edu/∼claytronics/movies/trumpet-1920x1200.mp4. This simulation
is at the limit of what can be done with the original DPRSim, and requires over three weeks of processing time with physics disabled.

For software development, the most critical component is

the application code execution system. This supplies a set

of APIs that one may expect from an operating system or

low-level monitor on a tiny robotic module, including prim-

itives for communication, sensing, and controlling actuation

hardware. The system is designed for simulating distributed

algorithms as it creates and executes a separate instance of

user-supplied application code for each catom, modeling inter-

catom communications. Applications are implemented as a set

of code modules, which are C++ classes that supply methods

for initialization and cleanup, and a set of functions that are

executed every simulation tick. The application writer has

complete control over the computations performed in a tick;

this fits with the notion of an abstract simulation tick, and the

fact that cycle-accurate execution timings are not a goal of

this simulator.

Several substantial applications have been developed on

top of DPRSim, including a hierarchical localization algo-

rithm [12] and a metamodule-based scalable shape change

algorithm [13] (Figure 3). In addition, two distributed pro-

gramming languages, LDP [14] and Meld [15], have been

used on DPRSim — the former is an interpreted language

with a runtime implemented as a code module, while the latter

is a declarative logical language that compiles to C++ code

modules.

Although DPRSim has been a great success and a valuable

tool for Claytronics research, it is not quite capable of reaching

the goal of multi-million module simulations. The large, com-

plex, monolithic simulator has been faulted for being slow and

for consuming large amounts of memory. The research team

uses a special machine with 48GB of RAM to handle large

DPRSim experiments. In the rest of this paper, we develop a

new simulation framework to address these issues and enable

larger and faster simulations.

IV. SCALING UP PHYSICS SIMULATION

The Open Dynamics Engine (ODE) is an open source

physics engine for simulating rigid body dynamics. It is used

in many games and 3D simulation tools to provide physics

simulation support. In particular, DPRSim uses ODE heavily

to model the dynamics of how catoms interact with each other.

While ODE is fairly fast, it is implemented as sequential

code, and misses opportunities to take advantage of parallel

hardware for improved performance. Furthermore, it was not

designed for simulating millions of objects, and may bound the

scalability of any simulator that uses it. To allow simulations of

large systems of modular robots, we first focus on improving

ODE scalability and parallelizing its execution on multiple

processors.

Physics simulation with ODE uses discrete time steps,

which are divided into two components expressed in Figure 4:

a collision detection phase, and a time stepping phase. The

former uses positions, orientations, and shapes of objects to

determine which if any are touching, or are slightly embedded

(collided). These points of interaction are used to create

constraints that are added to a table of transient contact

constraints. The latter phase attempts to step forward a small

amount in simulated time. It uses a dynamics solver that ad-

justs positions and orientations of objects based on the current

velocities and angular velocities, and then goes through the

list of all constraints (including the contact constraints), and

iteratively adjusts the position and velocity data to minimize

constraint errors. The transient contact constraints are then

deleted, and the cycle is repeated for the next time step.

Profiling of ODE execution reveals that significant process-

ing time is spent in both collision detection and dynamics

solving functions. Additionally, memory usage for collision

detection was O(n2) in the number of objects that poses a

limit on scaling of ODE to more than 10
5 objects, despite

a small constant factor. Below, we show how we parallelize

both of these algorithms across multiple cores, while avoiding

costly locking and improving memory efficiency.

A. Parallel Collision Detection for ODE

In ODE, objects are stored in containers called spaces. Dif-

ferent implementations of spaces give the programmer a choice

of storage methods with varying computational complexity

for adding, removing, and checking for collisions among

the objects. The only container type that scales to a large

number of objects in ODE is the HashSpace, which is used in

DPRSim and is the focus of our efforts. The HashSpace simply

stores objects in a bidirectional linked-list, providing O(1) add

and remove complexity (this is possible because objects are

referenced by the pointer into this linked list).

To perform collision detection, the objects are first inserted

into a hash table using multi-scale 3D spatial binning. The

spatial bins at each scale are aligned, so a bin at one scale is

equal to exactly 8 bins at the next smaller scale, and is wholly

User Code Collision Detection

Main Loop(){
.

.

CollisionDetect();
.

.

.

CallDynamicSolver();
.

.

}
for each object

check for collision in bins

if(objects collide)

callBack();

Hash using

Multi-Scale Spatial Bins

callBack(){
.

.

}

Dynamics Solver

while (too much error)

for each constraint

adjust & reduce error

adjust positions

Add contact constraints

Fig. 4. Steps of physics simulation using ODE.

contained by exactly one bin at the next larger scale. Except

for very large objects, each object is placed into bins at the

smallest scale where the bin size is larger than the object’s

axis-aligned 3D bounding box. Due to alignment, each object

will overlap with up to 8 bins. For each of these bins, a hash

key is computed using the scale and position of the bin, and

an entry added to the hash table for the object. Hash collisions

are handled with chaining. The few very large objects (e.g., an

infinite ground plane) are handled separately and kept aside

in an oversized objects list.

Parallelizing the hash table construction using OpenMP

is fairly straightforward – each thread is simply assigned a

separate subset of the objects. The challenge is to manage

concurrent access to the hash table entries. Standard locks

proved to be too costly, and caused the threaded version to

run more than an order of magnitude slower than the original

code. Instead, we completely avoided software locks and

coded the updates to the hash entries and oversized list using

x86 atomic xchg and lock cmpxchg instructions. These

provide atomic read-modify-write access at the hardware level,

and are sufficiently lightweight that they can be used efficiently

in the inner loop of the hash table construction routine.

Once the hash table is constructed, ODE then checks each

object for collision against all objects in its assigned bins,

and bins at a larger scale. If a collision is detected, a user-

supplied callback function is called with the relevant object

ids as parameters. This callback mechanism adds a great deal

of flexibility to the system, and allows DPRSim to use ODE

collision detection for a number of other purposes, including

determining module neighbors and simulating interactions

between nearby electrostatic actuators. To avoid repeated

collision signals between a given pair of objects due to the

objects residing in multiple bins, ODE keeps track of collided

pairs using a bit matrix. Unfortunately, this has O(n2) space

complexity, and although each entry is just 1 bit, the table will

require many gigabytes of memory beyond 100,000 objects.

This limits the scalability of ODE, and for multi-threading,

the table may be a point of serialization.

Our implementations removes the O(n2) table and paral-

lelizes collision checking across multiple threads. Each thread

is assigned a subset of the objects, and proceeds to test each

object against others in its bins and in bins at a larger scale. In

addition we skip testing against other objects of the same scale

with greater ids, since, by symmetry, the iterations handling

these other objects will perform the test on these pairs. The

thread uses a local n-bit vector to avoid duplicate collision

tests. The vector is zeroed before processing each object and

used to maintain the set of objects that the current object has

already been compared to. As each object is only processed

once and only compared against objects with lower ids, each

pair of objects is checked exactly once for collision. This

implementation reduces the memory requirements to O(n),

and eliminates all locking in the inner loop. Of course, since

multiple threads are performing collision checking, the user-

provided callback function must be thread-safe.

Finally, all objects are tested for collision against those in

the oversized objects list. This is partially parallelized – the

threads that check each normal object against others in the

hash table also test against those in the oversized list in a

parallel fashion. Testing for collision among the objects in the

oversized list is not parallelized, as this list is typically very

small.

B. Parallel Dynamics Solver

The second major component of ODE is the dynamics

solver, that attempts to step the simulated world forward in

time, applying all forces to the objects while satisfying joint

and contact constraints. The positions and velocities (both

translational and rotational) of the objects, and the constraints

that relate these form a giant linear system that needs to be

solved to minimize errors (constraint violations). Rather than

attempt to solve this directly in an analytical fashion, ODE’s

quickstep method uses a form of numerical approximation that

iteratively reaches a low-error solution.

The implementation constructs two tables. The first lists

all object positions and velocities (both translational and

rotational). The second is a condensed form of the Jacobian

matrix that defines how the object velocities change with

respect to the constraints. Each row of this table corresponds

to one constraint, containing a set of weights that define a

linear combination of one or two objects’ velocity vector ele-

ments for the constraint. The numerical solver iterates through

the constraint table, computes the error for the particular

constraint, and then adjusts the object parameters slightly to

reduce the error. This process is repeated for a fixed number of

iterations or until convergence (i.e., the global error is reduced

below some threshold).

Because the inner loop of this solver performs writes to the

object table, care must be taken in parallelization. The loop is

very tight, so any additional instructions or locks will affect

performance significantly. One cannot simply partition work to

threads based on the object affected, as the constraints operate

on object pairs.

Despite this, we were able to parallelize the inner loop with

multiple OpenMP threads, each processing a different subset

of the constraints, with no locking. This is possible because

for this algorithm, we can safely read and write concurrently

from multiple threads. First of all, on x86 architectures, 64-bit

reads and writes of aligned data are guaranteed to be atomic

due to the fact that memory coherency is performed on cache-

line sized blocks. This means that the updates of individual

double-precision floating-point values in the object table will

be atomic, and a concurrent read will not see a partially

modified value. The entire set of parameters for the object,

on the other hand, are not atomically updated. However, this

does not matter for two reasons. With hundreds of thousands of

objects, and millions of constraints, it is exceedingly unlikely

that two threads will simultaneously process constraints that

access the same object. Furthermore, if such an event occurs,

a read of a partial update or an interleaved pair of updates is

not catastrophic. Since the algorithm only makes small adjust-

ments to the values in the table, these concurrent accesses can

only introduce an additional small numerical error, bounded

by the n-dimensional axis aligned cube defined by the previous

and new values of the object parameters. The error can be large

only if the differences between the values and the updates is

large, but this indicates that numerical instability is already

present in the system (e.g., extremely large forces, the step

size is too large, etc.). Therefore, with the atomicity provided

by the hardware, the extremely low likelihood of concurrent

access, and little negative effect of any such access, we are

able to parallelize the solver across threads with no explicit

concurrency management.

V. A CLUSTER-PARALLEL SIMULATOR

The most critical aspect of Claytronics simulation is the

ability to simulate the execution of code across a distributed set

of modules. Much of Claytronics software research attempts

to assess the behavior and scalability of algorithms across very

large ensembles. To permit simulations of systems that scale

beyond the resources available on individual machines, we

have designed a new simulator, called DPRSim2, that exploits

parallel execution across clusters of machines.

DPRSim2 is built using OpenMPI, an open-source MPI im-

plementation, and employs a master-slave architecture. Multi-

ple slave instances perform the bulk of the simulations. Each is

responsible for a subset of the simulated robotic modules and

executes the distributed software that runs on these modules.

A single master node coordinates the slave nodes, and handles

centralized aspects of the simulation, including initialization,

saving state / checkpoints to disk, and executing centralized

code. The architecture of DPRSim2 is illustrated in Figure 5.

DPRSim2 continues to use a discrete time model using an

abstract notion of simulation tick. Each tick has two phases.

In the first, only the master process runs, executing centralized

algorithms and performing any simulation I/O. At the end of

this phase, the master sends a message to each slave process,

��������	
��� ����������	��

Synchronize state

Parallel, distributed execution

on slave processes

Centralized execution

on master process

Execute centralized algorithms

Maintain centralized state

Load, save simulation data

Maintain state of catoms, code modules

Execute distributed code modules

Perform loose coordination, messaging

Launch worker processes

Initialize simulation

Synchronize state

Synchronize state

Shutdown simulation

Cycles between centralized

and distributed execution

Parallel instances

of slave processes

Fig. 5. Master-slave architecture of DPRSim2. Control flow between
centralized and distributed execution during each simulation tick is also
illustrated.

updating any simulation state and providing information to

coordinate slave activities. In the second phase, the slave

processes execute in parallel, simulating the execution of

distributed software on the robotic modules. Communications

between the simulated catoms is also handled in this phase.

Messages that need to be sent to modules in a different slave

process are aggregated and sent as a single MPI message to

the appropriate slave. The master is used to coordinate this

activity, so only the necessary messages are sent, rather than

a complete O(n2) message exchange. At the end of the tick,

the slaves inform the master of any state changes and pending

inter-slave messages. Once the master receives tick completion

messages from all slaves, it starts its execution for the next

tick. The lower portion of Figure 5 illustrates the control flow

cycle between centralized and distributed execution that occurs

in each simulation tick.

DPRSim2 has been architected with speed and scalability in

mind. Many of the integrated features of the original simulator

have been removed from the core system. In particular, physics

processing and visualization, two very costly components in

terms of memory use and execution time, have been removed

from the core simulator. Full ODE physics is available as an

expansion module for those programs that require it, while

other simulations can be run with simple magic movements

to permit fast execution for those that don’t require full

physics. Visualization is relegated to external tools. However,

the critical ability to execute both distributed software as well

as centralized algorithms has been maintained.

DPRSim2 provides a modular, extendable framework for

implementing custom simulation components and distributed

software to run on simulated catoms. This framework is

implemented as a hierarchy of C++ classes, and expands

greatly on the concept of a CodeModule found in the original

DPRSim simulator. Three classes of software extensions are

defined: SimModules, CodeModules, and Components.

• SimModules are present only in the master process and

are intended to provide additional functionality to the

simulator. Since our parallel physics outlined earlier is

limited to shared-memory systems, we incorporate it in

DPRSim2 as a SimModule. Although visualization is

now performed by a separate tool, we have defined a

supporting SimModule that can send compressed updates

to the external tool to show the current state of a running

simulation.

• CodeModules reside on the slave processes, and are

intended to define the software that executes on simulated

catoms. The distributed shape change software we use in

the evaluation is implemented as a CodeModule.

• Components run in both the master and slave context,

and synchronize internal state between these contexts in

each simulation tick. These are primarily intended to

define the low-level services available on a catom. For

example, inter-catom messaging service is implemented

as a Component.

All of these categories of software modules can be defined

as either runnable or nonrunnable. Runnable modules have a

defined execution method that is invoked every simulation tick.

Nonrunnable modules are passive and export a set of functions

that are invoked on demand by other modules. DPRSim2

provides a clean inter-module access and calling interface that

facilitates building and using nonrunnable service modules. In

addition, DPRSim2 allows us to define multiple implemen-

tations of service modules that provide a common interface,

and select the optimal version to use for a particular simulation

run.

Finally, all categories of modules can also be defined as

shared or not shared. The non-shared modules are instantiated

for every catom, and are useful for defining the software that

runs on them. Shared modules, instantiated once per slave

machine, are used for centralized algorithms, including most

of the simulation extensions, such as physics.

The variety of software module classes and the extensibility

of the core simulator allow DPRSim2 runs to be very stream-

lined, with just the components necessary for a particular

simulation. This aspect contributes to the scalability of the

system and allows us to run larger and faster simulations.

VI. EVALUATION

We discuss the effectiveness of our improvements upon

both the original DPRSim and the ODE Physics engine.

These are discussed separately because simulating physics

still dominates the performance of the system when ODE is

used. For simulations where magic movement is sufficient, the

effectiveness of our enhancements is more substantial. Finally,

we discuss the effect that these improvements have had on the

size of the simulations that we are able to run.

A. Physics Simulations

As described in Section III, the ODE physics engine is used

for multiple purposes in a typical Claytronics simulation:

1) detecting neighboring catoms (neighbors)

0

5000

10000

15000

20000

25000

30000

35000

40000

single 1 2 4 6 8

R
u

n
ti

m
e

 (
in

 m
s)

of cores

neighbors

magnets

collision

dynamics

Fig. 6. This graph shows the running time of 1 ’tick’, averaged across 10
runs. The runtime is broken up into 4 categories. The experiments were run
on a machine with Dual Intel E5520 CPUs totalling 8 core @2.27GHz with
16GB of RAM.

0

2

4

6

8

10

12

single 1 2 4 6 8

S
p

e
e

d
u

p

of cores

dynamics

collision

magnets

neighbors

Fig. 7. This graph shows the speedup of each portion of physics run for a
single tick, averaged across 10 runs. The experiments were run on a machine
with Dual Intel E5520 CPUs totalling 8 core @2.27GHz with 16GB of RAM.

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

S
p

e
e

d
u

p

of cores

Fig. 8. This graph shows the speedup of the dprsim2 simulator running the
trumpet experiment (shown in Figure 3), averaged across 5 runs. The experi-
ments were run on 8 core machines with Dual Intel E5440 CPUs@2.83GHz
with 8GB of RAM.

Fig. 9. An ensemble of catoms changing shape from a solid rectangular prism to the new Gates-Hillman Complex at Carnegie Mellon. This ensemble
includes in excess of 1.6 million modules. It required two days of processing on 600 cores, and is an example of the kind of simulation that can now be
routinely performed using DPRSim2. A complete video is available at http://www.cs.cmu.edu/∼claytronics/movies/gates-color2.mp4

2) computing magnetic forces between catoms (magnets)

3) colliding catoms (collision)

4) computing catom motions (dynamics)

The breakup of time spent on these different aspects of

physics are shown in Figure 6 for the original and our parallel

implementation of ODE. The first three (neighbors, magnets,

and collision) aspects rely on the collision detection methods

of ODE, described in Section IV-A, and account for over 80%

of the time spent in the original physics engine. In our multi-

threaded version, they account for only about 50% of the time

in the engine on account of the collision detection attaining

better speed-ups than the dynamics solver.

The speed-ups for the different portions are shown in

Figure 7. Notably, the multi-threaded version of collision

detection is faster with a single thread than the original single-

threaded version. The reason for this is the reduction of an

O(n2) bit array to an O(n) bit array in the collision detector,

as described in Section IV-A. In particular, given that n

is 250,000 in this example, this change greatly reduces the

memory that needs to be touched, improving the runtime. The

magnets portion benefits even more from this fix because the

runtime is based on the number of magnets — as each catom

has multiple magnets, there are substantially more magnets

than catoms.

The dynamics solver only manages an approximate 2X

speedup, even with 8 cores. We believe this is due to its

tight inner loop with large number of noncontiguous memory

references. This loop is likely to be memory bound, so

parallelizing on multiple threads has limited gains.

The overall speedup of ODE for these simulations is 4.75X

on 8 cores. This is adequate to run much larger simulations

than before.

B. Distributed Software Simulations

Running on 80 cores DPRSim2 ran the large trumpet

simulation in Figure 3 over 108X faster than DPRSim. The

DPRSim2 simulator runs faster using a single thread than

the original DPRSim simulator due to the modular architec-

ture that allows executing simulations with only the required

portions of the simulator enabled. Furthermore, the simulator

itself scales up very well, as shown in Figure 8, achieving

speedups of 66X on 104 cores. The limiting factor here is not

load on the master node as one might expect. In the absence of

physics, the master node is still very much idle. The limitations

on scaling stem from an imbalance in the workload.

The simulator is capable of allocating the same number

of catoms to each core, but not all catoms require the same

amount of work to process. Unfortunately, processing each

catom requires a variable amount of work dependent upon

the program running on them. Without understanding the pro-

grams, it is not clear how to accurately balance the workload.

The varying types of workloads further complicates matters.

Some programs are very heavy on computation and the most

important part of allocation is ensuring the cores have equal

numbers of busy catoms. Other programs are far more message

heavy and benefit more from putting adjacent catoms on the

same core to minimize messaging overhead. It is not clear that

there is a single optimal allocation strategy as we have found

that some do well for certain programs and relatively poorly

for others.

C. Experiment Size

The primary goal of this work was to increase the size

of experiments that we can plausibly run. In this objective,

we have succeeded. The original DPRSim was capable of

running experiments (without physics) with 10s of thousands

of catoms over a reasonable time frame of hours or days and

up to a maximum size of 100s of thousands of catoms (on a

sufficiently memory rich machine) over the course of weeks,

such as the example shown in Figure 3. With DPRSim2, these

numbers increase by at least two orders of magnitude. We are

able to routinely run experiments with 100s of thousands or

millions of catoms, such as the one shown in Figure 9. We have

demonstrated experiments in excess of 20 million catoms and

have no reason to believe we have hit the limit of the system.

For experiments with physics, the limitations are more

significant. Even with our enhancements to ODE, experiments

with 100s of thousands of catoms can take a very long time

to run. With the improvements to memory utilization, experi-

ments with millions are now possible but not yet practical.

VII. CONCLUSIONS AND FUTURE WORK

We have created and presented here a simulation framework

that efficiently harnesses hundreds of cores, permitting us to

routinely run (algorithmic) experiments with millions of sim-

ulated robotic modules. These experiments are two orders of

magnitude larger than what was previously possible, and have

greatly advanced the Claytronics project. Furthermore, we

expand the capabilities of the ODE dynamics engine to permit

larger experiments with physics. While these experiments can

now be run with millions of modules, such experiments run

very slowly. We plan to investigate the possibility of further

improving our parallel physics to allow it to scale beyond

shared memory systems, and harness the computation power

of clusters, as we have done with the rest of DPRSim2. This

will permit routine future simulations with distributed code

execution and full physics interactions among tens of millions

of robotic modules.

We have made our parallel simulation framework avail-

able on the Claytronics website: http://www.cs.cmu.edu/
∼claytronics.

REFERENCES

[1] S. C. Goldstein, T. C. Mowry, J. D. Campbell, M. P. Ashley-Rollman,
M. De Rosa, S. Funiak, J. F. Hoburg, M. E. Karagozler, B. Kirby, P. Lee,
P. Pillai, J. R. Reid, D. D. Stancil, and M. P. Weller, “Beyond audio and
video: Using claytronics to enable pario,” AI Magazine, vol. 30, no. 2,
July 2009.

[2] Palo Alto Research Center, http://www2.parc.com/spl/projects/
modrobots/lattice/proteo/index.html.

[3] Palo Alto Research Center, http://www2.parc.com/spl/projects/
modrobots/chain/polybot/simulations/index.html.

[4] D. Christensen, D. Brandt, K. Stoy, and U. Schultz, “A unified simulator
for self-reconfigurable robots,” in Intelligent Robots and Systems, 2008.

IROS 2008. IEEE/RSJ International Conference on, sept. 2008, pp. 870
–876.

[5] R. C. Fitch, “Heterogeneous self-reconfiguring robotics,” Ph.D. disserta-
tion, Dartmouth College, Hanover, NH, USA, 2005, chair-Rus, Daniela.

[6] R. Fitch and Z. Butler, “Million module march: Scalable locomotion
planning for large self-reconfiguring robots,” in Robotics: Science and

Systems, Workshop on Self-Reconfigurable Robots, 2006.
[7] “The physical rendering simulator (dprsim),” http://www.pittsburgh.

intel-research.net/dprweb/.
[8] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and

scalable simulation of entire tinyos applications,” 2003.
[9] “Microsoft robotics developer studio,” http://www.microsoft.com/

Robotics/.
[10] “Open dynamics engine (ode),” http://www.ode.org.
[11] “Openrave - a planning environment for autonomous robotics,” openrave.

programmingvision.com/.
[12] S. Funiak, P. Pillai, M. P. Ashley-Rollman, J. D. Campbell, and S. C.

Goldstein, “Distributed localization of modular robot ensembles,” Inter-

national Journal of Robotics Research, 2008.
[13] D. Dewey, S. S. Srinivasa, M. P. Ashley-Rollman, M. De Rosa, P. Pillai,

T. C. Mowry, J. D. Campbell, and S. C. Goldstein, “Generalizing
metamodules to simplify planning in modular robotic systems,” in
Proceedings of IEEE/RSJ 2008 International Conference on Intelligent

Robots and Systems IROS ’08, Nice, France, September 2008. [Online].
Available: http://www.cs.cmu.edu/∼claytronics/papers/dewey-iros08.pdf

[14] M. De Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and
P. Pillai, “Programming modular robots with locally distributed
predicates,” in Proceedings of the IEEE International Conference

on Robotics and Automation ICRA ’08, 2008. [Online]. Available:
http://www.cs.cmu.edu/∼claytronics/papers/derosa-icra08.pdf

[15] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A declarative approach to programming ensembles,”
in Proceedings of the IEEE International Conference on Intelligent

Robots and Systems (IROS ’07), October 2007. [Online]. Available:
http://www.cs.cmu.edu/∼claytronics/papers/ashley-rollman-iros07.pdf

