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However, the MCS frequency is significantly underestimated 

in the central US during late summer. We discuss the origin 

of this frequency biases and suggest strategies for model 

improvements.
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1 Introduction

Deep convection is a common ingredient of many atmos-

pheric extreme events and causes weather-related hazards 

globally (e.g., Doswell III et al. 1996; Kunkel et al. 2012). 

Deep convection causes major societal impacts due to flood-

ing, wind gusts, hail, tornadoes, landslides, and debris flows. 

It is essential for hydrology since it is the dominant source 

of precipitation in the tropics, subtropics, and mid-latitudes 

during summertime (Yang and Smith 2008). For example, 

half of the summertime rainfall in the US plains originates 

from deep convective systems (Jiang et al. 2006).

State-of-the-art climate models are not able to represent 

convective precipitation explicitly because of their coarse 

grid spacing [larger than 12/100 km in regional/global cli-

mate models; Taylor et al. (2012)/Jacob et al. (2014)]. These 

models rely on convection parameterization schemes that are 

major sources of errors and uncertainties (e.g., Déqué et al. 

2007). Recently, increasing computational resources made 

convection-permitting climate simulations (CPCSs) feasible 

that operate on horizontal grids < 4 km (e.g., Prein et al. 

2015) and enable the explicit simulation of deep convection.

An advantage of CPCSs is their ability to improve the 

simulation of the convective precipitation diurnal cycle [see 

Prein et al. (2015) for a review]. This demands a realistic 
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simulation of the evolution and propagation of deep convec-

tion. Our 4 km grid spacing model is too coarse to realisti-

cally simulate single cell thunderstorms, however, Mesoscale 

Convective Systems [MCSs, Houze (2004)] that consist of 

a complex of thunderstorms that become organized, can be 

captured. In North America, these storms include squall 

lines (Rotunno et al. 1988), which are storms arranged in 

a line along a evaporatively generated near-surface cold 

outflow and Mesoscale Convective Complexes with a large 

circular cloud shield (Maddox 1980). Despite the advantages 

of CPCSs, a kilometer scale horizontal grid spacing can only 

resolve large-scale convective motions and has been shown 

to result in large convective cells that do not entrain midlevel 

air (Bryan and Morrison 2012). A more realistic simulation 

of turbulent entrainment and up/down drafts would demand 

reducing the grid spacing by an order of magnitude, which 

is not affordable with current computer resources.

To identify MCSs in observations and our simulation we 

use a new variation of afeature-based verification method 

called the method for object-based diagnostic evaluation 

(MODE) (Davis et al. 2006, 2009) that incorporates the 

time dimension [MODE time-domain or short MTD; Clark 

et al. (2014)]. MTD is part of the Developmental Testbed 

Centers (DTC) Model Evaluation Tools (MET; the current 

version is available online at http://www.dtcenter.org/met/

users/downloads/). MTD outputs all basic statistics included 

in MODE such as object size, location, and orientation, as 

well as information on the entire life cycle of objects includ-

ing speed, changes in size and intensity, lifetime, and track 

length.

MODE has been used successfully to detect biases in 

short-term weather forecasts (e.g., Davis et al. 2006, 2009; 

Clark et al. 2012; Mittermaier and Bullock 2013). It was 

reported that coarse-resolution forecast models produce too 

many large rain areas and underestimate rainfall intensities 

(e.g., Davis et al. 2006; Wernli et al. 2008). Convection-

permitting weather forecasts show substantial improvements 

over coarse-resolution forecasts and reduce the size and 

intensity biases (Wernli et al. 2008; Davis et al. 2009). Simi-

lar improvements are found in CPCSs (Prein et al. 2013a; 

Brisson et al. 2015).

Using a feature-tracking algorithm, Chang et al. (2016) 

evaluated a 12 km resolution climate model simulation dur-

ing June, July, and August (JJA) over the US and found simi-

lar model biases as in low-resolution weather forecasts, i.e., 

an underestimation of hourly precipitation intensities and 

an overestimation of the rainfall area. Using the MTD track-

ing algorithm, Clark et al. (2014) showed that convection-

permitting weather forecasts are able to capture the spatial 

distribution, lifetime, and the diurnal cycle of MCSs but 

underestimate their translation speed.

In this manuscript we will assess if CPCS are able to sim-

ulate MCSs in a similar quality than short-term numerical 

weather forecasting models. The goal is to understand if 

CPCS can be used to analyze the impact of climate variabil-

ity and climate change on North American MCSs.

2  Data and methods

2.1  Model setup and observational data

The Weather Research and Forecasting (WRF) model Ver-

sion 3.4.1 (Skamarock and Klemp 2008) is used to down-

scale the European Centre for Medium-Range Weather Fore-

cast Interim Reanalysis (ERA-Interim) (Dee et al. 2011) over 

large parts of North America to 4-km horizontal grid spac-

ing (Liu et al. 2016; see Fig. 1). The model domain has a size 

of 1360 × 1016 grid points and 51 stretched vertical levels 

topped at 50 hPa. The simulation covers 13 water years start-

ing in October 2000 and ending in September 2013.

The main physics packages used in our WRF simulation 

are the Thompson aerosol-aware microphysics (Thompson 

and Eidhammer 2014), the Yonsei University (YSU) plan-

etary boundary layer scheme (Hong et al. 2006), the Rapid 

Radiative Transfer Model (RRTMG) (Iacono et al. 2008), 

and the improved Noah-MP land surface model (Niu et al. 

2011). Additionally, an upgraded lake water temperature 

treatment is implemented and spectral nudging (von Storch 

et al. 2000; Miguez-Macho et al. 2004) of temperature, 

horizontal wind speed, and geopotential height is applied. 

Only wavelengths larger than ~ 2000 km above the planetary 

boundary layer are nudged with a moderate nudging strength 

(coefficient) corresponding to an e-folding time of about 6-h 

(Liu et al. 2016). The nudging ensures that synoptic-scale 

Fig. 1  Filled contours showing the model orography in the simula-
tion domain (gray area) and the evaluation region (colored area). The 
red polygons show the outlines of the investigated climate regions. 
The computational domain contains 1360 × 1016 × 51 grid cells

http://www.dtcenter.org/met/users/downloads/
http://www.dtcenter.org/met/users/downloads/
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features are similar to the observations while sub-synoptic-

scale processes such as the upscale growth and organization 

of MCSs can freely evolve. The final model setup is based 

on a series of sensitivity test that incorporated model physics 

(Liu et al. 2011, 2016) and model grid spacing (Ikeda et al. 

2010; Prein et al. 2013b). Additional information about the 

simulation can be found in Liu et al. (2016).

This simulation was evaluated in previous studies that 

found overall good performance in capturing the annual/

seasonal/sub-seasonal precipitation and surface temperature 

climatology except for a summer dry and warm bias in the 

Central US, wet biases in the Southeast and Southwest dur-

ing summer, and a dry bias in the Deep South (Liu et al. 

2016). JJA hourly precipitation extremes, defined as the 

99.95 percentile of dry and wet hours, are underestimated 

by ~ 30 % except along the Gulf and Atlantic coastline (Prein 

et al. 2017).

For the model evaluation, we use the National Centers for 

Environmental Prediction (NCEP) stage-IV analysis (Fulton 

et al. 1998; Nelson et al. 2016) that provides hourly precipi-

tation on a 4-km Contiguous United States (CONUS) grid 

based on radar and gauge reports. Since stage-IV has qual-

ity issues over the western half of the CONUS, over ocean 

regions, and prior to 2002 [e.g., Nelson et al. (2016)] we 

decided to constrain the analysis to land regions east of the 

Continental Divide for the period January 2002 to Septem-

ber 2013 (see colored area in Fig. 1). For the MTD analysis, 

we regrided the simulated precipitation field to the stage-IV 

grid by conserving total precipitation. Then we applied the 

mask shown in Fig. 1 to the stage-IV and the modeled hourly 

precipitation. As a final step, we masked all grid cells in 

the model data that are flagged as missing in stage-IV. We 

performed this data preprocessing to minimize the effect 

of errors and limitations of the observations on our results.

2.2  MODE time domain (MTD)

MTD automatically identifies objects in a spatial field and 

tracks them over time. MCSs can be identified in multi-

ple atmospheric fields such as mid-tropospheric vorticity 

(Wang et al. 2011), cloud-related fields such as cloud top 

temperatures (Feng et al. 2016), or precipitation (Clark et al. 

2014). Here we use hourly precipitation because of its high 

socioeconomic relevance and the availability of the stage-

IV dataset that allows a sound model evaluation. Note that 

MCS characteristics depend on the investigated variable. 

For example, tracking MCS precipitation will typically lead 

to shorter MCS lifetimes than tracking mid-tropospheric 

vorticity.

In the first step, MTD smooths hourly precipitation fields 

by averaging over all grid cells within a user-defined squared 

smoothing radius. The smoothing makes the precipitation 

areas more contiguous and helps to filter out small, weak 

storms that are smaller than the effective resolution (four 

to eight times the horizontal grid spacing) of the simula-

tion. The second MTD step involves the application of a 

user-defined threshold to the smoothed field. All precipita-

tion values below this threshold are masked. The smoothing 

and thresholding result in only identifying MCSs whereas 

smaller storms such as airmass convection and supercell 

thunderstorms that are not well resolved by the model, are 

masked. In the third step, contiguous precipitation regions 

are identified and are assigned to an identifying number. 

Contiguous precipitation areas are defined as grid cells that 

are adjacent in space and time (plus or minus one time step). 

A more detailed description of MTD can be found in the 

MET Users Guide (http://www.dtcenter.org/met/users/docs/

users_guide/MET_Users_Guide_v6.0.pdf).

Most results presented in this study are derived by using 

a smoothing radius of eight grid cells (~ 32 km) and a 

threshold of 5 mm h−1 on hourly precipitation accumula-

tions (except otherwise noted). To test the sensitivity of 

our results to the MTD settings we repeated all analyses 

with a threshold of 2.5 mm h−1 and smoothing radii of 

16 and 32 grid cells. The impacts of these settings are dis-

cussed and examples are shown where needed. In general, 

increasing the smoothing radius and the threshold leads to 

fewer and smaller objects. As an additional constraint, we 

only analyze 3D objects that have a minimum volume of 

2000 grid cells with precipiation above the threshold, which 

results in the detection of moderate to large-scale MCSs that 

have a lifetime of several hours up to days (e.g., a lifetime of 

10 h and an average area of 3200 km2,  15 × 15 grid cells). 

Because of limited computational resources, we had to per-

form MTD analyses on a monthly basis. This means that an 

object that begins on the last day of a month and continue 

into the first day of the next month is treated as two separate 

objects. The effect on our results should be nonsystematic 

and nonsignificant because the truncation only occurs every 

~ 700 time steps (hours in a month) whereas the lifetime of 

MCSs is on average ~ 10 h.

Since we are evaluating climate simulations we do not 

demand that individual MCSs are correctly captured by our 

model. Instead, we assess the model’s ability to reproduce 

the observed MCS climatology in four climate regions: Mid-

west, Southeast, Mid-Atlantic, and Northeast (Fig. 1). An 

MCS is assigned to the climate region where it spends more 

than half of its lifetime in terms of location of the MCS 

center.

An example MTD analysis of an observed and modeled 

MCS that occurred on 12 March 2007, in Texas is shown in 

Fig. 2. The maps show the MCS at different stages of its life-

time from one hour after its origin to its dissolution more than 

20 h later (Fig. 2a, c). The system originated from multiple 

isolated small cells. After 6 h the scattered convective cells 

merged into a single object. At hour 21 the MCS weakened 

http://www.dtcenter.org/met/users/docs/users%5fguide/MET%5fUsers%5fGuide%5fv6.0.pdf
http://www.dtcenter.org/met/users/docs/users%5fguide/MET%5fUsers%5fGuide%5fv6.0.pdf
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substantively and dissolved into multiple small cells. The 

model captures the main characteristics of the MCS well. 

Since we are investigating a climate simulation the aim is 

not to reproduce the observe storm perfectly but to show the 

model’s ability to reproduce realistic MCS dynamics and pre-

cipitation structures. The three-dimensional representation of 

the MCS in Fig. 2b, d further highlights the similarity of the 

observed and modeled system and the capability of MTD in 

tracking complex MCSs. A 3-dimensional animation of the 

observed and simulated MCS can be found in the electronic 

supplement.

3  Results

3.1  MCS frequency, location, and movement

All JJA observed and modeled MCS tracks between 2002 

and 2013 are shown in Fig. 3a, b. The model is able to cap-

ture the observed gradient of maximum MCS precipitation 

with frequent intense MCSs (above 90 mm h−1 maximum) 

along the Gulf and southern Atlantic Coast region and a 

decrease in frequency and intensity inland and towards 

the north. The large number of MCSs allow us to perform 

Fig. 2  An example for tracking an MCS with MTD that occurred on 
12 March 2007, in Texas. Shown are observed (a) and modeled (c) 
hourly precipitation at the first, sixth, 11th, and 21st hour after the 
MCS genesis (light red to dark red contours detected by MTD in a, 
c). The MTD results of the temporal and spatial development of the 

observed (b) and modeled (d) MCS precipitation shows a complex 
system of convection organization and dissolution. The arrow in the 
upper right corner (a, c) shows the direction of view in b, and d and 
the gray shaded areas on the x–z/y–z plane shows the projection of the 
MCS to the longitude/latitude axis
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statistically robust analyses. The simulation generally under-

estimates the MCS track density in the Central U.S. by up 

to − 70 % (Fig. 3c–e). It overestimates the track density by 

more than 90 % along the Southeast coast, the Appalachian 

region, and parts of the border to Canada. The overestima-

tion can partly be attributed to deficiencies in the observa-

tional dataset since precipitation systems in the mountains 

are not well captured with US radars and the merging of 

Canadian radar data into the stage-IV dataset is error prone 

(Zhang et al. 2016). The biases in JJA track density are 

closely related to biases in mean precipitation, which is up 

to 50 % underestimated in the central US and 50 % overes-

timated in the Southeast and Mid-Atlantic region (Liu et al. 

2016). The model performance in simulating MCS frequen-

cies has a distinct annual cycle Fig. 4. The central US low 

bias emerges during July and August whereas biases in May 

and June are moderate. Frequency biases in the Southeast are 

always positive but also intensify in late summer.

Sensitivity analysis on the effects of the MTD thresh-

old and smoothing radius are performed (Fig. 5). The basic 

bias patterns are similar for all setups but the biases clearly 

intensify if either the higher (5 mm h−1) threshold or a larger 

smoothing radius is used. This suggests that extremely 

strong and large MCSs are underrepresented in the central 

US and overestimated along the Gulf and Atlantic coast. The 

combination of a 5 mm h−1 threshold and a 128 km smooth-

ing radius results in very few large and intense MCSs that 

do not allow robust statistical analysis because of their small 

sample size (Fig. 5f).

There is a pronounced diurnal cycle in the occurrence 

of observed MCSs with a nighttime maximum in the cen-

tral US and daytime/afternoon maxima in coastal regions 

(Fig. 6a–d), consistent with the observed variation in pre-

cipitation (Dai et al. 1999). The model has a little noctur-

nal MCS activity in the central US but with a substantially 

lower amplitude (Fig. 6f, j). MCS amounts are overestimated 

along the Atlantic coast, especially in the Mid-Atlantic 

region during the afternoon (Fig. 6d, h, l). The pattern cor-

relation coefficients between the observed and simulated 

MCS density are highest in the afternoon (0.74; Fig. 6d, h, 

l) and lowest during the night (0.6; Fig. 6b, f, j). Model and 

observed MCS frequencies agree better when the diurnal 

cycle of occurrence probability is compared (see Fig. A1) 

since systematic frequency biases are not accounted for. This 

shows that the model is able to reproduce the phase of the 

MCS frequency diurnal cycle but has biases in capturing its 

amplitude.

The average MCS translation direction and speeds 

are comparable between the observation and simulation 

Fig. 3  Lines show observed (a) and modeled (b) MCS tracks in JJA 
and their color-coding corresponds to the MCS’s maximum hourly 
precipitation. The insets (red box in a, b) show tracks in the central 

US Relative differences in the MCS track densities (modeled minus 
observed MCSs crossing a 100 km × 100 km region) are shown in c 
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Fig. 4  As Fig. 3 but results are shown for MCSs in May, June, July, and August separately (left to right column)

Fig. 5  As Fig. 3c but for MTD smoothing radius set to 8, 16, and 32 km (left to right) and the hourly precipitation threshold to 2.5 mm h−1 and 
5 mm h−1 (top down)
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(Fig. 7a, b). Observed MCSs move eastward with veloci-

ties of ~ 40–50 km h−1 in the northern part of the study 

region (above ~ 40°N). The MCS movement displays a 

southward component east of ~ 90°–W. In the southern 

part of the domain (below ~ 40°) MCSs move slower with 

typical velocities below 30 km h−1. Over Texas, MCSs 

propagate southeast while east of the Appalachians MCSs 

move towards the northeast. The Appalachians are a transi-

tion region between the fast southeastward moving MCSs 

on the western side and the slower northeast-moving sys-

tems on the eastern side. Simulated MCSs propagate faster 

in the Northeast (at ~ 44° N, ~ 72° W) and the northeast 

movement east of the Appalachians is less pronounced (at 

~ 37° N, ~ 82° W).

The hot-spots of MCS genesis are the found in the cen-

tral U.S. and the eastern parts of South and North Carolina 

(Fig. 7c, d). The hot spot the eastern part of the Carolinas 

is captured in the simulation but the genesis frequency is 

overestimated. The missing genesis hot spot in the central 

US is clearly related to model deficiencies.

The simulated and observed number of MCSs are sim-

ilar during winter and spring in the Midwest (Fig. 8b). 

However, simulated MCS occurrence rapidly decreases 

from June to July whereas observed MCS does not (see 

also Fig. 4). In July and August, the modeled MCS counts 

are 75 % too low compared to the observations. A conse-

quence of this bias is a significant underestimation of mean 

precipitation during July, August, and September (Fig. 8f; 

see also Liu et al. (2016)). Also, the ratio between MCS 

precipitation to total precipitation is too low (Fig. 8j). In 

the other regions, the differences are smaller and generally 

within the inter-annual variability. Results derived with 

a precipitation thresholds of 2.5   mm h−1 and different 

smoothing radii are similar.

Fig. 6  MCS density in areas of 100 × 100 km for all MCSs between 
0–6 UTC (evening), 6–12 UTC (night), 12–18 UTC (morning), and 
18–24  UTC (daytime) from left to right. Shown are the observed 

(a–d) and modeled (e–h) MCS density and their difference (i–e). The 
Spearman correlation coefficients (SP) is shown above the difference 
maps (i–l)
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3.2  MCS characteristics

Hourly precipitation snapshots of the eight most intense 

MCSs during JJA in the Midwest are shown in Fig. 9. The 

simulated MCSs (Fig. 9k–r) have realistic features, such as 

shape, size, and intensity, that are visually not distinguish-

able from observed MCSs (Fig. 9c–j). Note that this is a cli-

matological viewpoint rather than a direct comparison as the 

observed and modeled MCSs occurred on different days. All 

modeled and observed MCSs reach precipitation maxima 

beyond 100 mm h−1. The observed and modeled size of the 

area where 60 mm h−1 is exceeded is on average 400 km2. 

Averaging the precipitation of the 40 observed MCSs with 

highest maximum hourly precipitation indicates that MCSs 

typically have an oval shape with the main axis zonally 

rotated by 30° (Fig. 9a). Note that parts of this shape can 

be attributed to the prevailing eastward movement of MCSs 

(see Fig. 7). The precipitation composit of the 40 most 

intense modeled MCSs is more circular and its main axis is 

40° and therefore slightly more tilted than in the observa-

tions. The composite mean intensities and the covered area 

are similar. MCss typically reach their maximum hourly rain 

rate during the first half of their lifetime after a phase of 

rapid intensification and organization of convection.

A more systematic comparison between the the modeled 

and observed MTD MCS characteristics in the four climate 

Fig. 7  Average observed and modeled (a, b) direction and speed of 
the MCS movement in 2° × 2° regions indicated by the direction and 
length of arrows, respectively. The arrow color shows the mean speed 
of the MCSs. e.g., a short red arrow indicates MCSs that are fast but 

move in different directions while a blue long arrow shows slower 
MCSs that move in the same direction. c and d show the observed 
and modeled annual average number of MCS genesis in areas of 100 
× 100 km
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regions is shown in (Fig. 10). The size of the MCSs is very 

well captured especially in the Southeast (Fig. 10a) and Mid-

west region (Fig. 10b). Modeled MCSs tend to be too small 

in the Mid-Atlantic and Northeast region (Fig. 10c, d). How-

ever, some MCSs in the stage-IV observational dataset are 

spuriously large and intense in these regions and are likely 

erroneous. The typical precipitation areas have the size of 

small US states (e.g., Connecticut or Vermont; 10 000 to 

20 000 km2).

The translation speed of the MCSs (movement of the 

MCS center from one hour to the next) is remarkably well 

simulated and no significant differences can be detected 

(Fig. 10e–h). The fastest MCSs occur in the Midwest region 

where propagation speeds of up to 100 km h−1 are observed 

and modeled while the slowest MCSs occur in the South-

east. The good agreement can partly be explained by the use 

of spectral nudging to observed large-scale flow patterns 

but are also related to the correct simulation of mesoscale 

dynamics as we will show later.

The simulated maximum MCS hourly precipitation 

is slightly overestimated but the differences are not sig-

nificant except for the Southeast and Mid-Atlantic region 

(Fig. 10i, k). Prein et al. (2017) showed that the model 

underestimates hourly extreme precipitation, defined as the 

99.95 percentile of dry and wet hours, by up to 30 % in the 

central US during summer. The advantage of the feature 

based evaluation presented here is that the individual com-

ponents of the bias can be identified. The low bias shown 

in Prein et al. (2017) is caused by an underestimation of 

the frequency of MCSs. If maximum hourly precipita-

tion from MCSs is evaluated the model overestimates the 

intensities by 5 % to 25 %. This is in the range of obser-

vational uncertainties that are typically ~ 20 % caused by 

rain gauge under-catch (Duchon and Essenberg 2001).

The distribution of the MCS mean (Fig. 10m–p) and 

total precipitation (Fig. 10q–t) is also well captured by the 

model. The largest deviations occur in the Mid-Atlantic 

and Northeast region. Biases in the total precipitation are 

related to the biases in the MCS size (compare Fig. 10c, 

d with s, t). The model can simulate realistic MCSs with 

total precipitation values of up to 100 000 m3 s−1, which is 

equivalent to half of the average discharge of the Amazon 

river or six times the discharge of the Mississippi.

Fig. 8  The monthly mean annual cycle of the numbers of MCSs 
(a–d), mean precipitation (e–h), and percentage of precipitation from 
tracked MCSs relative to regional total monthly precipitation (i–l). 
Shown are the Southeast, Midwest, Mid-Atlantic, and North East 

region (left to right). The shadings show the interquartile range of the 
interannual variability. Black lines and blue shading corresponds to 
the observations while red lines and shadings show simulated results



104 A. F. Prein et al.

1 3

The lifetime of MCSs is on average 10 hours but can 

reach more than a day in rare cases (Fig. 10u–x). The model 

almost perfectly reproduces MCS lifetimes in all regions. 

A similar performance can be seen for the track lengths of 

MCSs (Fig. 10y–B). Especially in the Midwest, MCSs can 

travel for vast distances of up to 1500 km, which is a third of 

the east-west extent of the CONUS. The model’s ability to 

simulate MCS characteristics typically deteriorates when a 

larger smoothing radii and the higher (5 mm h−1) threshold is 

used in MTD (Fig. A2) but Perkins skill scores (overlapping 

area of observed and modeled PDFs, Perkins et al. (2007)) 

are typically larger than 0.75 and show high model skills for 

all tested MTD settings.

Important for a realistic simulation of MCSs is not only 

the accurate simulation of single MCS characteristics but 

also the replication of their relationships. Generally, the 

model is able to reproduce the observed relationships very 

well in the Midwest region (Fig. 11). There is no correla-

tion between the MCS speed and any other MCS property 

(Fig. 11a, c, e, h). The simulated maximum hourly precipita-

tion is weakly correlated (r = 0.4) with MCS size, but the 

observations do not support this correlation (Fig. 11b). Max-

imum precipitation is also correlated with the mean precipi-

tation (Fig. 11f) and total precipitation (Fig. 11i). The former 

relationship is non-linear, and the increase in maximum 

precipitation decrease at around 10 mm h−1 mean precipita-

tion. This result is consistent in all regions (not shown). The 

highest correlation occurs between total precipitation and 

size with a correlation coefficient of 0.62 in the observations 

and 0.97 in the model. This high correlation is consistent 

with studies that showed a high correlation between the area-

time integral of precipitation from convective storms and 

their rainfall volume (e.g., Doneaud et al. 1984; Lopez et al. 

1989). This result might seem trivial since larger MCSs can 

precipitate more but the relationship is much less clear in the 

Southeast region and correlation coefficients are below 0.2 

in the model and the observations (see Fig. A3). Varying the 

threshold and smoothing radius in the MTD analysis leads 

to very similar relationships between the object properties 

(not shown).

Finally, we analyze the dynamic evolution of the MCSs 

in the Midwest. There is a rapid intensification in the 

first hours after the MCS genesis in which the observed 

and modeled maximum precipitation increases by 50 % 

(Fig. 12a). In their mature state, the MCS’s maximum pre-

cipitation is almost constant for approximately 2–3 h in 

short-lived MCSs (lifetime < 10 h) and rapidly decreases 

thereafter. Long-lived MCSs (lifetime >10 h and < 10 h) 

Fig. 9  Snapshots of hourly precipitation from the eight MCSs with 
highest hourly maximum precipitation rates in the Midwest dur-
ing JJA in the observation (left panel; c–j) and the simulation (right 

panel; k–r). The dates of the extremes are shown above each panel. 
The average of the 40 MCS with highest maximum precipitation rates 
in the observation/model is shown in a or b 
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Fig. 10  Probability density functions (PDFs) for the hourly MCS 
size (a–d), speed (e–h), maximum precipitation (i–l), mean precipita-
tion (m–p), and total precipitation (q–p). PDFs for the MCS lifetime 
and track length are shown in u–x and y–B respectively. Results for 
the Southeast, Midwest, Mid-Atlantic, and Northeast are shown from 
left to right (see inlays in a–d). The numbers in the panels denote the 

sample sizes that were used to construct the PDFs (black/red num-
bers show observation/model results). A Gaussian kernel density 
estimate was applied to estimate the PDFs from the empirical density 
functions. The shaded contours show estimates of the 1–99 percen-
tile sampling uncertainty based on 100 bootstrap samples. Observed/
simulated results are shown in black/red
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can maintain high precipitation intensities for up to 5 h 

and show a steady decay afterward. Also, the MCS size 

increases rapidly and shows more than a five-fold increase 

within the fist two hours after the MCS genesis (Fig. 12b). 

At this time short-lived MCSs reach their maximum size 

and start to steadily decay while long-lived MCSs continue 

growing for another 3 h. The decay in MCS size occurs in 

conjunction with reduced maximum precipitation rates. 

There is a clear increase in MCS propagation speed dur-

ing the intensification phase from 30 km h−1 to 45 km h−1 

(Fig.  12c). Afterward, the speed stays approximately 

constant. This might be related to the progression of 

mesoscale organization of deep convection and evolving 

cold pool dynamics within the MCSs. Overall, the model 

closely reproduces the dynamical development of MCSs in 

the Midwest. This is very encouraging because it empha-

sizes that the model can capture fundamental processes 

such as the organization of convection and the interaction 

of mesoscale processes with the large scale flow realisti-

cally. Similar performances are found in other regions (see 

Fig. A4).

Fig. 11  Scatter plot matrix of MCS properties in the Midwest region. 
The numbers in the upper right of each panel show the Spearman’s 
rank correlation coefficients and the lines show weighted linear 

regression LOWESS curves (Cleveland 1979). Black/red colors show 
results from the observation/model
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Fig. 12  Development of MCS maximum precipitation, size, and 
velocity (a–c) as a function of MCS duration in the Midwest region. 
Statistics for short-lived MCSs (blue/orange; lifetime shorter than 
10 h) and long-lived MCSs (red and black; lifetime between 10 and 

20 h) are shown. The shading/error bars show the interquartile spread 
in the sample. Observed results are shown in cold colors and simu-
lated results in warm colors

Fig. 13  ERA-Interim 700  hPa geopotential height anomalies and 
wind on days with observed and modeled MCSs (hit, a, e, i, m), mod-
eled but not observed (false alarm, b, f, j, n), observed but not mod-
eled (missed, c, g, k, o), and not observed nor modeled (null events, 
d, h, l, p). The percentage of days within each category are shown 
above the panels. Results for May, June, July, and August are shown 

from the top down. Anomalies are calculated compared to monthly 
climatologies. Hatching shows grid cells that have significantly dif-
ferent mean geopotential heights than those on hit days [5  % confi-
dence level according to the MannWhitney U test (Mann and Whit-
ney 1947)]
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3.3  Sources of MCS frequency biases

The significant underestimation of MCS frequency during 

late summer in the central U.S. is partly related to missing 

MCS genesis in the High Plains (see Fig. 7). In this section, 

we investigate ERA-Interim 700 hPa geopotential height 

anomalies to understand the large-scale conditions that pro-

duce or inhibit the development of MCSs in the model dur-

ing May, June, July, and August (Fig. 13).

Cases where the model is accurately simulating MCSs are 

typified by negative 700 hPa geopotential height anomalies 

over the western US and positive anomalies in the eastern 

US in all investigated months (Fig. 13a, e, i, m). In this 

situation, MCSs form in the area of negative anomalies and 

propagate east with the mean flow. In contrast, cases where 

no MCSs are observed and simulated are typified by positive 

anomalies in the western US and negative anomalies in the 

east US (Fig. 13d, h, l, p). On days when the model fails to 

generate MCSs (missed events), geopotential height anoma-

lies are significantly higher in the MCS development region 

west (upwind) of the Midwest compared to days with correct 

simulated MCSs (Fig. 13c, g, k, o). This weather pattern is 

infrequent in May (14 %) but doubles in frequency during 

July and August (31 and 34 %) due to the generally weaker 

large scale forcing in late summer and the strengthening of 

the subtropical ridge’s influence on the central U.S. The 

results are very similar if the 500 hPa geopotential height 

is analyzed. Similar contrasting skills between moderate 

and weak synoptic forcing have been previously reported in 

short-term convection-permitting simulations of US warm-

season precipitation (Liu et al. 2006).

In summary, our model is underestimating MCSs fre-

quencies in weak synoptic-scale forced conditions that typi-

cally occur in late summer. In this situation the correct rep-

resentation of local-scale processes such as soil–atmosphere 

interactions, regional-scale wind systems, and mixing in the 

planetary boundary layer are essential. A summertime warm 

and dry bias over the central US is fairly common in weather 

and climate models (e.g., Klein et al. 2006; Ma et al. 2014; 

Bellprat et al. 2016). We are currently performing sensitiv-

ity experiments to find the sources and potential solutions 

for these biases.

4  Summary and conclusion

We evaluate the performance of a north American-scale, 

convection-permitting climate model to simulate MCSs 

during the period 2002–2013. The application of a feature 

based evaluation method provides detailed insights into the 

model’s ability to simulate the frequency and characteris-

tics of MCSs. The model is able to realistically capture the 

main characteristics of MCSs such as their size, propagation 

speed, total precipitation volume, and maximum hourly 

precipitation rates within observational uncertainties in all 

investigated regions. The realistic simulation of MCS char-

acteristics is a major advantage compared to coarser reso-

lution climate simulations that have to parameterize deep 

convection (e.g., Chang et al. 2016). These results agree 

well with results from convection-permitting weather fore-

cast evaluation study (Clark et al. 2014; Davis et al. 2009). 

The largest biases are found in the model’s ability to repro-

duce the frequency of MCSs. In the Southeast and the Mid-

Atlantic region, MCS frequency is up to 70 % overestimated 

during JJA. Similar overestimations are found in convection-

permitting weather forecasting models in all US regions 

(Johnson and Wang 2012; Clark et al. 2014). Different from 

forecasting biases are the 50 % underestimation of MCSs in 

the central US during late summer.

Assessing the sources of MCS frequency biases is criti-

cally important for future studies. The central Great Plains 

are an area of especially strong land–atmosphere coupling 

(Koster et al. 2004). An erroneous representation of land 

surface processes can lead to a loss of soil moisture in this 

region resulting in a too dry boundary layer and a reduction 

of MCS genesis. In particular, the surface energy balance 

and the effect of including groundwater and irrigation should 

be further studied. Also, the effect of model grid spacing on 

MCS genesis and dynamics is not well understood and the 

representation of shallow convection and turbulence need 

further exploration.

The accurate simulation of MCSs has significant societal 

benefits since MCSs produce hazardous weather events that 

cause 20 billion US$  of economic losses each year in the US 

with steadily increasing trends (Munich 2015). CPCSs can 

provide valuable insights into MCS dynamics and precipita-

tion and will allow unprecedented insights into their changes 

in response to climate change.
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