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Abstract. In a recent experiment, Barreiro et al. demonstrated the fundamental

building blocks of an open-system quantum simulator with trapped ions [Nature 470,

486 (2011)]. Using up to five ions, single- and multi-qubit entangling gate operations

were combined with optical pumping in stroboscopic sequences. This enabled the

implementation of both coherent many-body dynamics as well as dissipative processes

by controlling the coupling of the system to an artificial, suitably tailored environment.

This engineering was illustrated by the dissipative preparation of entangled two-

and four-qubit states, the simulation of coherent four-body spin interactions and the

quantum non-demolition measurement of a multi-qubit stabilizer operator. In the

present paper, we present the theoretical framework of this gate-based (“digital”)

simulation approach for open-system dynamics with trapped ions. In addition, we

discuss how within this simulation approach minimal instances of spin models of

interest in the context of topological quantum computing and condensed matter physics

can be realized in state-of-the-art linear ion-trap quantum computing architectures.

We outline concrete simulation schemes for Kitaev’s toric code Hamiltonian and a

recently suggested color code model. The presented simulation protocols can be

adapted to scalable and two-dimensional ion-trap architectures, which are currently

under development.

PACS numbers: 37.10.Ty, 42.50.-p, 03.67.Ac

ar
X

iv
:1

10
4.

25
07

v1
  [

qu
an

t-
ph

] 
 1

3 
A

pr
 2

01
1



Simulating open quantum systems: from many-body interactions to stabilizer pumping2

1. Introduction

In view of the inherent difficulties to efficiently simulate quantum physics of an

interacting many-body quantum system on a classical computer due to the Hilbert

space growing exponentially with the system size, Feynman proposed the idea of a

quantum simulator. He suggested a controllable quantum device to efficiently study

the dynamics of another quantum system of interest [1]. This idea was later refined

and formally developed by Lloyd [2] and others, who showed that many-body quantum

systems can indeed be simulated efficiently, as long as they evolve according to local

interactions. Since then, quantum simulation has become a very active and rapidly

evolving research field on its own (see references [3, 4] for a recent overview). Driven

by remarkable experimental progress and novel theoretical ideas for various physical

platforms in recent years, in particular AMO systems ranging from cold atoms [5, 6, 7, 8]

and polar molecules [9, 10] over trapped ions [11] to photonic setups [12, 13, 14] and

nuclear magnetic resonance [15] have been under investigation for quantum simulation.

Similar promising developments have been reported for solid-state systems [16] such as,

e.g. , arrays of coupled superconductors [17, 18], quantum dots [19] and nitrogen-vacancy

centers in diamond [20].

For closed many-body quantum systems, which are well-isolated from their

environment, powerful techniques have been developed to control the internal, coherent

dynamics. The ability to engineer and tune the underlying single-particle and interaction

Hamiltonian terms has enabled the simulation of different classes of quantum many-body

models over wide ranges of parameters. Ultimately, though, every quantum system is

unevitably coupled also to its surrounding environment. Recently, quantum control of

open many-body systems, which amounts to engineering both the Hamiltonian time

evolution of the many-body system itself as well as its coupling to the environment

[2, 21], has become a major research focus. Whereas typically the system-environment

coupling leads to detrimental effects on many-body or multi-qubit open systems

[22, 23, 24, 25], the ability to control and tailor the associated dissipative processes

has been identified as a useful resource: it allows one to dissipatively prepare

entangled quantum states and correlated quantum phases from arbitrary initial states

[26, 27, 28, 29, 30, 31], and can also be exploited for dissipative quantum computing

[32] and quantum memories [33].

Recently, the elementary building blocks of such an open-system quantum simulator

have been shown in an experiment with up to five ions [34]. In their work, Barreiro et

al. demonstrated the ability to engineer coherent and dissipative multi-qubit quantum

operations by the dissipative preparation of Bell states and multi-qubit stabilizer states,

the simulation of coherent four-body spin interactions and a quantum non-demolition

measurement of four-qubit stabilizer operators. Since the theoretical concepts and

details of this work are of general interest to the ion trap community in the context

of quantum simulation of spin systems, we provide in the present paper the theoretical

framework of the simulation scheme. The present work is motivated by the developments
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of ideas in the context of topological spin models in the context of quantum computing

and condensed matter and the question to what extent these ideas can be realized in

existing experimental setups, in particular with linear ion-trap architectures. We focus

on the following questions: What are interesting simulation possibilities in state-of-the-

art ion trap quantum computing setups with moderately large chains of a few, possibly

up to a few tens of ions? And how can the currently available experimental resources be

exploited in an optimal and experimentally efficient way that allows one to access the

physics of minimal instances of complex spin models (as schematically shown in figure

1) with today’s technology?

2

4

5

1

3

6

7

σ
x

1
σ
x

2
σ
x

3
σ
x

4
σ
z

2
σ
z

3
σ
z

5
σ
z

6

1

2

3

4

5 6 7

σ
x

1
σ
x

2
σ
x

3
σ
x

4

σ
z

1
σ
z

2
σ
z

3
σ
z

4

1 2 n0 ... ...

optical 

pumping global rotations and MS 

gate operations

single ion 

rotations

ancilla ion system ions

a) b)

c)

Figure 1. Lattice spin models of interest for the gate-based (”digital”) quantum

simulation with trapped ions. (a) In Kitaev’s toric code [35] spins located around

vertices of a two-dimensional square lattice interact via four-body interactions ∼
σx
1σ

x
2σ

x
3σ

x
4 , whereas spins around plaquettes experience z-type interactions, as e.g. ∼

σz
2σ

z
3σ

z
5σ

z
6 . (b) Small instance of a color code spin system, as proposed in [36]. Here,

spins are located on the sites of a three-colorable lattice interact via four-body plaquette

interactions such as ∼ σx
1σ

x
2σ

x
3σ

x
4 and ∼ σz

1σ
z
2σ

z
3σ

z
4 . (c) Mesoscopic instances of spin

models can be mapped onto linear chains of trapped ions, where the spin degree of

freedom is encoded in (meta)stable electronic states. Coherent and dissipative time

evolution can be simulated by sequences of highly parallel multi-ion Mølmer-Sørensen

(MS) gates applied to all (or subsets of) ions, in combination with single-qubit rotations

on individual ions and optical pumping of an ancilla ion.

Below, we present a toolbox for the simulation of general Markovian open-system

dynamics of mesoscopic spin systems. Our set of tools includes the fundamental building

blocks for the simulation of coherent n-body spin interactions, dissipative n-qubit

reservoir engineering, and the ability for quantum-non-demolition (QND) measurements

of n-particle observables. The simulation scheme strongly makes use of the well-

developed set of tools for the purpose of quantum state preparation, manipulation and

readout of trapped ions [37, 11, 38]. In particular, we show how high-fidelity multi-

ion MS entangling gate operations [39], as first suggested Mølmer and Sørensen, and
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recently shown for up to 14 ions in the laboratory [40], conveniently bundle the effect of

sequences two-qubit operations. This allows one to reduce the experimental simulation

complexity significantly and to realize, e.g., coherent n-body interactions in a minimal

number of steps. In our simulation architecture, we use optical pumping on individual

ions - in combination with coherent gate operations - to tailor the coupling of the spin

system to its environment and thereby engineer dissipative n-body quantum processes.

Our “digital” simulation scheme is based on the stroboscopic application of

sequences of coherent gate operations in combination with dissipative time steps to

realize open-system dynamics. It complements existing proposals of quantum simulation

with ground state ions [41, 42, 43] or ions excited to Rydberg states [44]. In these

“analog” quantum simulators, the common principle is to use externally controllable

fields to engineer effective “always-on” Hamiltonians, which microscopically realize the

model of interest directly. Recently, remarkable first experiments have demonstrated the

simulation of (relativistic) single-particle dynamics in an external potential [45, 46, 47]

and experimental studies of the physics of few interacting Ising spins [48] under

frustration [49].

We point out that the presented “digital” simulation scheme is suited for the

simulation of mesoscopic spin systems corresponding to chains of up to a few tens of ions,

which with state-of-the art ion trap technology can be controlled accurately. However,

similar protocols can be realized in scalable and two-dimensional ion-trap architectures,

to whose development currently a lot of effort is devoted [50, 38, 51, 52, 53], and also

on other physical simulation platforms. In fact, in previous work a “digital” quantum

simulation architecture for open-system dynamics of many-body spin models has been

developed for neutral Rydberg atoms in optical lattices [54].

In section 2 we introduce the general idea of our simulation architecture and give

a concise summary of the main results. The details of the simulation of coherent and

dissipative many-body interactions are provided in sections 3 and 4. In section 6 we

briefly discuss the effect of imperfections in the simulation scheme. We illustrate our

simulation scheme in section 5 for two examples of interest in the context of topological

quantum computing, namely small-scale implementations of Kitaev’s toric code [35] and

a minimal instance of a color-code model [36]. We conclude with an outlook.

2. Simulation of open many-body quantum systems

2.1. Open-system dynamics

In the following we are interested in open-system dynamics of many-body quantum

systems. The dynamics of an open quantum system which is coupled to an environment

can be described by a completely positive Kraus map [55]

ρ 7→
∑

k

EkρE
†
k, (1)
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where ρ denotes the reduced density operator of the system, {Ek} is a set of operation

elements satisfying
∑

k E
†
kEk = 1, and we assume an initially uncorrelated system and

environment. For the case of a closed system, decoupled from the environment, the map

(1) reduces to ρ 7→ UρU † with U the unitary time evolution operator of the system.

In the literature on quantum control of open quantum systems, the required set

of operations to realize different classes of quantum operations (1) as well as efficiency

and universality aspects have been discussed [21, 56]. In reference [34], several specific

examples of Kraus maps, whose dissipative dynamics can be used for dissipative

quantum state preparation, e.g. for pumping into entangled states, have been discussed

and implemented experimentally.

The Markovian limit of the general quantum operation (1) for the coherent and

dissipative dynamics of a many-particle spin system is given by a many-body master

equation

d

dt
ρ = (Lcoh + Ldiss)ρ = Lρ (2)

for the density operator ρ(t) of the many-body system. The coherent part of the

dynamics is described by

Lcohρ =
∑

α

Lcoh
α ρ = −i

∑

α

[Hα, ρ]. (3)

It is generated from a Hamiltonian H =
∑

αHα which is a sum of terms Hα, which can

in general involve higher order n-body interactions, which act on a quasi-local subset of

particles ‡. Dissipative time evolution is described by a Liouvillian part of the master

equation

Ldissρ =
∑

α

Ldiss
α ρ =

∑

α

γα
2

(

2cαρc
†
α − c†αcαρ− ρc†αcα

)

. (4)

The individual terms Ldiss
α ρ are of Lindblad form [57], and are determined by quantum

jump operators cα, which either act on single or on subsets of particles, and by

respective rates γα at which these jump processes occur. Engineering open-system

dynamics thus amounts to designing and engineering couplings of the quantum system

to its environment, such that the resulting many-particle dynamics is then governed by

discrete Kraus maps or master equations with quasi-local Hamiltonian and dissipative

terms.

2.2. Many-body quantum systems: Kitaev’s toric code as a representative example

In the following, we will in consider the simulation of many-body lattice spin models,

which are of interest in the context of topological quantum computing and memories.

As a paradigmatic example of this class of spin models we discuss in some detail Kitaev’s

toric code Hamiltonian, which is sketched in figure 1(a). This model exemplifies in a

transparent way the challenges that one encounters also in the quantum simulation of

‡ Throughout this article we set ~ = 1.
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related models, such as e.g. in a recently suggested color code model (see figure 1(b)),

which we discuss in more detail in section 5.2.

In Kitaev’s toric code model, as sketched in figure 1(a), spins are located on

the edges of a two-dimensional square lattice. The Hamiltonian is given by H =

−E(∑sAs +
∑

pBp), which is a sum of stabilizer operators

As =
∏

i∈s

σx
i and Bp =

∏

i∈p

σz
i , (5)

which describe four-body interactions of spins, which are located around the vertices

(stars) s and plaquettes p of the lattice, respectively. All four-body stabilizers have

eigenvalues ±1 and mutually commute. The ground state(s) is/are thus given by the

simultaneous eigenstate(s) of all stabilizers with eigenvalues +1 (assuming Es, Ep > 0).

The degeneracy of the ground state depends on the boundary conditions and topology

of the setup. Excited states in this model correspond to violations of these stabilizer

constraints, i.e., −1 eigenstates with respect to either the As or Bp stabilizers. They can

be associated with localized quasiparticles residing on the corresponding vertices and

plaquettes of the lattice (as illustrated in figure 5(b)). They exhibit anyonic statistics

under braiding, i.e. when trajectories of different types of quasiparticles are winded

around one another.

Preparation of the system in the ground state manifold, starting from an arbitrary

initial (excited) state, can be achieved by a dissipative dynamics which is governed by

a many-body master equation (2) with quantum jump operators

cα =
1

2
σz
i (1− σx

1σ
x
2σ

x
3σ

x
4 ) and cβ =

1

2
σx
i (1− σz

1σ
z
2σ

z
3σ

z
4) (6)

2
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4

1
|+〉 |+〉

|+〉
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|+〉
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a) b)
Aα = σ

x

1
σ
x

2
σ
x

3
σ
x

4

+1−1
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Figure 2. Illustration of the dissipative dynamics of stabilizer pumping of four

spins: Lindblad dynamics according to a four-body quantum jump operator cα =
1
2σ

z
1(1−σx

1σ
x
2σ

x
3σ

x
4 ) induces pumping into the eigenspace of eigenvalue +1 of the four-

body stabilizer operator Aα = σx
1σ

x
2σ

x
3σ

x
4 . All +1 eigenstates are left invariant, whereas

eigenstates corresponding to an eigenvalue -1 of Aα are incoherently converted into +1

eigenstates, e.g. cα|+++−〉 = | −++−〉, by a flip of one of the four spins.

These collective operators act on four spins located around a vertex (site) of the lattice,

as depicted in figure 1(a). The index i denotes one arbitrary spin of the four involved

spins. A four-body jump operator cα induces dissipative dynamics, which pumps the four

spins from the +1 into the -1 eigenspace of Aα = σx
1σ

x
2σ

x
3σ

x
4 (see figure 2). The projector
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part 1
2
(1 − σx

1σ
x
2σ

x
3σ

x
4 ) applied to any +1 eigenstate of Aα vanishes; as a consequence

all +1 eigenstates are “dark states” and remain unaffected. In contrast, the spin flip

σz
i applied to one of the four spins (e.g. i = 1) can incoherently convert -1 into +1

eigenstates, e.g., cα|+++−〉 = σz
1|+++−〉 = |−++−〉. Here, |±〉 are the eigenstates

of σx: σx|±〉 = ±|±〉.
The above example illustrates that the difficulty to be overcome in simulating

the coherent Hamiltonian dynamics lies in finding a way to realize the four-body

Hamiltonian interaction terms. The realization of the dissipative “cooling” dynamics

into the ground state(s) by means of the described collective dissipative processes

requires the engineering of a coupling of the spin system to an artificial, tailored

environment. An analog simulation of these coherent and dissipative higher-order

n-body interactions, i.e., by a direct engineering using “always-on” external fields, is

demanding because these higher-order effective interactions must be constructed from

underlying one- and two-body interactions. In this scenarion, typically, the interaction

strengths and dissipative rates of the n-body processes, which typically arise in a

perturbative limit, are much smaller than dominant one- and two-body interactions.

Therefore, we aim to realize the coherent and dissipative dynamics according to

(1) or (2) in a digital simulation, i.e. by stroboscopic sequences of gates and dissipative

operations. Here, higher-order n-body interactions can be obtained non-perturbatively

as leading-order terms from the application of one-, two- or n-body quantum gates.

The corresponding interaction strengths are virtually independent of the order n of the

interaction terms and ultimately only limited by the gate durations in the underlying

quantum circuits.

In the case of continuous time dynamics, we apply these operations over small

time steps τ , such that the master equation (2) emerges as an effective, coarse-grained

description of the time evolution. For small time steps, the time evolution can be

implemented through a Trotter expansion of the propagator corresponding to Eq. (2)

eLτρ ≃
∏

α

eL
coh
α τ
∏

β

eL
diss

β
τρ. (7)

Errors from possible non-commutativity of the quasi-local terms in L are bounded

[55] and can be reduced by resorting to shorter time steps τ or higher-order Trotter

expansions [58]. On the other hand, as we will discuss below, it is also possible to

engineer sequences of discrete Kraus maps (1), which can for instance be employed for

dissipative quantum state preparation in a minimal number of steps.

2.3. Experimental tools for digital quantum simulation with trapped ions

Motivated by the present availability of well-developed set of coherent and dissipative

tools [34] in state-of-the-art linear ion-trap architectures [37], we consider a setup in

which the spins of a (possibly two- or three-dimensional) lattice model with a mesoscopic

number of particles are mapped onto a linear chain of ions, where the spin degrees

of freedom are encoded in two (meta-)stable internal states of the ions. Although
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our approach can be realized with any universal set of gate operations, we focus on

a realization, which benefits from highly parallel multi-ion MS gates as the principal

building block for the implementation of unitary and dissipative simulation time steps

in eq. (7). The MS gate operation [39] is based on pairwise two-ion interaction terms

(as illustrated in figure 3), and can be parametrized by two angles θ and φ,

UMS(θ, φ) = exp

(

−iθ
4
(cosφSx + sinφSy)

2

)

. (8)

The sum in the collective spin operators Sx,y =
∑n

i=0 σ
x,y
i with σx,y

i the usual Pauli

matrices, is understood to be performed over all ions involved in the gate. This multi-ion

entangling gate operation is complemented by (non-entangling) single- and multi-qubit

rotations, whose physical implementation is discussed, e.g., in [34]. In addition to this

universal set of coherent gate operations, the use of optical pumping on individual ions

(as demonstrated e.g. [59]) constitutes the dissipative ingredient for the engineering of

dissipative many-body spin dynamics.

z

x
y

z

x
y

b)

UMS(π/2, 0)

1 2 n0 ...

...

ancilla ion

1

2

...

n

0

σ
x

0
σ
x

1

a)
system ions

z

x
y

z

x
y

UMS(π/2, 0)

|0〉 ⊗ |+++−〉 |1〉 ⊗ |+++−〉

|0〉 ⊗ |++++〉 |0〉 ⊗ |++++〉

Figure 3. (a) Graph representation of the two-body spin interaction Hamiltonian,

which underlies the multi-ion MS gate (8). All pairs {i, j} of ions involved in the gate

interact with equal strength (represented as links). (b) A (4 + 1) ion entangling MS

gate applied to 4 system ions and an ancilla ion (index zero) can be used to coherently

map the information about whether the 4 system ions are in a +1 (-1) eigenstate of the

4-body interaction term ∼ σx
1σ

x
2σ

x
3σ

x
4 , onto the logical states |0〉 and |1〉 of the ancilla

ion. In the Bloch sphere representation this mapping can be understood as a rotation

of the ancilla qubit initially prepared in |0〉 around the x-axis. The rotation angle

depends on the state of the system ions, and is chosen such that for any +1 eigenstate,

as e.g. | + + + +〉, the ancilla qubit ends in |0〉 after the MS gate, whereas for - 1

eigenstates such as e.g. |+++−〉 it is transferred to |1〉. This mapping mechanism

not only works for 4-body interactions, but can be used for general n. For n odd, the

ancilla qubit is transferred to σy eigenstates.

We have summarized the the basic idea of the simulation of coherent and dissipative

dynamics corresponding to Kitaev’s code model in figure 4, to be explained in more detail
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in the following sections.

We will show in more detail in section 3 that the unitary propagators eL
coh
α τρ

corresponding to n-body interaction Hamiltonians Hα (such as, e.g., the four-body term

in Eq. (5)) can be implemented efficiently in an experiment (i.e. by a minimal number

of gates) by combining standard single-qubit gates with (n + 1)-ion MS gates, which

are applied to the n system ions and an additional ion, which encodes an ancilla qubit.

Dissipative dynamics according to propagators eL
diss
α τρ with many-body jump-operators

cα can be achieved by combining the coherent gate operations with a dissipative step in

the form of optical pumping of the ancilla ion.

|0〉

=

a)

e
−iφσz

0

e
−iφσx

1
σx

2
σx

3
σx

4

e
L

coh

α
τ

=

U
M

S
(π
/
2
,0
)

(i)

|0〉

(ii) (iii)

|0〉

=

b)

U
M

S
(π
/
2
,0
)

(i)

|0〉

(ii) (iii)

with

e
L

diss

α
τ

cα

C(θ)

(iv)

0

1

2

4

3

0

1

2

4

3
U
M

S
(−

π
/2

,0
)

U
M

S
(−

π
/2

,0
)

Figure 4. Generic gate decompositions for the simulation of coherent and dissipative

dynamics via the Trotter expansion (7). (a) Coherent evolution according to a four-

body interaction Hamiltonian Hα = Eασ
x
1σ

x
2σ

x
3σ

x
4 for a time step τ is efficiently

achieved in three steps: (i) First, an entangling MS gate UMS(π/2, 0) applied to the four

system ions and the ancilla ion coherently maps the information on whether the system

ions are in a +1 or -1 eigenstate of Hα onto the logical states |0〉 and |1〉 of the ancilla

qubit (cf. figure 3). (ii) Second, a single-qubit gate exp(iφσz
0) applied to the ancilla ion

effectively imprints a phase −φ (φ) on all +1 (-1) eigenstates of Hα. (iii) Finally, the

initial mapping is reversed by an inverse MS gate, which disentangles the ancilla from

the system ions, which have evolved according to exp(iφσx
1σ

x
2σ

x
3σ

x
4 ). (b) Dissipative

evolution, i.e. “cooling” of the system ions into the +1 eigenspace of Hα mediated by

Lindblad dynamics with four-body quantum jump operators cα = 1
2σ

z
1(1−σx

1σ
x
2σ

x
3σ

x
4 ):

Here, a two-qubit gate C(θ) = |0〉〈0|0 ⊗ 1 + |1〉〈1|0 ⊗ exp[iθσy

i ] is applied between the

mappings (i) and (iii). In step (ii), all +1 eigenstates of Hα are left invariant, whereas

a spin flip σy

i with a θ-dependent amplitude is applied to one of the four system ions

can convert -1 into +1 eigenstates. The angle θ controls the conversion probability

and allows one to tune from small probabilities (θ ≪ 1, master equation limit) to unit

pumping probability (θ = π/2). After the three steps, generally, the ancilla qubit is

entangled with the system ions. (iv) Finally, the ancilla qubit is incoherently reset to

its initial state |0〉 by optical pumping. This dissipative step enables to carry away

entropy and “cool” the system qubits.
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3. Simulation of coherent n-body interactions

In this section we describe in more detail the stroboscopic simulation of coherent

dynamics eL
coh
α τ according to n-body spin interaction Hamiltonians.

3.1. The Mølmer-Sørensen multi-ion entangling gate

The main resource in our simulation scheme are multi-ion MS gate operations (8), which

rely on the application of a bichromatic laser field to the ions [39]. The two frequency

components are chosen close to the qubit transition, fine-tuned such that an effective

second-order coupling between pairs of ions is generated by off-resonantly coupling to

the blue and red motional side-bands of the common vibrational center-of-mass mode

of the ion string. Within the Lamb-Dicke regime, where the ions are spatially confined

to a region much smaller than the wavelength of the qubit transition, the MS gate

operation is particularly robust and works in principle without the necessity of cooling

to the motional ground state [60]. The gate has been successfully demonstrated [61]

with remarkably high fidelities (99.3 % for a pair of ions [62]) and recently for strings

of up to 14 ions [40]. A detailed discussion of the MS gate, in particular regarding the

experimental implementation and optimization, can be found in [60]. The properties of

the MS gate (8) applied to n+1 ions, which we will repeatedly use in the following, are:

• The phase θ is the main control parameter of the gate; for θ = π/2, the gate is

maximally entangling, i.e., the computational basis states are mapped to states,

which are up to local rotations equivalent to GHZ states [39]. Shifting the optical

phase of the bichromatic driving field allows one to switch between a σx-type (φ = 0)

and a σy-type (φ = π/2) MS gate.

• Periodicity: UMS(θ + 2πm, φ) = UMS(θ, φ) for m ∈ ❩.

• “Backward” MS gates (i.e. for negative values of θ) can be realized by “forward”

gates, since

UMS(−θ, φ) ≡
{

UMS(π − θ, φ) for n even,

UMS(π − θ, φ)
(

∏n

j=0 σ̃j

)

for n odd.
(9)

with σ̃j = cosφσx
j + sinφσy

j . In particular, fully entangling MS gates are (up to

local rotations for an odd number of ions) equivalent to their inverse operations.

Using only “forward” MS gates can be experimentally convenient as a sign change

of θ generally requires frequency changes of the driving field.

3.2. Circuit decomposition for four-body spin interactions

Let us now outline the procedure to simulate a coherent time step eL
coh
α τ for a four-

spin interaction term Hα = −EαAα with Aα = σx
1σ

x
2σ

x
3σ

x
4 (see figure 1). Although the

unitary propagator can in principle be implemented with a standard universal set of

single- and two-qubit gates available for ions [37], here we use an alternative technique,

which harvests the multi-ion MS gates and makes use of an ancilla qubit [63] encoded in
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an additional ion (see figure 4). This technique has been used in [34] to experimentally

realize four-body spin interactions.

The approach consists of a sequence of three gate operations: (i) First, a fully

entangling MS gate UMS(π/2, 0), applied to the four system ions and the ancilla

ion, coherently maps the information, whether the system ions are in a +1 or -1

eigenstate of Ax onto the ancilla qubit (see figure 4(a)). (ii) Second, a single-qubit gate

Uanc(φ) = exp(iφσz
0) is carried out on the ancilla ion. Due to the previous mapping, this

operation on the ancilla qubit is equivalent to manipulations on the +1 and -1 subspaces

of Aα. (iii) Finally, the mapping is reversed by an inverse MS gate UMS(−π/2, 0) on all

ions. The evolution according to the three unitaries is given by

U = UMS(−π/2, 0)Uanc(φ)UMS(π/2, 0)

= exp
[

i
π

4
Ŝxσ

x
0

]

exp[iφσz
0] exp

[

−iπ
4
Ŝxσ

x
0

]

= exp
[

iφ
(

cos
(π

2
Ŝx

)

σz
0 + sin

(π

2
Ŝx

)

σy
0

)]

(10)

with the operator Ŝx =
∑n

i=1 σ
x
i acting on the n system ions. Using the identities

cos
(π

2
Ŝx

)

=











Aα for n = 4k, k ∈ ◆
−Aα for n = 4k − 2, k ∈ ◆
0 for n odd

(11)

and

sin
(π

2
Ŝx

)

=











Aα for n = 4k − 3, k ∈ ◆
−Aα for n = 4k − 1, k ∈ ◆
0 for n even

(12)

one finds that for n = 4 eq. (10) indeed reduces to

U = exp(iφσz
0 ⊗ Aα). (13)

As a consequence, the ancilla - initially prepared in |0〉 - factorizes out from the dynamics

of the system ions, which in turn evolve according to the unitary time evolution operator

exp(iφAα). Here, from exp(iφAα) = exp(−i(−EαAα)τ) one identifies the energy scale

of the four-body interaction as Eα = φ/τ , where τ is the physical time, which is needed

to perform all gates required for one full simulation time step (7). Note that pairwise

interactions among the system ions, present in the two-body Hamiltonian underlying

the MS gate (8), cancel out in the inverse mapping step (second MS gate).

3.3. Toolbox for simulation of n-body spin interactions

The simulation scheme outlined above for four-body interactions is readily generalized

to arbitrary n-body interactions of the form A =
∏n

i=1 σ
α
i with σα

i ∈ {1, σx
i , σ

y
i , σ

z
i }.

This is possible by applying local rotations to (a subset of) system ions before and after
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the gate sequence and thereby effectively transforming σx
i into σy

i or σz
i , and by varying

the phase φ of the MS gates. This enables, e.g., the simulation of z-type four-body

plaquette interaction terms as required for the toric code Hamiltonian (see figure 1 and

section 5.1). The required gate sequences are summarized in table 1. If certain ions

are supposed not to participate in the interactions (i.e. σα
i = 1) this can be achieved

in different ways: (i) by focusing the driving laser of the MS gate operation only onto

the relevant subset of ions, or (ii) by hiding the electronic population of these ions in

uncoupled electronic states for the duration of the gate sequence [64], or (iii) by means

of refocusing techniques [65]: As shown in reference [66] interspersing MS gates applied

to all ions with single-qubit gates on individual ions allows one to decouple effectively

certain ions from the dynamics. A set of convenient gate sequences for this purpose is

discussed in Appendix B. Circuit decompositions for the simulation of more complex

many-spin interactions going beyond n-qubit Pauli operators, such as e.g. ring-exchange

interactions, can be worked out and implemented in an analogous way (e.g. in [54] such

cases are discussed).

We note that in the gate-based “digital” simulation scheme the energy scale E0 of

the n-body interactions is essentially independent of the order n, and mainly limited by

the inverse time required for performing the (n + 1)-ion MS gates. This is in contrast

to analog simulation approaches, where higher-order interactions typically arise in a

perturbative limit from a two-body Hamiltonian, thus with correspondingly smaller

energy scales.

A =
∏n

i=1 σ
x
i UMS(−π/2, 0)Uanc(φ)UMS(π/2, 0)

n = 1, 5, ... Uanc(φ) = exp(−iφσy
0)

n = 2, 6, ... Uanc(φ) = exp(−iφσz
0)

n = 3, 7, ... Uanc(φ) = exp(+iφσy
0)

n = 4, 8, ... Uanc(φ) = exp(+iφσz
0)

A =
∏n

i=1 σ
y
i UMS(−π/2, π/2)Uanc(φ)UMS(π/2, π/2)

n = 1, 5, ... Uanc(φ) = exp(+iφσx
0 )

n = 2, 6, ... Uanc(φ) = exp(−iφσz
0)

n = 3, 7, ... Uanc(φ) = exp(−iφσx
0 )

n = 4, 8, ... Uanc(φ) = exp(+iφσz
0)

Table 1. Circuit decompositions for the simulation of one time step of coherent

dynamics according to the time evolution operator U = exp(iφA). The unitary block

is implemented by two MS gates applied to the n system ions and an ancilla qubit (#

0) initially prepared in |0〉, and a single-qubit rotation on the ancilla qubit.

Finally, we remark that the coherent n-body interactions Aα = σx
1 . . . σ

x
n can also

be achieved without an ancilla qubit by a slight modification of the employed quantum

circuit (see appendix Appendix A for details).
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4. Engineering dissipative many-body dynamics

In this section we show how to engineer dissipative dynamics according to n-qubit

stabilizer pumping. To be specific, we first discuss the implementation of master

equation dynamics governed by four-body plaquette quantum jump operators, cα =
1
2
σz
i (1− σx

1σ
x
2σ

x
3σ

x
4 ), as required e.g. for the ground state cooling of Kitaev’s toric code

(as discussed above in section 2). The stabilizer pumping, as described in this section,

has been demonstrated in an experiment with five ions [34], four of them representing

four system spins, which can be regarded as one plaquette, and one additional ion

encoding an ancilla qubit, which has been optically pumped to engineer the dissipative

four-spin dynamics.

4.1. Engineering four-body quantum jump operators for stabilizer pumping

The dissipative pumping dynamics to “cool” into the ground state manifold of Kitaev’s

toric code Hamiltonian, as sketched in figure 2, is implemented by three unitary gate

operations applied to the four system ions and the ancilla qubit initially prepared in |0〉,
followed by optical pumping of the ancilla qubit. The sequence of unitaries is

Ud = UMS(−π/2, 0)C(θ)UMS(π/2, 0) (14)

with the two-qubit gate

Ci(θ) = |0〉〈0|0 ⊗ 1 + |1〉〈1|0 ⊗ exp(iθσy
i ). (15)

(i) As for the coherent simulation, an entangling MS gate UMS(π/2, 0) first maps the

information on whether the four system ions are in the +1 or -1 eigenspace of Aα onto

the logical states of the ancilla qubit. (ii) Next, the gate C(θ) realizes a spin flip with

a θ-dependent amplitude, provided the ancilla is in |1〉, i.e. only if the system spins are

in a -1 eigenstate of Aα. In Appendix C we give a possible decomposition of Ci(θ) into

global MS gates and single-ion rotations. (iii) After reversing the initial mapping (i)

by another (inverse) MS gate, the ancilla qubit is in general entangled with the four

system spins. (iv) Finally, optical pumping of the ancilla ion back to its initial state |0〉
constitutes the dissipative element in the sequence, which renders the dynamics of the

four system spins irreversible and enables to carry away entropy and thereby “cool” the

system qubits.

The unitary sequence (14) can be expressed as Ud(θ) ≡ U †
1U

†
0Ci(θ)U0U1 with U0 =

exp(−i(π/4)σx
0 Ŝx), Ŝx =

∑n=4
k=1 σ

x
k and U1 = exp

(

−i(π/4)σx
i

∑n=4
k( 6=i) σ

x
k

)

. Here we have

made use of the fact that all pairwise interaction terms not involving either the ancilla

ion or the i-th system ion cancel out due the inverse MS gate. The resulting operation

Ud(θ) = U †
1 [(1 + U3) + U2(1− U3)]U1/2, where U2 = cos((π/2)Ŝx)σ

z
0 + sin((π/2)Ŝx)σ

y
0

and U3 = U †
0 exp(iθσ

y
i )U0, can be further simplified using the operator identities (11)

and (12) for n = 4, as well as U †
1σ

z
iU1 = iσz

iAα and A2
α = 1, yielding

Ud(θ) =
1

2
(1 + cos θ) +

1

2
sin θσz

iAασ
x
0 +

i

2
sin θσz

i σ
y
0 +

1

2
(1− cos θ)Aασ

z
0. (16)
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In combination with the subsequent optical pumping of the ancilla ion, the resulting

dynamics is given by the quantum operation

|0〉〈0|0 ⊗ ρs 7→ |0〉〈0|0 ⊗ tr0{Ud(θ)(|0〉〈0|0 ⊗ ρs)Ud(θ)
†}

= |0〉〈0|0 ⊗
∑

k=1,2

Ek(θ)ρsEk(θ)
† (17)

with the operation elements

E1(θ) =
1

2
(1 + Aα) + cos θ

1

2
(1− Aα), (18)

E2(θ) = sin θ σz
i

1

2
(1− Aα) = sin θ cα. (19)

With a probability p = sin2 θ states in the -1 eigenspace of Aα are dissipatively converted

into +1 eigenstates, while the +1 eigenspace is left invariant by the operation. For

θ = π/2 cooling occurs with unit probability.

For small values θ ≪ π/2 equation (17) can be expanded up to second order in θ,

yielding the standard form of a Lindblad master equation (4) with a four-body jump

operator cα and the corresponding dissipative rate γα = θ2/τ . Here, as above, τ is the

physical time needed for the implementation of one simulation time step (7).

4.2. Toolbox for dissipative quantum simulation

The described four-step scheme is readily generalized to n-body stabilizer cooling

with n-qubit quantum jump operators of the form c = 1
2
σz
i (1 − Aα), where Aα =

∏n

j=1 σ
α
i with σα

i ∈ {1, σx
i , σ

y
i , σ

z
i }. In table 2 the required gate operations and the

resulting n-body quantum jump operators are listed. By combining the outlined

scheme with local rotations on (subsets of) the system ions, this allows one, e.g.,

to engineer cooling dynamics according to z-type four-body quantum jump operators

cβ = 1
2
σx
i (1 − σz

1σ
z
2σ

z
3σ

z
4), which are required for ground state preparation in Kitaev’s

toric code model, as explained in section 5.1.

c = 1
2
σz
i (1− σx

1 . . . σ
x
n) UMS(−π/2, 0)Ci(θ)UMS(π/2, 0)

n = 1, 5, ... Ci(θ) = |y−〉〈y−|0 ⊗ 1 + |y+〉〈y+|0 ⊗ exp(−iθσz
i )

n = 2, 6, ... Ci(θ) = |1〉〈1|0 ⊗ 1 + |0〉〈0|0 ⊗ exp(−iθσy
i )

n = 3, 7, ... Ci(θ) = |y+〉〈y+|0 ⊗ 1 + |y−〉〈y−|0 ⊗ exp(−iθσz
i )

n = 4, 8, ... Ci(θ) = |0〉〈0|0 ⊗ 1 + |1〉〈1|0 ⊗ exp(iθσy
i )

Table 2. Required gate operations for the simulation of dissipative dynamics

according to n-body quantum jump operators c, which generate pumping into the

+1 eigenspace of the many-body stabilizer operator A = σx
1 . . . σ

x
n (and σy

1 . . . σ
y
n,

respectively). The form of the two-qubit gates C(θ) are listed for different values of

n; see Appendix C for convenient decompositions into single-qubit and collective MS

gate operations. Here |y±〉 denote the eigenstates of σy, σy|y±〉 = ±|y±〉.
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5. Applications

In this section we discuss two examples of possible realizations of complex spin models

within the presented simulation scheme. We start with a few comments on boundary

effects related to the simulation of minimal instances of Kitaev’s toric code Hamiltonian

[35]. Subsequently, we proceed with the discussion of a minimal instance of a recently

suggested color code model [36], whose implementation is feasible in a setup of eight ions.

The simulation of other models, typically involving similar many-body spin interaction

terms, poses comparable demands with regard to the simulation abilities of coherent

and dissipative dynamics.

5.1. Kitaev’s toric code

For small instances of the toric code model, as e.g. a system of two plaquettes as

illustrated in figure 5(a), it is possible to define reduced two- or three-body stabilizers

for the spins located at the border of the system. For this small system of two

plaquettes, coherent and dissipative dynamics can be implemented in a setup of of

7+1 ions. Dissipative dynamics that cools into the ground state manifold of the
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Figure 5. Cooling dynamics in a small-scale implementation of Kitaev’s toric code.

(a) Two- and three-qubit stabilizer operators for the boundary spins. (b) Two types

of excitations in the model correspond to violations (eigenstates of eigenvalue -1) of x

and z-type stabilizer operators. (c) Cooling dynamics due to pairwise “annihilation”

of excitations or single excitations which are pushed out of the system.

model, is realized by a Liouvillian with four-body quantum-jump operators as given

in eq. (5). As discussed above, they realize pumping into the low-energy subspaces,

i.e. eigenspaces corresponding to an eigenvalue +1 of the plaquette and vertex terms of

the Hamiltonian. In figure 5(c) the effect of a quantum jump induced by the operator

c = 1
2
σx
4 (1− σz

1σ
z
2σ

z
3σ

z
4) is illustrated. If an excitation on the left plaquette is present, in

a quantum jump the state of the system spins is of the converted into state, which is a

+1 eigenstate of the left plaquette operator. In this process the excitation hops over to
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the neighboring plaquette. If a second excitation was present on the second plaquette,

the pair of excitations is “annihilated” in such step. This removal of a pair of excitation

constitutes a cooling event. Note that the other type of excitation remains unaffected

by this dynamics. Alternatively, cooling takes also place if one of the spins which forms

the border of the system is flipped (e.g. spin # 2 in the lower part of figure 5(c)), since

then a single excitation is “pushed out” from the lattice system. For the corners and

edges of a small lattice system two- and three-body jump operators for x-type stabilizer

pumping can be realized in analogy.

5.2. Simulation of a color code model

The idea of storing and processing quantum information in naturally protected quantum

systems has attracted a lot of interest in recent years [35, 67]. Here, protection from

local errors is achieved by encoding quantum information not in individual physical

qubits, but instead in ground states of topologically ordered quantum systems, which

provide an energy gap to excited states and exhibit a ground state degeneracy, which

cannot be lifted local perturbations. One class of topological quantum error correcting

codes that have been proposed in this context, are color codes [36], which exhibit

remarkable computational and error correcting capabilities. In particular, they allow

us to implement the Clifford group in a fully topological way within the ground state

manifold, without the need of individual addressing of physical qubits or braiding of

quasiparticles.

Here, we outline how a minimal instance of such a color code can be realized with

the discussed simulation tools, and discuss the state preparation and implementation

gate operations, as well as readout. For a detailed introduction to color code models we

refer the reader to [68].

A minimal version of a color code, consisting of seven physical qubit located at

the corners of three plaquettes, is shown in figure 1(b). Including one ancilla qubit

for the implementation of coherent and dissipative dynamics this system could be

simulated with a string of eight ions. Qubits located around plaquettes interact via

four-body x and z-interaction terms: The Hamiltonian Hcc = −E
(
∑3

i=1Ai +
∑3

i=1Bi

)

with A1 = σx
1σ

x
2σ

x
3σ

x
4 , B1 = σz

1σ
z
2σ

z
3σ

z
4, and similar interaction terms for the other two

plaquettes, consists of six mutually commuting stabilizer operators.

Coherent dynamics according to this Hamiltonian can be realized by implementing

unitary time steps as outlined in section 3 with the help of an ancilla qubit. Cooling

into the ground state manifold can be achieved by a Liouvillian dynamics associated

with a set of six four-body jump operators, such as c = 1
2
σz
1(1 − σx

1σ
x
2σ

x
3σ

x
4 ), thereby

driving the system spins dissipatively into the +1 eigenspaces of the six stabilizers.

Alternatively, ground state cooling can be realized by a sequence of deterministic cooling

steps: Starting with the system spins in the fully polarized state |0〉⊗7 (being already a

+1 eigenstate of all z-stabilizers) it suffices to implement three dissipative Kraus maps
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(1) such as

ρ 7→ 1

2
(1 + A)ρ

1

2
(1 + A) +

1

2
σz
1(1− A)ρ

1

2
(1− A)σz

1 (20)

with A = σx
1σ

x
2σ

x
3σ

x
4 and accordingly for the other two plaquettes, in order to prepare

the system also in the +1 subspaces of the x-type stabilizer operators. As discussed

in section 4 this is achieved by choosing two-qubit correcting gates Ci(θ = π/2) (see

equation (15)).

Excited states |ψ〉 of the Hamiltonian Hcc correspond to states, where the system

spins are in -1 eigenstate(s) with respect to certain stabilizer(s). The quasiparticles of x

(or z) type associated with these violations of the stabilizer constraints are located on

the corresponding plaquettes, for instance on the uppermost plaquette, if A1|ψ〉 = −|ψ〉
(or B1|ψ〉 = −|ψ〉).

Since there are only six stabilizer constraints for seven system spins, the ground

state is degenerate and thus offers the possibility to encode one logical qubit. An

operator basis for this logical qubit can be constructed by the global operators X̂ =
∏7

i=1 σ
x
i and Ẑ =

∏7
i=1 σ

z
i . These two logical operators commute with all six stabilizers

of the code, thus they leave the system within the ground state manifold.

The logical qubit can be initialized in the logical state |0̄〉 by (dissipatively)

preparing the system - in analogy with the four-body stabilizer cooling - in a +1

eigenstate of the global operator Ẑ, such that Ẑ|0̄〉 = |0̄〉. The logical |1̄〉-state is then

obtained by the application of the logical X̂-operator, |1̄〉 = X̂|0̄〉, which corresponds

to a single-qubit rotation applied to all seven system ions. This minimal color code

setup also allows to implement single-qubit gates belonging to the Clifford group in a

topological way: The Hadamard H and phase-shift gate K

H =
1√
2

(

1 1

1 −1

)

, K =

(

1 0

0 i

)

, (21)

can be implemented by applying the corresponding operations globally to all seven

system ions, i.e. Ĥ =
∏7

i=1Hi and K̂ =
∏7

i=1Ki. The logical operators then directly

fulfill the required transformation properties, as for example Ĥ†X̂Ĥ = Ẑ.

Remarkably, once the system is prepared in the code space, the logical single-

qubit gates can be performed by simple global single-qubit rotations without the need

of addressing individual ions. These operators take ground states to ground states,

the system stays in the code space, and thus the quantum gates are achieved without

braiding of quasiparticles. Similarly, readout measurements can be performed globally,

i.e. by standard fluorescence imaging of all ions measured either in the x or in the z-basis.

For the realization of a topological C-NOT gate operation, the minimal system

consists of two seven-qubit-layers encoding two logical qubits. Its implementation

therefore requires an experimental setup of fifteen ions, and might thus become

experimentally feasible in the near future.
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6. Noise and Imperfections

In a stroboscopic simulation of a many-body master-equation (2) several sources of

imperfections occur. First of all, Trotter errors from the non-commutativity of coherent

(and also dissipative) terms arise for each time step of the simulation. These are

bounded and can be reduced by resorting to smaller time steps and higher-order Trotter

decompositions. In addition, imperfect gate operations in the quantum circuits lead to

errors. Their effects on gate-based quantum simulations has discussed in detail e.g. in

reference [63].

6.1. Generic effect of gate imperfections on the quantum simulation

Here, we first briefly discuss the generic effect by considering a particularly transparent

example of a pulse length error in the simulation of coherent dynamics U = exp(iφA)

according to a four-body spin interaction A = σx
1σ

x
2σ

x
3σ

x
4 , as explained in section

3. We assume that the only error is a pulse length error in the single-qubit gate

Uanc(φ) = exp(iφσz
0) applied to the ancilla qubit in the three-step sequence eq. (10).

In one small time step (φ≪ π/2), the system spins evolve according to

ρ(t+ τ) ≃ Uρ(t)U † ≃ ρ(t)− i[−φA, ρ(t)] + φ2(Aρ(t)A− ρ(t)) (22)

Assuming that the actual value φ fluctuates (e.g. due to laser intensity fluctuations)

in the experiment from time step to time step according to a Gaussian distribution

p(φ) = 1/
√
2πσ2 exp[−(φ−φ0)

2/(2σ2)] around the mean value φ0 with a variance σ ≪ φ0

we obtain, after averaging over φ, the modified equation of motion

d

dt
ρ ≃ −i[(−φ0/τ)A, ρ] +

φ2
0

τ
(AρA− ρ) +

σ2

τ
(AρA− ρ) (23)

Thus, one finds dynamics according to a four-body Hamiltonian Heff = −(φ0/τ)A,

where a systematic shift in φ results in a systematically larger or smaller energy scale. In

addition, the stochastic Gaussian fluctuations in φ cause a collective dephasing dynamics

(in the σx-basis), described by a Liouvillian with a dephasing rate γ = σ2/τ and a

hermitian four-body quantum jump operator A (see last term in (23)).The effect of

other gate errors in the circuit decompositions for coherent and dissipative dynamics

can be analyzed in an analogous way. A more specific error analysis, going beyond these

quite general arguments, requires more precise information about the dominant error

sources in concrete experimental setups.

6.2. Comparison with experimental stabilizer pumping

In the work [34] four-qubit stabilizer pumping and the effect of errors have been studied

experimentally. For the benefit of the reader and to make the present discussion self-

contained we find it worthwhile to review briefly the main findings, as explained in

detail in the supplementary information of the Nature article [34], to relate this to the

present discussion. In the experiment with five ions (which encoded four system qubits
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and one additional ancilla qubit) stabilizer pumping with 100% pumping probability

per step, from the -1 into the +1 eigenspace of the four-qubit stabilizer operator

A = σx
1σ

x
2σ

x
3σ

x
4 has been applied repetitively. The corresponding discrete Kraus map

reads ρ 7→ E1ρE
†
1 + E2ρE

†
2 with operation elements

E1 =
1

2
(1 + σx

1σ
x
2σ

x
3σ

x
4 ) and E2 =

1

2
σz
4(1− σx

1σ
x
2σ

x
3σ

x
4 ). (24)

Starting with the four system qubits in the initial state |1111〉, ideally these reach the

four-qubit GHZ state (|0000〉+ |1111〉)/
√
2 after a single application of the above Kraus

map. This is reflected by the fact that the expectation value of the four-qubit stabilizer

A assumes a value of +1 after the application of this dissipative step. At the same

time, the expectation values of the two-qubit stabilizer operators σz
i σ

z
j , as depicted in

schematically in figure 6, should ideally remain unaffected by the four-qubit stabilizer

pumping dynamics and stay at a value +1.
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Figure 6. a) Results from a numerical simulation, which accounts for the effect of

single-qubit gate errors in repeated stabilizer pumping according to the dissipative

map (24). The stabilizer expectation values are obtained by averaging over 10000

realizations, assuming un-correlated errors from gate to gate, in the phases of the

single-qubit rotations exp(−i(θ + δθ)/2σz
0,4) with δθ obeying a Gaussian distribution

with zero mean and a variance of δθ of 0.3× π/2. b) Experimental repeated stabilizer

pumping. Plot reproduced from data given in the supplementary information of the

Nature publication [34]. Quantitative differences from the numerical simulation are

mainly due to additional errors in the global gate operations, whose precise form is

unknown and which have not been taken into account in the theoretical error model.
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In the experiment, the Kraus map (24) has been realized by a quantum circuit

consisting of global rotations and MS gate operations applied to all five ions and

addressed z-type single-qubit rotations, which only involve the ancilla qubit (index #

0) and the system qubit with index # 4 (see the supplementary information of [34] for

the exact form of the experimental circuit decomposition). It is reasonable to assume

that errors in the global gate operations affect all ions to a similar degree, whereas gate

errors in the addressed single-qubit gates lead to additional errors, which dominantly

act on the system qubit # 4. As a consequence, one expects that under a repeated

application of the dissipative map (24), the expectation values of the two-qubit stabilizer

operators, which involve σz
4 to decay faster than those not involving the ion #4. This

decay behavior, as found from a numerical simulation (see figure 6(a) and figure caption

for details), has qualitatively been observed in the experiment [34]. In addition to

the errors in the single-qubit gates (which experimentally are rooted in pulse length

errors and / or laser intensity fluctuations, as discussed in the previous subsection), the

dominant source of errors are imperfections in the MS gate operations, which result in

quantitative differences in the observed decay of stabilizer expecation values. In the

language of stabilizer models, these errors in the simulation correspond to unwanted

heating processes with respect to the z-type stabilizers during the four-body stabilizer

pumping according to the map (24).

7. Conclusions and Outlook

In this work we have discussed a toolbox for “digital” quantum simulation with linear

chains of trapped ions. We have outlined the theoretical concepts and details of

the experiment, which recently demonstrated the building blocks of an open-system

quantum simulator with up to five ions. Furthermore, we have discussed how our scheme

allows one to explore the physics and simulate the coherent and dissipative dynamics of

minimal instances of spin models involving n-body interactions and constraints, such as

e.g.Kitaev’s toric code and a minimal version of topological color code model. Similarly,

circuit implementations for more complex coherent and dissipative n-body interaction

terms as, e.g., plaquette exchange interactions can be developed; see for instance [54].

Here, we have focused on open-loop dynamics, where coherent and dissipative time

evolution in stabilizer models is implemented with the aid of an ancilla qubit, which

is not observed. It is known that such open-loop dynamics involving a single, non-

observed ancilla qubit is not sufficient to realize the most general Markovian multi-

qubit open-system dynamics. As shown in [21], this can be achieved by a closed-loop

simulation scenario. Here, general open-system quantum operations are realized by

consecutive sequences of coherent operations applied to the system qubits and the

ancilla, interspersed with measurements of the ancilla qubit in an appropriate basis. The

gathered information from the outcomes of the sequential ancilla measurements can be

classically processed and used for feedback operations on the system. We note that the

described scheme also allows one to extract such information about the system qubits
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via a measurement of the ancilla qubit, as schematically shown in figure 7. In addition,
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Figure 7. Circuit for readout of the four-body stabilizer operator A = σx
1σ

x
2σ

x
3σ

x
4 via

a measurement of the ancilla qubit. The circuit for coherent simulation of a four-body

spin interactions as discussed in section 3 (cf. eq. (13)) realizes the unitary operation

U = exp(iπ/4σz
0 ⊗A). Thereby, the ancilla qubit initially prepared in |+〉 is coherently

mapped onto the two σy-eigenstates, depending on whether the four system qubits

are in a +1 or -1 eigenstate of A. This information obtained from a subsequent

measurement of the ancilla qubit in the appropriate basis can be classically processed

and used for feedback operations on the system.

the measurement of n-body observables such as multi-qubit stabilizer operators is an

essential ingredient e.g. for error syndrome measurements in quantum error correction

and quantum computing protocols [69, 70, 71].

The engineering of reservoir couplings and dissipative many-body processes enables

novel directions for quantum state preparation [29], as recently also shown in an

experiment with atomic ensembles [26]. Combining dissipative time evolution with

coherent Hamiltonian dynamics might allow one to explore novel physics such as non-

equilibrium phase transitions in driven dissipative systems [72]. In particular, the ability

to implement e.g. master equations with multi-qubit quantum jump operators opens

interesting perspectives for building quantum memories based on dissipation [33] or the

demonstration of a novel form of quantum computing solely based on dissipation [32].
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Appendix A. Coherent Dynamics without an Ancilla Qubit

Coherent dynamics according to n-body spin interactions of the form Aα = σx
1 . . . σ

x
n

can also be achieved without an ancilla qubit as follows: By inspection of equation
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(13) one sees that the quantum circuit involving the n system qubits (e.g. n = 4)

and the single ancilla qubit actually realizes coherent time evolution exp(iφσz
0 ⊗ Aα),

according to an (n+1)-body spin interaction term σz
0σ

x
1 . . . σ

x
n. This evolution is – up to

a single-qubit rotation of the ancilla qubit around the y-axis – equivalent to evolution

according the (n + 1)-body interaction term σx
0σ

x
1 . . . σ

x
n. In other words, for coherent

n-body interactions it suffices that one of the n system qubits takes the role played by

the ancilla. The resulting quantum circuit is shown in figure A1.
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Figure A1. Quantum circuit for a coherent time step according to a four-spin

Hamiltonian term Aα = σx
1 . . . σ

x
n, without using an extra ancilla qubit.

Appendix B. Refocusing Techniques

As outlined in section 3, MS gates on subsets of ions can be achieved (i) either by

transferring ions, which are not supposed to participate in the gate, into decoupled

electronic levels, by the application of hiding pulses, or (ii) alternatively by employing

refocusing techniques. In this appendix we review how MS gates on subsets of ions can

be achieved by decomposing the desired unitary operations into sequences of MS gates,

which are applied to all ions, combined with single-ion refocusing pulses on individiual

ions (see also [66]).

Sequence for a MS gate on n− 1 out of n ions:

A MS gate UMS(θ, φ) on all but, say, the n-th ion can be implemented by a

combination of two MS gates of half of the angle θ, and two single-ion z-gates

U
(n)
σz = exp(−iπ/2σz

n) applied to the n-th ion, i.e.

U
(0,1,...,n−1)
MS (θ, 0) = U

(n)
σz (π)UMS(θ/2, φ)U

(n)
σz (π)UMS(θ/2, φ) (B.1)

up to an irrelevant global phase. The sequence of four gates can be understood as

follows: With the first MS gate “half” of the final entanglement is created between all

pairs {i, j} of the n ions, due to the pairwise interaction terms underlying the MS gate

(8). Now, the spin of the n-th ion is flipped by U
(n)
σz (π), such that in what follows σx

n

and σy
n act effectively as −σx

n and −σy
n. In the third step, the second “half” MS gate

then entangles all pairs of ions, which do not include the n-th ion, further; only for the

pairs of ions which involve the n-th ion the entanglement creation of the first step is

reversed. In this way, the n-th ion is effectively decoupled from all other n − 1 ions.

Finally the n-th is flipped back into its initial orientation by another single-qubit gate

U
(n)
σz (π). The four steps are graphically illustrated in figure B1a.
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Star-type MS gate of the auxiliary ion with all system ions: It is also

straightforward to realize an entangling gate between the ancilla ion and each system

ion without creating pairwise entanglement between the system ions. This can be done

by the sequence
n
∏

i=1

U
(0,i)
MS (θ, φ) = U

(0)
σz (π)UMS(−θ/2, φ)U (0)

σz (π)UMS(θ/2, φ) (B.2)

which is sketched in figure B1b. Here, the second inverse MS gate, which is applied after

the single qubit flip of the auxiliary ion, cancels the initially generated entanglement

between all pairs of ions, which do not include the ancilla ion.

Sequence for a MS gate on 2 of n ions: The sequence for the implementation

of the star-type entangling operation discussed in the previous paragraph can be used to

realize a MS gate on two of n ions (see figure B1c). Such two-ion MS gate is an essential

building block for the implementation of the two-qubit gate C(θ), which is needed for

the dissipative simulation discussed in section 4. For instance, the sequence for a MS

gate on only the auxiliary ion and the system ion #1 is given by

U
(0,1)
MS (θ, φ) = U

(1)
σz (π)UMS(−θ/4, φ)U (0)

σz (π)UMS(θ/4, φ)

× U
(1)
σz (π)UMS(−θ/4, φ)U (0)

σz (π)UMS(θ/4, φ) (B.3)

More involved decompositions for MS gates, where more than one or two ions are

supposed to participate in or be excluded from the gate operation, can be constructed

accordingly. In general, they will involve more “partial” MS gates and refocusing pulses,

which might at some point render the alternative approach of hiding pulses on individual

ions more suitable.

Appendix C. Gate Decompositions

Here, we provide decompositions of the two-qubit gates Ci(θ), which are needed for

the dissipative n-body dynamics as discussed in section 4, into MS gates and single-ion

rotations.

For the simulation of n-body interactions with n = 4, 8, ... the gate Ci(θ) of Eq. (15)

can be decomposed as

Ci(θ) = |0〉〈0|0 ⊗ 1 + |1〉〈1|0 ⊗ exp[iθσy
i ]

= e
1

2
(1−σz

0
)iθσy

i

= e
iθ
2
σ
y
i e−

iθ
2
σz
0
σ
y
i

= e
iθ
2
σ
y
i e−

iπ
4
σx
0 U

(0,i)
MS (θ/2, π/2) e

iπ
4
σx
0 (C.1)

The two-qubit MS gate on the auxiliary ion and the i-th system ion U
(0,i)
MS (θ/2, π/2) can

be realized via refocusing techniques - see eq. (B.3) in Appendix B.

It is straightforward to decompose the two-qubit gates Ci(θ) for other values of n

(as listed in table 2) accordingly.
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Figure B1. Gate sequences for the realization of entangling gates on subset of ions, by

a combination of MS gates applied to all ions and refocusing pulses on individual ions.

The nodes represent the n+ 1 ions, lines between nodes i and j denote entanglement

created between a pair {i, j} of ions during the application of MS gates. The short-hand

notation ±MS/2 and ±MS/4 stands for UMS(±θ/2, φ) and UMS(±θ/4, φ), respectively.

An operation j denotes a single ion pulse U
(j)
σz (π) applied to the i-th ion; ions which

have been exposed to such flip operations are labelled by a small circle, until they are

flipped back into their original orientation. a) Gate decomposition for a MS on all

ions except the n-th ion (cf. eq. (B.1)). b) Gate sequence for the creation of star-

type entanglement between the auxiliary ion (#0) and each of the n system ions. c)

Gate sequence for a MS gate on two ions out of n + 1. Dashed lines correspond to

entanglement, which is created in intermediate steps between an initially disentangled

pair of ions {i, j}, if one (and only one) of the two ions (marked with a circle) has been

previously flipped.

[1] R Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467, 1982.

[2] S Lloyd. Universal quantum simulators. Science, 273(5278):1073, 1996.

[3] I Buluta and F Nori. Quantum simulators. Science, 326(5949):108, 2009.

[4] C Monroe and M Lukin. Remapping the quantum frontier. Physics World, 21:32, 2008.

[5] I Bloch, J Dalibard, and W Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys.,

80(3):885, 2008.
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