

Simulating Patient Flow through an Emergency Department
Using Process-Driven Discrete Event Simulation

M. S. Raunak, L. J. Osterweil, A. Wise, L. A. Clarke
University of Massachusetts Amherst

{raunak, ljo, wise, clarke}@cs.umass.edu

P. L. Henneman
Tufts-Baystate Medical Center

philip.henneman@bhs.org

Abstract

This paper suggests an architecture for supporting

discrete event simulations that is based upon using
executable process definitions and separate
components for specifying resources. The paper
describes the architecture and indicates how it might
be used to suggest efficiency improvements for
hospital Emergency Departments. Preliminary results
suggest that the proposed architecture provides
considerable ease of use and flexibility for specifying a
wider range of simulation problems, thus creating the
possibility of carrying out a wide range of
comparisons of different approaches to ED
improvement. Some early comparisons suggest that the
simulations are likely to be of value to the medical
community and that the simulation architecture offers
useful flexibility.

1. Introduction

Healthcare delivery can be very expensive and is
often subject to delays that can be costly as well as
dangerous to patient health. In our view both the
problems of cost and delay might be addressed by
devising superior approaches for evaluating the
utilization of resources. The resources used in
delivering health care include both equipment, such as
beds, radiographic imaging equipment, and operating
suites and people, such as doctors and nurses. All of
these resources are very costly. Accordingly these
resources tend to be allocated sparingly in most health
care settings. This can lead to a lack of sufficient
resources that can be at least partly to blame for delays
in delivering health care. Adding resources of only one
type (e.g. more doctors) is rarely sufficient to reduce
delays, however, as patient care typically requires the
use of many types of additional resources (e.g. beds,
nurses, and equipment). Increasing resources in an

unbalanced way can thus lead to underutilization of
some resources and increased expense, but no
improvement in service.

Effective approaches to studying how to balance
resources in clinical settings thus seems to offer the
opportunity to demonstrate how to reduce delays in
treating patients, while still maintaining efficient
utilization of expensive resources. This paper suggests
such an approach, namely the use of discrete event
simulation of clinical processes that are defined
sufficiently precisely and completely to make clear the
ways in which resources are used at every process step.

Our approach emphasizes careful attention to both
process details and resource issues. We note that the
delivery of health care is not always straightforward,
and may proceed in many different ways. Thus the
description of a process for delivery of healthcare
seems to us to require the use of a powerful process
description facility. Describing the resources used in
healthcare delivery is very challenging as well, as there
are many different types of resources, and there may be
a considerable amount of flexibility in how different
resources may be used to support the performance of
different steps under different circumstances. Thus, for
example, medications are typically given by nurses, but
under unusual circumstances, doctors may do this.
Moreover, the most critically ill patients are typically
given medical care first, but in the case of a disaster,
the most critically ill patients may be bypassed in order
to deliver care to those for whom the care is most
likely to be most effective. Thus, an important benefit
of our discrete event simulation approach might be
enabling the study of the effects on both realism and
efficiency that might result from allowing resource
substitution flexibility.

There are considerable challenges in dealing with
these issues of process and resource specification [11,
13]. Our view, however, is that meeting these
challenges can lead to a discrete event simulation
facility that could be an effective basis for

experimenting with resource mixes and utilization
strategies.

This paper describes such an approach using the
delivery of Emergency Department (ED) care as an
example. The paper indicates very early results and
some directions for future research.

2. Prior Related Work

We note that there have been other attempts to use

discrete event simulation as a vehicle for exploring
ways to increase efficiency and reduce waiting time in
a hospital ED. Connelly and Bair [2] present a discrete
event simulation model named EDSim developed
using Extend, a general purpose commercial
simulation tool, to investigate the ability to predict
actual patient care times using simulation. The Extend
simulation tool [8] is primarily queue based and
provides an interactive modeling environment with a
compiled modeling language, modL [8], to facilitate
building of reusable and hierarchically decomposable
components.

The study by Connelly and Bair looked at the effect
of two different triage methods on patient service time
in the ED. The authors collected real-life patient data
from an academic ED to drive the simulations of their
modeled ED activities. They modeled such ED
activities as physical examination, nursing activity,
imaging and laboratory studies, and bedside
procedures such as suturing, casting, and intubation. In
addition to individual patient care paths, EDSim also
considered continually updated job queue prioritization
and mid-task preemption capabilities for ED staff. All
staff activities were prioritized according to patient
acuity. According to the study, this model was able to
predict average patient service time within 10% of
actual values. For individual patient paths, however,
only 28% of individual patient treatment times had an
absolute error of less than one hour. The authors
suggest that one of the reasons their results did not
accurately predict the actual timings of real events was
because their simulation did not support making
changes in resource levels (specifically staffing levels)
at different times of the day. Moreover, it appears that
their simulation did not allow for the possibility of
specifying complex constraints on resource utilization
and task interruption.

Other simulation studies have focused on staff
scheduling in hospitals in general and EDs in particular
[4]. A couple of studies have been done to analyze
alternative nurse scheduling techniques in EDs [3, 9].
A study by Rossetti et. al [14] looked at the use of
computer simulation to test alternative ED attending
physician-staffing schedules and to analyze the

corresponding impacts on patient throughput and
resource utilization. A second area of focus in ED
simulation studies has been to look at process changes
and their impact. McGuire studied [10] the use of
simulation to test process improvement alternatives for
reducing the length of stay for ED patients. Another
study [15] shows the use of ED simulation studies to
perform 'what-if' analysis regarding the effect of
process change and staff level change on patients’
length of stay. A recent study by Hoot et al. [7] has
used discrete event simulation in forecasting imminent
crowding in the emergency department based on
changes in waiting room counts. This simulation took
past and present patient-level data as input and
produced future patient-level data as output. Many of
these studies [4, 15] used Arena [5], a commercial
simulation tool, to obtain their results. Arena is an
object-based, hierarchical modeling tool that is used in
a wide range of applications. Like Extend [8], Arena
simulations are driven by queuing models, whereas our
simulations are driven by process and resource
definitions.

Another area of research that has received attention
lately is that of scheduling ED staff under different
constraints. Chun describes a Staff Rostering System
[1] for creating nurse rosters for the Hong Kong
Hospital Authority that manages over 40 public
hospitals. The system defines different constraints to
be satisfied while creating the roster. For example, one
constraint assures that an adequate number and mixture
of staff are present all the time to maintain an
acceptable level of service quality. Other constraints
are used to ensure that no staff member is either
overworked or underutilized according to their terms
of appointment. This type of scheduling is done at the
macro level of shift assignment, whereas we are
primarily concerned with more micro level task based
resource assignment in our work.

All of these simulation studies have taken a factory
view of the ED, where patients come in like orders
queued on a factory floor, often with fixed priority, and
drive the process by requesting resources. Many of
these studies were concerned with only one type of
resource, i.e. either the attending physician or nurse
and focused on only one issue of resource
management, such as scheduling. A recent study [6]
has identified this issue and proposes a different way
of modeling and studying ED processes. The study
argues that with only a factory view of the world, low
acuity patients will continually be starved from
receiving services and many will not receive treatment
at all. The study also argues in favor of modeling the
skill hierarchy of ED staff, using skill-based request
specification, and allowing an ED agent to prioritize its

tasks. By modeling changing request priorities and
resource mapping based on requested skill sets, this
study was able to produce simulation results that align
more closely with how resources in a real ED are
actually used. This work is closer in philosophy and
approach to our own work, in that it places a greater
emphasis on modeling resources. Our work
incorporates a similar focus on resources and also
seems to support more generality in resource
substitutability. But our work complements the focus
on resources with a focus on process as well. In
particular, our approach, which builds on our previous
research [12], suggests that closely correlating the
specific need for resources with specific detailed
process steps should lead to simulations that are more
accurate and potentially capable of better prediction of
the effect of making changes. In the next section we
detail this approach.

3. Our Approach

 In our work we use the Little-JIL process definition
language to specify processes used in delivering
medical care in an ED. We then couple these process
definitions with specifications of resources and
constraints in order to drive discrete event simulations
of how different configurations of process steps,
resource mixes, and constraints handled different flows
and mixes of patients. This approach features the
separation of various key simulation concerns into well
defined components that can support considerable
flexibility and precise specification detail, as we shall
now describe.

3.1. Process Definition

Little-JIL is an executable process definition
language with a well-defined semantics. A Little-JIL
process definition is a hierarchy of steps, each of which
is best thought of as a method invocation. Each step
defines a set of resource types needed to support its
execution. One of these resource types, called the
agent, is distinguished from the others in that it
specifies the characteristics of the resource instance
that is to be responsible for carrying out the execution
of the step. Each step can optionally also be preceded
by a pre-requisite and/or followed by a post-requisite.
Each requisite can be defined to evaluate a boolean
expression or decomposed into hierarchical step
structure. Each step also specifies a set of formal
parameters that is analogous to the argument list of a
method. Execution of a runtime instance of a step
begins with the identification of the agent that will be
made responsible for executing the step based on the

resource type specification in the step, followed by the
evaluation or execution of the pre-requisite. If the pre-
requisite does not throw an exception (details of
exceptions are discussed shortly), step execution
proceeds by first acquiring the agent instance and then
acquiring all other specified resources, binding to the
step’s formal parameters a corresponding set of
arguments, and then remanding execution of the step to
the assigned agent. The step’s execution concludes
with the evaluation of the step’s post-requisite (if any).

Assignment of a step to an agent is done by placing
that step on the agent’s agenda (each agent resource
has an agenda consisting of agenda items, each of
which is an instance of a step that the agent is obliged
to carry out), a complete specification of the step to be
performed, including (but not limited to) specification
of its arguments, available resources, its parent, and its
children.

Typically, a step has substeps, in which case its
execution consists of coordinating the execution of the
substeps. It is often the case that the agent for such a
step is an AutoAgent, which means that execution of
the step is sufficiently clear and bureaucratic that the
Little-JIL execution system is best qualified to perform
it. In Little-JIL, substep execution sequencing is
specified as part of the step definition and may be
specified as being sequential, parallel, or as a choice
among the substep alternatives. Execution of a leaf
step is at the discretion of the step’s agent, however.

Of particular interest is the fact that Little-JIL
assumes that execution of a step may fail and result in
the throwing of a typed exception, where the type
indicates the nature of the exception. Thus, for
example, failure of a pre- or post- requisite causes the
throwing of an exception. But other failures may arise
as well. To handle exceptions arising within the scope
of a step, each step can specify a set of exception
handlers, each annotated with the type of exception it
handles. Each exception handler is also a step that may
be hierarchically decomposed. Thus exception
handlers define the subsequent actions when
exceptional events occur as a result of a step execution
within the sub-tree under the handling step. Similar to
the exception handling mechanism, Little-JIL also
allows specification of reactions that define control
flow as a result of out-of-scope events such as global
messages. Reaction handlers are also steps that can be
decomposed. Space limitations prevent describing all
the features of Little-JIL. Details of the language can
be found in [17] and an example of a Little-JIL process
is shown in Figure 1, which we describe next.

Figure 1 shows a part of the definition of a patient
care process in an ED. In addition to the coordination
specification provided by the step hierarchy, this
diagram also shows yellow boxes that describe the
types of resources required by some of the different
steps. The yellow boxes are annotations, and do not
show the more precise language used to make these
specifications. To avoid visual clutter, the diagram

does not show the parameters for each step.
The root step of this diagram,

TreatPatientsInsideED, represents the process of
providing care to an individual patient once the patient
has been placed in a bed inside the main ED. The
TreatPatientInsideED step is connected to its parent
(not shown in this figure), whose responsibility is to
instantiate the process shown in Figure 1 for each
patient arriving at the ED. As a result, at any point
during the simulation, there may be many instances of
the process shown in Figure 1 running in parallel.

Typically, when a patient arrives in an ED, the
patient is first triaged outside, assigned acuity level by
a triage nurse and then registered by a clerk, where the
patient’s insurance information is collected and an ID-
band is generated and placed on the patient. At this
point the patient waits for a bed to become available to
be placed inside the ED, where treatment starts. In
some cases, a high acuity patient may be immediately

placed inside the ED, bypassing the outside
registration process. Thus, the process in Figure 1
shows how the registration of such patients is
coordinated into the flow of treatment inside the ED.

Figure 1 shows that the agent resource responsible
for the step TreatPatientInsideED is an AutoAgent, as
the main purpose of this step is to create a scope. In
this case, the AutoAgent starts the patient care process
for an individual patient and immediately requests a
Bed as a resource. Once the bed resource has been
acquired by TreatPatientInsideED a resource instance
of type Bed then becomes available to steps within

Figure 1. A simplified ED process in Little-JIL

TreatPatientInsideED’s scope. The AutoAgent then
carries on with the process by activating
TreatPatientInsideED’s children from left to right,
starting with PlacePatientInBed to be executed by a
Nurse agent.

Throughout this process, there is a parameter named
patientInfo (not explicitly shown in the figure) that
passes through each step. This parameter carries
information related to the current state of the patient
for whom treatment is being provided. As agents carry
out different steps, they may use information carried in
the patientInfo parameter coming into a step as well as
set values inside the parameter that are then available
to latter steps (and their agents) subsequently. In some
cases such as AdditionalTreatment, state information
within the patientInfo parameter is used to determine if
the step needs to be carried out or not. As shown in
Figure 1, once the patient is placed in a bed, the patient
treatment part of the process begins with the activation
of non-leaf steps InternalRegistrationScope and
InsideEDScope respectively. Notice there is a pre-
requisite (indicated by a green downward arrowhead to
the left of the step bar) defined at the InsideEDScope
step, whose execution checks the patientInfo parameter
to determine if some form of registration (external or
quick) has been performed for this patient. If this is a
high acuity patient who has been placed inside the ED
without external registration and if an ID band has not
yet been generated through a quick registration step,
the pre-requisite step of InsideEDScope will throw an
exception of type RegistrationNotDone. The exception
will propagate up to the parent step, InsideEDScope,
which has been specified to be able to handle this type
of exception by activating a handler step named
PerformQuickRegistration. This exception handler also
specifies how to continue execution once the exception
has been handled, namely by restarting execution of
InsideEDSceope. An agent of type internal clerk is
specified to perform the QuickRegistration step. Note
that whenever a quick registration is performed, it
needs to be followed by another step to complete the
registration. This step, CompleteRegistration, can take
place in parallel with other treatment activities being
performed on the patient. This potential concurrency is
captured by defining CompleteRegistration and
TreatPatientScope, two child steps, under a parallel
non-leaf step. InsideEDScope and TreatPatientScope
both define treatment of a patient inside the ED as a
series of tasks that include initial assessment by a nurse
and a doctor, performance of tests and treatment
procedures, followed by more assessments
(IntermediateAssessment) and additional treatments for
higher acuity patients. In this process definition the
initial assessment is performed by a nurse

(RNAssessment) and a doctor (MDAssessment). Both
of these steps have been placed under a parallel step,
InitialAssessmentInAnyOrder. This specifies that a
patient must be assessed both by a nurse and by a
doctor, but that these two assessments can not take
place simultaneously. This is achieved by defining the
patient as a resource, which implies that the patient
instance must be acquired as a resource by both
MDAssessment and RNAssessment steps. By
constraining the patient resource to be the same patient
for both steps the resource manager can then ensure
that the patient cannot be acquired simultaneously, and
thus that the two steps take place sequentially.

The TreatPatientScope sub-process ends with
FinalMDAssessment step, where the process specifies
that the same doctor who saw the patient earlier will
revisit the patient to decide whether to discharge or
admit the patient to the hospital. Finally, based on the
decision the doctor makes as part of completing the
FinalMDAssessment, a nurse agent will be assigned to
carry out the DischargeOrAdmit step.

3.2. Process Execution

The simulation capability we are using for this work
differs from most simulation capabilities in that our
simulations are driven by a Little-JIL process
definition that is rigorously defined, can be quite
detailed, and is indeed executable. The simulation
capability has been created by making relatively
modest modifications and enhancements to the Little-
JIL process execution capability that already exists.
Thus the simulation architecture is best described by
first summarizing the Little-JIL process execution
architecture. Figure 2a provides a high-level depiction
of the Little-JIL execution architecture. The Step
Sequencer is a central feature of this system, receiving
requests for execution of the process (in this case a
notification of a patient arrival), and then supervising
the forward progress of process execution as steps
complete. The Step Sequencer performs its work by
accessing the Little-JIL process to determine which
step(s) are to be executed next (based upon
information about step(s) that have completed), and
then assembles the items needed to get the step
executed.

Most specifically, the Step Sequencer consults the
Resource Manager to convey requests for resources
(an agent resource and other supporting resources) that
are instances of the types defined as being needed by
the step being executed. The Resource Manager is
responsible for searching its internal repository of
resource instances and selecting those that seem
particularly well-suited for meeting the needs of the

requesting step. Determination of which resource is
best suited often requires understanding the
circumstances under which the step is being
performed. Information about circumstances is
generally obtained through an inquiry about the state of
the process execution. Once the Resource Manager has
identified the needed resource instances, the step is
placed as an item on the agenda of the selected agent
resource. This agenda item also includes the input and
output arguments for the step. These arguments are
accessed through a Parameter Manager.

Figure 2a. Little-JIL Runtime Architecture

During execution each agent must monitor its

agenda, select a step to be performed, perform the step,
and signal step completion once result values have
been bound to the appropriate output arguments. Note
that the monitoring of an agenda of a non-human agent
(e.g. an MRI or an electronic health record system) is
probably done by automatic polling. Live agents (e.g.
doctors, nurses, and registration clerks) must monitor
their agendas themselves. In all cases, an agent may
have the capacity to perform more than one step at a
time, and so may have multiple agenda items open
simultaneously. An agent signals completion of a step
by placing an annotation in the step instance’s agenda
item, and passing the agenda item through the Agenda
Management system back to the Step Sequencer,
which proceeds with execution of subsequent steps.

3.3. The JSIM Simulation Architecture

As noted above, the JSim simulation capability has

been built by making relative modest additions and
modifications to the Little-JIL process execution
system just described. Figure 2b shows the simulation
system architecture. This architecture allows any
combination of human and non-human agents to be
simulated. In Figure 2b red workstation icons indicate
the agents to be simulated. Note in particular that by
choosing to simulate all agents except one, the result

would be a system that could be of use in training
individuals to be agents of the type not simulated. In
any case, note that the main additions to the execution
system are a simulation TimeLine, facilities for
simulating the behaviors of all of those agents that are
being simulated (Agent Behaviors), and a facility for
collecting the results of a simulation run. In addition,
the Step Sequencer has been modified (e.g. so that it
accepts instructions about when to proceed to the next
step from the TimeLine), and the user now provides
information about the distribution of patient arrivals.

Briefly, the JSim simulator works as follows. A
simulation begins with the user providing an arrival
distribution specification, and specifications of agent
behaviors, through the Agent Behaviors module. To
begin, JSim initializes the TimeLine to zero to start off
a simulation run, initializes the root step of the Little-
JIL process to be the step currently being executed,
and places a start event for that step in the TimeLine.
The simulation then proceeds as an iterative loop in
which the most proximate event in the TimeLine is
acquired and simulated. The perpetuation of the
simulation results from the fact that each step is
responsible for placing in the TimeLine one or more
events that represent such key activities as step
completion, spawning of substeps, etc. Each such event
has a designated simulated time at which it is to occur.
Thus, for example, a step completion event is
generated at the start of the simulation of the step, and
the time of this event reflects how long it is expected to
take for the step’s agent to complete the performance
of the step. The TimeLine module keeps all events in
sorted order, so that the Step Sequencer can easily
determine which event is to be simulated next.

Figure 2b. JSim Simulation Architecture

The Step Sequencer then proceeds very much as it

does when executing the process. In particular, it picks
event consults the Resource Manager to obtain the
needed resources (including the agent) and the

Parameter Manager to obtain the needed input
arguments. Once all needed resources and arguments
have been obtained, the Step Sequencer packages them
into an agenda item and delivers the agenda item to the
Agenda Manager for placement on the agenda of the
agent assigned to perform the step up the events to be
simulated in order and for each. Performance of the
step, in turn, results in more events being placed in the
TimeLine. To determine the times at which different
events, such as starting or completion of a task, are to
be performed by an agent, JSim uses the Agent
Behaviors module, which has been initialized with
information about how to model agent behaviors. To
specify simulated agent behaviors in a flexible way, we
have developed an XML based rule language [16]
called the JSim Agent Behavior Specification language
(JABS). Examples of how agent behaviors are
specified using JABS is briefly discussed in section 4.
This Agent Behaviors specification replaces the actual
interaction with live agents in a JSim simulation. JSim
allows the specification of agent behavior to be done
primarily in two ways:

• Stepwise: There is a specification for how a
step execution is to be simulated, and the
specification does not vary with different
instantiations in the process or for different
agents that may perform the step.

• Agentwise: There is a specification for how to
simulate the behavior of each different agent
that may be assigned to carry out each of the
steps to which it might be assigned. Thus, for
example, this type of specification allows the
possibility that different agent instances may
require different amounts of time to perform
the same step.

JABS also allows nested specification of agent
behavior in order to allow combinations of the above
two approaches. In both cases, if the step uses input
parameters or produces output parameters, the Agent
Behavior Specification must define how the agent uses
and converts its input arguments into outputs.

The Resource Manager contains summary data
about the capabilities agent resources, such as a list of
the types of steps that each agent resource can perform.
This information supports the Resource Manager in
selecting the agent to be assigned responsibility for
performing a step whose execution is to be simulated.

Execution time is estimated by means of a formula
that takes into account the max, min, and mean
execution times along with a distribution function,
agent skill level, agent task load, agent capacity, and
inquiry into various execution state parameters (e.g.
amount of crowding and threat level). In addition to
estimating and modeling execution time, JSim also

allows for estimation and modeling of the lag time
between step assignment, and initiation of step
execution. For now, these formulas are estimates
based on interviews with ED professionals, and
analysis of statistical data. These formulas will have to
be improved and sharpened as our work progresses.

For the ED simulation example, specification of the
transformation of parameters is made easier by
restricting the number of parameters used by the steps
of the simulation. The only parameter type of
importance in these simulation runs is the patientInfo
packet that represents a patient to whom health care is
being delivered. Thus each step takes the patientInfo
descriptor packet as input and sends it as output after
having added to or modified information inside the
packet according to the Agent Behavior Specification,
discussed above.

The patientInfo packets are initialized with patient
information such as acuity level, and other items
needed to accurately reflect the Patient Distribution
specification input by the user of the simulation. JSim
supports the definition of parameters that define this
distribution, and is potentially capable of addressing
such issues as arrival rates and distributions of acuity
levels and symptoms. Using these parameters JSim
generates patient arrivals according to the Patient
Distribution specification parameters. Each patient
arrival signal causes the instantiation of a new instance
of TreatPatientInsideED, as shown in Figure 1.

Finally, note that it is quite challenging to address
the need to model the selection of resource instances
(especially the agent resource instance) to be used in
responding to a resource request from a step. This is
the subject of ongoing research in developing a
flexible resource manager that can support resource
requirements during the execution or simulation of
complex processes [11, 12]. As already noted, the
problem here is to select a resource instance whose
characteristics and current situation most closely match
the needs of the step to be executed, under the current
circumstances. Considerable literature on resource
allocation indicates that there are many reasons why
this is a very difficult problem. In the case of ED
resource allocation the problem is made even more
difficulty by our sense of the desirability of
incorporating additional flexibility from resource
substitutability. Our experience suggests that modeling
resource substitutability could help identify strategies
for facilitating patient flow and improving the
utilization of scare resources.. The details of how we
have approached this problem are beyond the scope of
this paper. But it is important to note that Resource
Management is a well-defined separate component in
our simulation architecture, and thus changes in

resource assignment strategies and substitutability
policies should be readily incorporated into new
simulations by either modification or replacement of
an existing Resource Manager (e.g. by new Resource
Managers specialized for different domains).

Indeed, a key feature of the architecture of this
simulation system is separation of concerns such as is
exemplified by having Resource Management
comprise a separate component. The architecture
incorporates a separate component for the definition of
processes, a different component for dealing with
resources, and still another component for representing
the behaviors of the various resources/agents under
different circumstances. In creating this separation, we
have created a simulation facility with an unusually
large amount of flexibility. In particular we expect that
it should be quite feasible to use it to relatively easily
carry out the following kinds of comparative studies:

• For a given process, run different simulations with

different resource mixes. A goal in doing this
might be to determine which mixes of resources
best fit the process that is currently in use.

• For a given process, modify the resource mix over
time. Our approach should be better able to
produce simulation results that are consistent with
observed ED performance by enabling replication
of how ED resource mixes change over time. This
approach would also be useful in studying how
different changes in resources mixes could effect
better resource utilization and reduced delay in
treating patients.

• For a given resource mix, run different ED process
variations. Studies of this sort might be
particularly useful in cases where there are severe
constraints on resource availability. These studies
should be able to suggest how best to utilize the
resources that are available. The simulations
might, for example, suggest how an ED might
modify its procedures in periods of congestion.

• For a given resource mix and a given process, use
different resource substitution rules. Studies of
this sort might complement studies of how to
modify processes when resources are highly
constrained by suggesting how to modify the
priorities that agents (especially human agents)
attach to the handling of their tasks. Thus, for
example, these studies might suggest the possible
benefits of having physicians and nurses cover
some of each other’s tasks under certain exigent
conditions.

Other types of simulation studies suggest

themselves as well. But a particular feature of these

studies is their ability to fix one area of concern (e.g.
the process), and then evaluate it against variations in
various other areas of concern. Thus our goal is to
explore the efficacy of our factored approach to the
creation of simulations.

4. Experience

We have implemented a system having the
architecture depicted in Figure 2b, and have used it to
create simulations that are driven by a range of
processes defined in Little-JIL. While we have not yet
completed many of the studies that we have outlined in
the previous section, we have completed some
prototype simulations and done some preliminary
evaluation of their results. This section presents a
representative sample of some of these simulations.

We started out with a simplified ED process such as
the one shown in Figure 1. We modeled patient
arrivals as specific patient arrival events placed
initially in the TimeLine. We specified agent behaviors
by using JABS to specify the type of agents and other
resources required for carrying out each process step.
For example, the leaf-steps QuickRegistration,
MDAssessment, and RNAssessment require as agents
registration clerks that work inside the ED, a doctor,
and a nurse respectively. TreatPatientInsideED
specifies the need for a Bed resource.

4.1. Specifying Scenarios and Agent Behavior

For initial simulations, we first populated the
TimeLine with a fixed set of patient arrivals to begin
the simulation run. Later we used a Poisson
distribution of mean 10.0 to generate the times at
which different patient arrivals are simulated. We say
that a set of patient arrival events makes up the
scenario for a simulation run. Figure 3 shows an
example of the specification of one such scenario,
namely one in which there are three patient arrivals,
and they occur at times, 8, 17, and 23.

<scenario>
 < message
 t ype ="edparams.PatientArrivalMessage"
 t ime ="8"/>
 < message
 type ="edparams.PatientArrivalMessage"
 time ="17"/>
 <message
 type ="edparams.PatientArrivalMessage"
 time ="23"/>
</ scenario >

Figure 3. Example of patient arrival specification

Figure 4 shows an example of part of an Agent
Behavior specification.

 < step name="PlacePatientInBed">
 <started >

<complete >
 <fixed value ="10" />
</ complete >

 </ started >
 </ step >
 < step name="CompleteRegistration">
 < started >
 <group>
 < set-field parameter ="patientInfo">

<field name="isRegistrationDone">
 < boolean value ="true" />

 </ field >
 </ set-field >
 < complete >

 < linear-range min ="10" max=” 20” />
 </ complete >
 </group>
 </ started >
 </ step >
 < agent name="ha001-doctor">

 < step name="MDAssessment">
 <started >
 <complete >
 <linear-range min ="10" max="20"/>
 </ complete >
 </ started >
 </ step >

 </ agent >

Figure 4. Example of Agent Behavior Specification

In Little-JIL, each step is formally defined using a

finite state automaton. During the execution or
simulation of a Little-JIL process, a step goes through
the states posted, started, completed, and/or
terminated. Although not required, for very fine-
grained control JABS supports specification of the
behavior of an agent upon entry into each of these
states. Figure 4 shows examples of how such behaviors
can be specified upon entry into the “started”
execution state for some of the steps in the process
shown in Figure 1. In this example, once the
PlacePatientInBed step is started, any agent made
responsible for carrying out the step, will generate the
complete event on this step after 10 simulation time
units. Similarly, the second rule in Figure 4 specifies
the time it takes for any agent assigned to the step
CompleteRegistration to be computed using a uniform
distribution between 10 and 20 simulation time units.
The agent behavior specified as part of completing the
CompleteRegistration step also sets the value of a
boolean field inside the ‘patientInfo’ parameter to
become true. The third rule, which is a nested rule,
specifies that a specific doctor agent, with id ‘HA001’
takes somewhere between 10 to 20 simulation time
units when assigned the task of performing
MDAssessment.

4.2. Summarization of Simulation Output

The most basic form of output from a JSim

simulation run is a trace. Simulation run traces include
such information as when each instance of a step
became ready to be executed (entered the “initial”
state), when it was assigned to an agent’s agenda
(entered the “posted” state), when the agent started
performing that step (entered the “started” state), and
when it completed the step’s execution (entered the
“completed” state). From this basic trace output we can
then compute a range of summary information. In
particular, in our early work we have computed the
following kinds of summary information:

• Length-Of-Stay (LOS) for patients: This is the

time a patient spends from arrival to discharge or
hospital admission.

• Resource Utilization: The fraction of time
resource instances are actually being used (i.e. are
assigned as agents or other resources for the
execution of one or more steps) as opposed to
waiting for steps to be assigned to them.

Changes in Avg LOS and Doctor Utilization

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12

Beds

A
ve

ra
ge

 L
O

S

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

U
til

iz
at

io
n

Avg-LOS Doctor Utilization

Figure 5. Sample result of simulation runs

This simulation capability has allowed us to explore

how variations in resource mixes and allocations seem
to affect such key measures as LOS. Thus, for
example, we have run a number of simulations in
which the ED process was fixed (using the process
shown in Figure 1), but with different resources mixes.
Figure 5 shows some of the summary results. In this
case, all resources except the number of available beds
were kept fixed, and the number of beds was varied
from 2 to 10. As expected, the average length of stay
(the blue line in Figure 5) shows a decrease with
increasing numbers of beds. However, we see less
reduction in the average LOS as more beds are added.
In general, this is to be expected as we have kept all
other resources fixed. We see a diminishing effect on

reducing length of stay as a result of adding just one
type of resource. In the same graph, we have plotted
(red line) the average utilization of doctor resources.
We can see that, with the given resource mix, the
doctor utilization increases steadily with increasing
numbers of beds. This is also an expected behavior, as
doctors were underutilized when there were fewer
beds, and more beds allowed more patients to be
brought in to be seen by doctors, thus reducing idle
time for doctors. However, the doctor utilization does
not improve in a straight line or a smooth curve. This
unexpected outcome could be a result of the particular
scenarios or resource mixes we have used. It clearly
underscores the need for careful validation of
simulation output results, an issue that we address
shortly.

In our very early work, we have modeled different
mixes of resource instances such as doctors, nurses,
clerks, beds etc. inside the Resource Manager
repository, all using the same ED process. We have
also created different ED processes (with a lot more
details than is shown in Figure 1), and run simulations
using the same fixed resource mix. We have also run
simulations with various numbers of patients, different
arrival distributions, and different simulation periods.
This work has reinforced our view that the separation
of concerns supported by the JSim architecture makes
it quite easy to carry out a wide range of comparison
studies, where the analyst can focus on process
changes, resource mix changes, patient mix changes, or
various combinations of these factors. For example, the
simulation results for this paper were obtained by
simplifying a process that we had been using
previously, but that is too large for the space available
in this paper. To create and simulate the process
described here, we simply modified the process by
deleting a few steps and abstracting out the lower level
details of others such as PerformTests and
PerformProcedures. Then we made minor
modifications to the agent behavior specification to
support this modified process. The changes in the
resource mix specification, as it is dealt with by a
separate component, were easy and largely
independent of the process changes. All changes were
completed in less than one hour.

5. Future Work

The early results obtained using this simulation
facility seem encouraging. But much work remains to
be done if we are to have enough confidence in this
capability to use it as a predictive tool to suggest
improvements in the performance of actual EDs. Thus,

we suggest two future thrusts for this work: validation
and prediction.

Validation of our simulation facility: Simulations

of a simplified ED process with minimal resources
have usually shown output results that are in line with
our expectation, although, as shown in Figure 5, some
results may appear to be counterintuitive, at least at
first. Thus we have immediately encountered the well-
known problem of validating a simulation. While we
are testing our simulations, we understand that testing
is of limited value, as software testing typically
assumes the existence of an “oracle”, which
encapsulates information about what comprises
“correct” output. Especially in view of the fact that a
simulation is intended to make predictions and produce
results that are not previously known, such oracles are
difficult to devise. One type of oracle that we are
exploring, however, is actual practice. To gain more
confidence in our simulation results, we plan to
compare our simulated models with actual EDs of
various size and complexity to see how our results
compare to actual patient lengths of stay.

In addition, we are carefully examining our
simulation trace output to be sure that the simulation is
carrying out process steps in the right order, acquiring
resources that are appropriate, and modeling agent
behaviors in ways that are consistent with our inputs.
These simulation validation efforts will continue in
parallel with our increasing attempts at prediction for
the foreseeable future.

Prediction: Our well-modularized simulation

infrastructure architecture provides considerable
flexibility in performing different types of simulations.
As suggested above we plan to use this capability for
predicting effects of changes in a) process, b) resource
utilization, c) priorities of steps, d) resource
substitution policies, and e) various combinations of all
these. We plan to perform different ‘what if’ types of
studies related to changing resource mixes, patient
arrival patterns, and changes in process. For example,
we want to study the effect of allowing certain steps in
the ED process that are usually performed sequentially
to run in parallel.

We are also very interested in studying effects of
dynamic changes in the process definition or resource
assignment based on the state of the running system.
For example, usually a nurse is the type of agent that
performs the patient discharge activity. We would like
to study the impact of starting to assign this step to
doctor agents when patient waiting time crosses a
certain threshold. Simulating this sort of dynamism
seems to be difficult for many existing simulation

systems, but seems relatively straightforward using our
approach. Thus, attempting this kind of simulation and
determining whether it yields results that are truer to
actual observed practice should help us to determine
whether the modularity and flexibility of our JSim
architecture does indeed offer the benefits of greater
accuracy that we have been suggesting.

In general, our future experimentation will be aimed
not only at attempting to improve the performance of
EDs, but also at coming to understand better the
software architectural choices that seem to support
greater experimental flexibility and improved
simulation accuracy. Clearly this work is only just
beginning.

6. Acknowledgements

We would like to thank Prof. George Avrunin for his
valuable feedback about this early work. This material
is based upon work supported by the National Science
Foundation under Awards CCF-0427071, CCF-
0820198, CCF-0829901, and IIS-0705772.

Any opinions, findings, and conclusions or
recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the
views of the National Science Foundation

7. References

[1] Chun, A. H. W., S. H. C. Chan, et al. (2000), “Nurse
Rostering at the Hospital Authority of Hong Kong”,
Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Innovative
Applications of Artificial Intelligence 0-262-51112-6, AAAI
Press / The MIT Press: 951-956.

[2] Connelly, L. G. and A. E. Bair (2004), Discrete Event
Simulation of Emergency Department Activity: A platform
for System-level Operations Research." Academic
Emergency Medicine, vol. 11, no. 11: 1177-1185.

[3] Draeger, M. A. (1992), “An Emergency Department
Simulation Model Used to Evaluate Alternative Nurse
Staffing and Patient Population Scenarios”, Proceedings of
the 24th Conference on Winter Simulation, Arlington, VA.

[4] Evans, G. W., Gor, T. B., and Unger, E. (1996), “A
simulation model for evaluating personnel schedules in a
hospital emergency department”, Proceedings of the 28th
Conference on Winter Simulation, Coronado, CA.

[5] Hammann, J. E. and Markovitch, N. A. (1995),
“Introduction to ARENA”, Proceedings of the 27th
Conference on Winter Simulation, Arlington, Virginia.

[6] Hay, A. M., E. C. Valentin, et al. (2006), “Modeling
Emergency Care In Hospitals: A Paradox - The Patient
Should Not Drive The Process”, Proceedings of the 38th
Conference on Winter Simulation, Monterey, California.

[7] Hoot, N. R., Leblanc L. J. et al. (2008), “Forecasting
Emergency Department Crowding: A Discrete Event
Simulation”, Annals of Emergency Medicine, Vol. 52, No. 2.

[8] Krahl, D. (2003), “Extend: an interactive simulation tool:
extend: an interactive simulation tool”, Proceedings of the
35th Conference on Winter Simulation: Driving innovation,
New Orleans, Louisiana, December 07 - 10, 2003.

[9] Kumar, A. and R. Kapur (1989), “Discrete Simulation
Application - Scheduling Staff for the Emergency Room”,
IEEE Winter Simulation Conference, E. A. M. a. K. J. M. a.
P. Heidelberger. Washington, D.C.: 1112--1120.

[10] McGuire, F. (1994), “Using Simulation to Reduce
Length of Stay in Emergency Departments”, IEEE Winter
Simulation Conference, J. D. T. a. S. M. a. D. A. S. a. A. F.
Seila. Orlando, FL: 861--867.

[11] Raunak, M. S., Osterweil, L. J. (2005), “Effective
Resource Allocation for Process Simulation: A Position
Paper”, Proceedings of the 6th International Workshop on
Software Process Simulation and Modeling (ProSim), St.
Louis, MO, May 2005.

[12] Raunak, M. S., Osterweil, L. J. (2005), “Process
definition language support for rapid simulation
prototyping”, Proceedings of the International Software
Process Workshop (ISPW), Beijing, China, 2005.

[13] Raunak, M. S. (2007), “Resource Management in
Complex and Dynamic Environments”, Department of
Computer Science, University of Massachusetts Amherst.

[14] Rossetti, M. D., Trzcinski, G. F. et al. (1999),
“Emergency department simulation and determination of
optimal attending physician staffing schedules”, Winter
Simulation Conference, Squaw Peak, Phoenix, AZ.

[15] Samaha, S., W. S. Armel, et al. (2003), “The use of
simulation to reduce the length of stay in an emergency
department”, WSC '03: Proceedings of the 35th Winter
Simulation Conference, New Orleans, Louisiana, 1907-1911.

[16] Wise, A. (2008), “JSim Agent Behavior Specification
Language”, http://laser.cs.umass.edu/documentation/jsim/la-
nguage.html.

[17] Wise, A. (2006), “Little-JIL 1.5 Language Report”,
University of Massachusetts Amherst, Amherst, MA.

