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Abstract 

 
This paper suggests an architecture for supporting 

discrete event simulations that is based upon using 
executable process definitions and separate 
components for specifying resources. The paper 
describes the architecture and indicates how it might 
be used to suggest efficiency improvements for 
hospital Emergency Departments. Preliminary results 
suggest that the proposed architecture provides 
considerable ease of use and flexibility for specifying a 
wider range of simulation problems, thus creating the 
possibility of carrying out a wide range of 
comparisons of different approaches to ED 
improvement. Some early comparisons suggest that the 
simulations are likely to be of value to the medical 
community and that the simulation architecture offers 
useful flexibility. 
 
 

1. Introduction 
 

Healthcare delivery can be very expensive and is 
often subject to delays that can be costly as well as 
dangerous to patient health. In our view both the 
problems of cost and delay might be addressed by 
devising superior approaches for evaluating the 
utilization of resources. The resources used in 
delivering health care include both equipment, such as 
beds, radiographic imaging equipment, and operating 
suites and people, such as doctors and nurses. All of 
these resources are very costly. Accordingly these 
resources tend to be allocated sparingly in most health 
care settings. This can lead to a lack of sufficient 
resources that can be at least partly to blame for delays 
in delivering health care. Adding resources of only one 
type (e.g. more doctors) is rarely sufficient to reduce 
delays, however, as patient care typically requires the 
use of many types of additional resources (e.g. beds, 
nurses, and equipment). Increasing resources in an 

unbalanced way can thus lead to underutilization of 
some resources and increased expense, but no 
improvement in service.  

Effective approaches to studying how to balance 
resources in clinical settings thus seems to offer the 
opportunity to demonstrate how to reduce delays in 
treating patients, while still maintaining efficient 
utilization of expensive resources. This paper suggests 
such an approach, namely the use of discrete event 
simulation of clinical processes that are defined 
sufficiently precisely and completely to make clear the 
ways in which resources are used at every process step.  

Our approach emphasizes careful attention to both 
process details and resource issues. We note that the 
delivery of health care is not always straightforward, 
and may proceed in many different ways. Thus the 
description of a process for delivery of healthcare 
seems to us to require the use of a powerful process 
description facility. Describing the resources used in 
healthcare delivery is very challenging as well, as there 
are many different types of resources, and there may be 
a considerable amount of flexibility in how different 
resources may be used to support the performance of 
different steps under different circumstances. Thus, for 
example, medications are typically given by nurses, but 
under unusual circumstances, doctors may do this. 
Moreover, the most critically ill patients are typically 
given medical care first, but in the case of a disaster, 
the most critically ill patients may be bypassed in order 
to deliver care to those for whom the care is most 
likely to be most effective. Thus, an important benefit 
of our discrete event simulation approach might be 
enabling the study of the effects on both realism and 
efficiency that might result from allowing resource 
substitution flexibility. 

There are considerable challenges in dealing with 
these issues of process and resource specification [11, 
13]. Our view, however, is that meeting these 
challenges can lead to a discrete event simulation 
facility that could be an effective basis for 



 

experimenting with resource mixes and utilization 
strategies.  

This paper describes such an approach using the 
delivery of Emergency Department (ED) care as an 
example. The paper indicates very early results and 
some directions for future research. 
 

2. Prior Related Work 
 
We note that there have been other attempts to use 

discrete event simulation as a vehicle for exploring 
ways to increase efficiency and reduce waiting time in 
a hospital ED. Connelly and Bair [2] present a discrete 
event simulation model named EDSim developed 
using Extend, a general purpose commercial 
simulation tool, to investigate the ability to predict 
actual patient care times using simulation. The Extend 
simulation tool [8] is primarily queue based and 
provides an interactive modeling environment with a 
compiled modeling language, modL [8], to facilitate 
building of reusable and hierarchically decomposable 
components.  

The study by Connelly and Bair looked at the effect 
of two different triage methods on patient service time 
in the ED. The authors collected real-life patient data 
from an academic ED to drive the simulations of their 
modeled ED activities. They modeled such ED 
activities as physical examination, nursing activity, 
imaging and laboratory studies, and bedside 
procedures such as suturing, casting, and intubation. In 
addition to individual patient care paths, EDSim also 
considered continually updated job queue prioritization 
and mid-task preemption capabilities for ED staff. All 
staff activities were prioritized according to patient 
acuity. According to the study, this model was able to 
predict average patient service time within 10% of 
actual values. For individual patient paths, however, 
only 28% of individual patient treatment times had an 
absolute error of less than one hour. The authors 
suggest that one of the reasons their results did not 
accurately predict the actual timings of real events was 
because their simulation did not support making 
changes in resource levels (specifically staffing levels) 
at different times of the day. Moreover, it appears that 
their simulation did not allow for the possibility of 
specifying complex constraints on resource utilization 
and task interruption.  

Other simulation studies have focused on staff 
scheduling in hospitals in general and EDs in particular 
[4]. A couple of studies have been done to analyze 
alternative nurse scheduling techniques in EDs [3, 9]. 
A study by Rossetti et. al [14] looked at the use of 
computer simulation to test alternative ED attending 
physician-staffing schedules and to analyze the 

corresponding impacts on patient throughput and 
resource utilization. A second area of focus in ED 
simulation studies has been to look at process changes 
and their impact. McGuire studied [10] the use of 
simulation to test process improvement alternatives for 
reducing the length of stay for ED patients.  Another 
study [15] shows the use of ED simulation studies to 
perform 'what-if' analysis regarding the effect of 
process change and staff level change on patients’ 
length of stay. A recent study by Hoot et al. [7] has 
used discrete event simulation in forecasting imminent 
crowding in the emergency department based on 
changes in waiting room counts. This simulation took 
past and present patient-level data as input and 
produced future patient-level data as output. Many of 
these studies [4, 15] used Arena [5], a commercial 
simulation tool, to obtain their results. Arena is an 
object-based, hierarchical modeling tool that is used in 
a wide range of applications. Like Extend [8], Arena 
simulations are driven by queuing models, whereas our 
simulations are driven by process and resource 
definitions. 

Another area of research that has received attention 
lately is that of scheduling ED staff under different 
constraints. Chun describes a Staff Rostering System 
[1] for creating nurse rosters for the Hong Kong 
Hospital Authority that manages over 40 public 
hospitals. The system defines different constraints to 
be satisfied while creating the roster. For example, one 
constraint assures that an adequate number and mixture 
of staff are present all the time to maintain an 
acceptable level of service quality. Other constraints 
are used to ensure that no staff member is either 
overworked or underutilized according to their terms 
of appointment. This type of scheduling is done at the 
macro level of shift assignment, whereas we are 
primarily concerned with more micro level task based 
resource assignment in our work. 

All of these simulation studies have taken a factory 
view of the ED, where patients come in like orders 
queued on a factory floor, often with fixed priority, and 
drive the process by requesting resources. Many of 
these studies were concerned with only one type of 
resource, i.e. either the attending physician or nurse 
and focused on only one issue of resource 
management, such as scheduling. A recent study [6] 
has identified this issue and proposes a different way 
of modeling and studying ED processes. The study 
argues that with only a factory view of the world, low 
acuity patients will continually be starved from 
receiving services and many will not receive treatment 
at all. The study also argues in favor of modeling the 
skill hierarchy of ED staff, using skill-based request 
specification, and allowing an ED agent to prioritize its 



 

tasks. By modeling changing request priorities and 
resource mapping based on requested skill sets, this 
study was able to produce simulation results that align 
more closely with how resources in a real ED are 
actually used. This work is closer in philosophy and 
approach to our own work, in that it places a greater 
emphasis on modeling resources. Our work 
incorporates a similar focus on resources and also 
seems to support more generality in resource 
substitutability. But our work complements the focus 
on resources with a focus on process as well. In 
particular, our approach, which builds on our previous 
research [12], suggests that closely correlating the 
specific need for resources with specific detailed 
process steps should lead to simulations that are more 
accurate and potentially capable of better prediction of 
the effect of making changes. In the next section we 
detail this approach. 

 

3. Our Approach 
 

 In our work we use the Little-JIL process definition 
language to specify processes used in delivering 
medical care in an ED.  We then couple these process 
definitions with specifications of resources and 
constraints in order to drive discrete event simulations 
of how different configurations of process steps, 
resource mixes, and constraints handled different flows 
and mixes of patients. This approach features the 
separation of various key simulation concerns into well 
defined components that can support considerable 
flexibility and precise specification detail, as we shall 
now describe. 
 
3.1. Process Definition 
 

Little-JIL is an executable process definition 
language with a well-defined semantics. A Little-JIL 
process definition is a hierarchy of steps, each of which 
is best thought of as a method invocation. Each step 
defines a set of resource types needed to support its 
execution. One of these resource types, called the 
agent, is distinguished from the others in that it 
specifies the characteristics of the resource instance 
that is to be responsible for carrying out the execution 
of the step. Each step can optionally also be preceded 
by a pre-requisite and/or followed by a post-requisite.  
Each requisite can be defined to evaluate a boolean 
expression or decomposed into hierarchical step 
structure. Each step also specifies a set of formal 
parameters that is analogous to the argument list of a 
method. Execution of a runtime instance of a step 
begins with the identification of the agent that will be 
made responsible for executing the step based on the 

resource type specification in the step, followed by the 
evaluation or execution of the pre-requisite. If the pre-
requisite does not throw an exception (details of 
exceptions are discussed shortly), step execution 
proceeds by first acquiring the agent instance and then 
acquiring all other specified resources, binding to the 
step’s formal parameters a corresponding set of 
arguments, and then remanding execution of the step to 
the assigned agent. The step’s execution concludes 
with the evaluation of the step’s post-requisite (if any). 

Assignment of a step to an agent is done by placing 
that step on the agent’s agenda (each agent resource 
has an agenda consisting of agenda items, each of 
which is an instance of a step that the agent is obliged 
to carry out), a complete specification of the step to be 
performed, including (but not limited to) specification 
of its arguments, available resources, its parent, and its 
children. 

Typically, a step has substeps, in which case its 
execution consists of coordinating the execution of the 
substeps.  It is often the case that the agent for such a 
step is an AutoAgent, which means that execution of 
the step is sufficiently clear and bureaucratic that the 
Little-JIL execution system is best qualified to perform 
it. In Little-JIL, substep execution sequencing is 
specified as part of the step definition and may be 
specified as being sequential, parallel, or as a choice 
among the substep alternatives. Execution of a leaf 
step is at the discretion of the step’s agent, however.  

Of particular interest is the fact that Little-JIL 
assumes that execution of a step may fail and result in 
the throwing of a typed exception, where the type 
indicates the nature of the exception. Thus, for 
example, failure of a pre- or post- requisite causes the 
throwing of an exception. But other failures may arise 
as well. To handle exceptions arising within the scope 
of a step, each step can specify a set of exception 
handlers, each annotated with the type of exception it 
handles. Each exception handler is also a step that may 
be hierarchically decomposed. Thus exception 
handlers define the subsequent actions when 
exceptional events occur as a result of a step execution 
within the sub-tree under the handling step. Similar to 
the exception handling mechanism, Little-JIL also 
allows specification of reactions that define control 
flow as a result of out-of-scope events such as global 
messages. Reaction handlers are also steps that can be 
decomposed. Space limitations prevent describing all 
the features of Little-JIL. Details of the language can 
be found in [17] and an example of a Little-JIL process 
is shown in Figure 1, which we describe next. 



 

Figure 1 shows a part of the definition of a patient 
care process in an ED. In addition to the coordination 
specification provided by the step hierarchy, this 
diagram also shows yellow boxes that describe the 
types of resources required by some of the different 
steps. The yellow boxes are annotations, and do not 
show the more precise language used to make these 
specifications. To avoid visual clutter, the diagram 

does not show the parameters for each step.  
The root step of this diagram, 

TreatPatientsInsideED, represents the process of 
providing care to an individual patient once the patient 
has been placed in a bed inside the main ED. The 
TreatPatientInsideED step is connected to its parent 
(not shown in this figure), whose responsibility is to 
instantiate the process shown in Figure 1 for each 
patient arriving at the ED.  As a result, at any point 
during the simulation, there may be many instances of 
the process shown in Figure 1 running in parallel. 

Typically, when a patient arrives in an ED, the 
patient is first triaged outside, assigned acuity level by 
a triage nurse and then registered by a clerk, where the 
patient’s insurance information is collected and an ID-
band is generated and placed on the patient. At this 
point the patient waits for a bed to become available to 
be placed inside the ED, where treatment starts.  In 
some cases, a high acuity patient may be immediately 

placed inside the ED, bypassing the outside 
registration process. Thus, the process in Figure 1 
shows how the registration of such patients is 
coordinated into the flow of treatment inside the ED.  

Figure 1 shows that the agent resource responsible 
for the step TreatPatientInsideED is an AutoAgent, as 
the main purpose of this step is to create a scope. In 
this case, the AutoAgent starts the patient care process 
for an individual patient and immediately requests a 
Bed as a resource.  Once the bed resource has been 
acquired by TreatPatientInsideED a resource instance 
of type Bed then becomes available to steps within 

 

 
Figure 1. A simplified ED process in Little-JIL 

 



 

TreatPatientInsideED’s scope.  The AutoAgent then 
carries on with the process by activating 
TreatPatientInsideED’s children from left to right, 
starting with PlacePatientInBed to be executed by a 
Nurse agent.   

Throughout this process, there is a parameter named 
patientInfo (not explicitly shown in the figure) that 
passes through each step. This parameter carries 
information related to the current state of the patient 
for whom treatment is being provided. As agents carry 
out different steps, they may use information carried in 
the patientInfo parameter coming into a step as well as 
set values inside the parameter that are then available 
to latter steps (and their agents) subsequently. In some 
cases such as AdditionalTreatment, state information 
within the patientInfo parameter is used to determine if 
the step needs to be carried out or not. As shown in 
Figure 1, once the patient is placed in a bed, the patient 
treatment part of the process begins with the activation 
of non-leaf steps InternalRegistrationScope and 
InsideEDScope respectively. Notice there is a pre-
requisite (indicated by a green downward arrowhead to 
the left of the step bar) defined at the InsideEDScope 
step, whose execution checks the patientInfo parameter 
to determine if some form of registration (external or 
quick) has been performed for this patient. If this is a 
high acuity patient who has been placed inside the ED 
without external registration and if an ID band has not 
yet been generated through a quick registration step, 
the pre-requisite step of InsideEDScope will throw an 
exception of type RegistrationNotDone. The exception 
will propagate up to the parent step, InsideEDScope, 
which has been specified to be able to handle this type 
of exception by activating a handler step named 
PerformQuickRegistration. This exception handler also 
specifies how to continue execution once the exception 
has been handled, namely by restarting execution of 
InsideEDSceope. An agent of type internal clerk is 
specified to perform the QuickRegistration step. Note 
that whenever a quick registration is performed, it 
needs to be followed by another step to complete the 
registration. This step,  CompleteRegistration, can take 
place in parallel with other treatment activities being 
performed on the patient. This potential concurrency is 
captured by defining CompleteRegistration and 
TreatPatientScope, two child steps, under a parallel 
non-leaf step.  InsideEDScope and TreatPatientScope 
both define treatment of a patient inside the ED as a 
series of tasks that include initial assessment by a nurse 
and a doctor, performance of tests and treatment 
procedures, followed by more assessments 
(IntermediateAssessment) and additional treatments for 
higher acuity patients. In this process definition the 
initial assessment is performed by a nurse 

(RNAssessment) and a doctor (MDAssessment).  Both 
of these steps have been placed under a parallel step, 
InitialAssessmentInAnyOrder. This specifies that a 
patient must be assessed both by a nurse and by a 
doctor, but that these two assessments can not take 
place simultaneously. This is achieved by defining the 
patient as a resource, which implies that the patient 
instance must be acquired as a resource by both 
MDAssessment and RNAssessment steps.  By 
constraining the patient resource to be the same patient 
for both steps the resource manager can then ensure 
that the patient cannot be acquired simultaneously, and 
thus that the two steps take place sequentially. 

The TreatPatientScope sub-process ends with 
FinalMDAssessment step, where the process specifies 
that the same doctor who saw the patient earlier will 
revisit the patient to decide whether to discharge or 
admit the patient to the hospital. Finally, based on the 
decision the doctor makes as part of completing the 
FinalMDAssessment, a nurse agent will be assigned to 
carry out the DischargeOrAdmit step.  
 
3.2. Process Execution 
 

The simulation capability we are using for this work 
differs from most simulation capabilities in that our 
simulations are driven by a Little-JIL process 
definition that is rigorously defined, can be quite 
detailed, and is indeed executable.  The simulation 
capability has been created by making relatively 
modest modifications and enhancements to the Little-
JIL process execution capability that already exists. 
Thus the simulation architecture is best described by 
first summarizing the Little-JIL process execution 
architecture. Figure 2a provides a high-level depiction 
of the Little-JIL execution architecture. The Step 
Sequencer is a central feature of this system, receiving 
requests for execution of the process (in this case a 
notification of a patient arrival), and then supervising 
the forward progress of process execution as steps 
complete. The Step Sequencer performs its work by 
accessing the Little-JIL process to determine which 
step(s) are to be executed next (based upon 
information about step(s) that have completed), and 
then assembles the items needed to get the step 
executed.   

Most specifically, the Step Sequencer consults the 
Resource Manager to convey requests for resources 
(an agent resource and other supporting resources) that 
are instances of the types defined as being needed by 
the step being executed. The Resource Manager is 
responsible for searching its internal repository of 
resource instances and selecting those that seem 
particularly well-suited for meeting the needs of the 



 

requesting step. Determination of which resource is 
best suited often requires understanding the 
circumstances under which the step is being 
performed. Information about circumstances is 
generally obtained through an inquiry about the state of 
the process execution. Once the Resource Manager has 
identified the needed resource instances, the step is 
placed as an item on the agenda of the selected agent 
resource. This agenda item also includes the input and 
output arguments for the step. These arguments are 
accessed through a Parameter Manager. 

 

 
Figure 2a. Little-JIL Runtime Architecture 

 
During execution each agent must monitor its 

agenda, select a step to be performed, perform the step, 
and signal step completion once result values have 
been bound to the appropriate output arguments. Note 
that the monitoring of an agenda of a non-human agent 
(e.g. an MRI or an electronic health record system) is 
probably done by automatic polling. Live agents (e.g. 
doctors, nurses, and registration clerks) must monitor 
their agendas themselves. In all cases, an agent may 
have the capacity to perform more than one step at a 
time, and so may have multiple agenda items open 
simultaneously.  An agent signals completion of a step 
by placing an annotation in the step instance’s agenda 
item, and passing the agenda item through the Agenda 
Management system back to the Step Sequencer, 
which proceeds with execution of subsequent steps. 

 
3.3. The JSIM Simulation Architecture 

 
As noted above, the JSim simulation capability has 

been built by making relative modest additions and 
modifications to the Little-JIL process execution 
system just described.  Figure 2b shows the simulation 
system architecture.  This architecture allows any 
combination of human and non-human agents to be 
simulated.  In Figure 2b red workstation icons indicate 
the agents to be simulated.  Note in particular that by 
choosing to simulate all agents except one, the result 

would be a system that could be of use in training 
individuals to be agents of the type not simulated.  In 
any case, note that the main additions to the execution 
system are a simulation TimeLine, facilities for 
simulating the behaviors of all of those agents that are 
being simulated (Agent Behaviors), and a facility for 
collecting the results of a simulation run.  In addition, 
the Step Sequencer has been modified (e.g. so that it 
accepts instructions about when to proceed to the next 
step from the TimeLine), and the user now provides 
information about the distribution of patient arrivals.   

Briefly, the JSim simulator works as follows.  A 
simulation begins with the user providing an arrival 
distribution specification, and specifications of agent 
behaviors, through the Agent Behaviors module.  To 
begin, JSim initializes the TimeLine to zero to start off 
a simulation run, initializes the root step of the Little-
JIL process to be the step currently being executed, 
and places a start event for that step in the TimeLine. 
The simulation then proceeds as an iterative loop in 
which the most proximate event in the TimeLine is 
acquired and simulated. The perpetuation of the 
simulation results from the fact that each step is 
responsible for placing in the TimeLine one or more 
events that represent such key activities as step 
completion, spawning of substeps, etc. Each such event 
has a designated simulated time at which it is to occur. 
Thus, for example, a step completion event is 
generated at the start of the simulation of the step, and 
the time of this event reflects how long it is expected to 
take for the step’s agent to complete the performance 
of the step. The TimeLine module keeps all events in 
sorted order, so that the Step Sequencer can easily 
determine which event is to be simulated next.  

 
Figure 2b. JSim Simulation Architecture 

 
The Step Sequencer then proceeds very much as it 

does when executing the process.  In particular, it picks 
event consults the Resource Manager to obtain the 
needed resources (including the agent) and the 



 

Parameter Manager to obtain the needed input 
arguments. Once all needed resources and arguments 
have been obtained, the Step Sequencer packages them 
into an agenda item and delivers the agenda item to the 
Agenda Manager for placement on the agenda of the 
agent assigned to perform the step up the events to be 
simulated in order and for each. Performance of the 
step, in turn, results in more events being placed in the 
TimeLine. To determine the times at which different 
events, such as starting or completion of a task, are to 
be performed by an agent, JSim uses the Agent 
Behaviors module, which has been initialized with 
information about how to model agent behaviors. To 
specify simulated agent behaviors in a flexible way, we 
have developed an XML based rule language [16] 
called the JSim Agent Behavior Specification language 
(JABS). Examples of how agent behaviors are 
specified using JABS is briefly discussed in section 4. 
This Agent Behaviors specification replaces the actual 
interaction with live agents in a JSim simulation. JSim 
allows the specification of agent behavior to be done 
primarily in two ways: 

• Stepwise: There is a specification for how a 
step execution is to be simulated, and the 
specification does not vary with different 
instantiations in the process or for different 
agents that may perform the step.  

• Agentwise: There is a specification for how to 
simulate the behavior of each different agent 
that may be assigned to carry out each of the 
steps to which it might be assigned. Thus, for 
example, this type of specification allows the 
possibility that different agent instances may 
require different amounts of time to perform 
the same step. 

JABS also allows nested specification of agent 
behavior in order to allow combinations of the above 
two approaches. In both cases, if the step uses input 
parameters or produces output parameters, the Agent 
Behavior Specification must define how the agent uses 
and converts its input arguments into outputs.  

The Resource Manager contains summary data 
about the capabilities agent resources, such as a list of 
the types of steps that each agent resource can perform. 
This information supports the Resource Manager in 
selecting the agent to be assigned responsibility for 
performing a step whose execution is to be simulated.  

Execution time is estimated by means of a formula 
that takes into account the max, min, and mean 
execution times along with a distribution function, 
agent skill level, agent task load, agent capacity, and 
inquiry into various execution state parameters (e.g. 
amount of crowding and threat level). In addition to 
estimating and modeling execution time, JSim also 

allows for estimation and modeling of the lag time 
between step assignment, and initiation of step 
execution.  For now, these formulas are estimates 
based on interviews with ED professionals, and 
analysis of statistical data. These formulas will have to 
be improved and sharpened as our work progresses. 

For the ED simulation example, specification of the 
transformation of parameters is made easier by 
restricting the number of parameters used by the steps 
of the simulation. The only parameter type of 
importance in these simulation runs is the patientInfo 
packet that represents a patient to whom health care is 
being delivered. Thus each step takes the patientInfo 
descriptor packet as input and sends it as output after 
having added to or modified information inside the 
packet according to the Agent Behavior Specification, 
discussed above. 

The patientInfo packets are initialized with patient 
information such as acuity level, and other items 
needed to accurately reflect the Patient Distribution 
specification input by the user of the simulation. JSim 
supports the definition of parameters that define this 
distribution, and is potentially capable of addressing 
such issues as arrival rates and distributions of acuity 
levels and symptoms. Using these parameters JSim 
generates patient arrivals according to the Patient 
Distribution specification parameters. Each patient 
arrival signal causes the instantiation of a new instance 
of TreatPatientInsideED, as shown in Figure 1.  

Finally, note that it is quite challenging to address 
the need to model the selection of resource instances 
(especially the agent resource instance) to be used in 
responding to a resource request from a step. This is 
the subject of ongoing research in developing a 
flexible resource manager that can support resource 
requirements during the execution or simulation of 
complex processes [11, 12]. As already noted, the 
problem here is to select a resource instance whose 
characteristics and current situation most closely match 
the needs of the step to be executed, under the current 
circumstances. Considerable literature on resource 
allocation indicates that there are many reasons why 
this is a very difficult problem. In the case of ED 
resource allocation the problem is made even more 
difficulty by our sense of the desirability of 
incorporating additional flexibility from resource 
substitutability. Our experience suggests that modeling 
resource substitutability could help identify strategies 
for facilitating patient flow and improving the 
utilization of scare resources.. The details of how we 
have approached this problem are beyond the scope of 
this paper.  But it is important to note that Resource 
Management is a well-defined separate component in 
our simulation architecture, and thus changes in 



 

resource assignment strategies and substitutability 
policies should be readily incorporated into new 
simulations by either modification or replacement of 
an existing Resource Manager (e.g. by new Resource 
Managers specialized for different domains). 

Indeed, a key feature of the architecture of this 
simulation system is separation of concerns such as is 
exemplified by having Resource Management 
comprise a separate component. The architecture 
incorporates a separate component for the definition of 
processes, a different component for dealing with 
resources, and still another component for representing 
the behaviors of the various resources/agents under 
different circumstances. In creating this separation, we 
have created a simulation facility with an unusually 
large amount of flexibility. In particular we expect that 
it should be quite feasible to use it to relatively easily 
carry out the following kinds of comparative studies: 

 
• For a given process, run different simulations with 

different resource mixes. A goal in doing this 
might be to determine which mixes of resources 
best fit the process that is currently in use. 

• For a given process, modify the resource mix over 
time. Our approach should be better able to 
produce simulation results that are consistent with 
observed ED performance by enabling replication 
of how ED resource mixes change over time. This 
approach would also be useful in studying how 
different changes in resources mixes could effect 
better resource utilization and reduced delay in 
treating patients. 

• For a given resource mix, run different ED process 
variations. Studies of this sort might be 
particularly useful in cases where there are severe 
constraints on resource availability. These studies 
should be able to suggest how best to utilize the 
resources that are available. The simulations 
might, for example, suggest how an ED might 
modify its procedures in periods of congestion. 

• For a given resource mix and a given process, use 
different resource substitution rules. Studies of 
this sort might complement studies of how to 
modify processes when resources are highly 
constrained by suggesting how to modify the 
priorities that agents (especially human agents) 
attach to the handling of their tasks. Thus, for 
example, these studies might suggest the possible 
benefits of having physicians and nurses cover 
some of each other’s tasks under certain exigent 
conditions. 

 
Other types of simulation studies suggest 

themselves as well. But a particular feature of these 

studies is their ability to fix one area of concern (e.g. 
the process), and then evaluate it against variations in 
various other areas of concern. Thus our goal is to 
explore the efficacy of our factored approach to the 
creation of simulations. 

 

4. Experience 
 

We have implemented a system having the 
architecture depicted in Figure 2b, and have used it to 
create simulations that are driven by a range of 
processes defined in Little-JIL. While we have not yet 
completed many of the studies that we have outlined in 
the previous section, we have completed some 
prototype simulations and done some preliminary 
evaluation of their results. This section presents a 
representative sample of some of these simulations. 

We started out with a simplified ED process such as 
the one shown in Figure 1. We modeled patient 
arrivals as specific patient arrival events placed 
initially in the TimeLine. We specified agent behaviors 
by using JABS to specify the type of agents and other 
resources required for carrying out each process step. 
For example, the leaf-steps QuickRegistration, 
MDAssessment, and RNAssessment require as agents 
registration clerks that work inside the ED, a doctor, 
and a nurse respectively. TreatPatientInsideED 
specifies the need for a Bed resource.  

 
4.1. Specifying Scenarios and Agent Behavior  
 

For initial simulations, we first populated the 
TimeLine with a fixed set of patient arrivals to begin 
the simulation run. Later we used a Poisson 
distribution of mean 10.0 to generate the times at 
which different patient arrivals are simulated. We say 
that a set of patient arrival events makes up the 
scenario for a simulation run. Figure 3 shows an 
example of the specification of one such scenario, 
namely one in which there are three patient arrivals, 
and they occur at times, 8, 17, and 23.  

 
<scenario> 
  < message 
    t ype ="edparams.PatientArrivalMessage"  
    t ime ="8"/>  
  < message  
    type ="edparams.PatientArrivalMessage"  
    time ="17"/>  
  <message  
    type ="edparams.PatientArrivalMessage" 
    time ="23"/>  
</ scenario > 
 

Figure 3. Example of patient arrival specification 
 



 

Figure 4 shows an example of part of an Agent 
Behavior specification. 

 
  < step  name="PlacePatientInBed"> 
    <started > 

<complete >  
  <fixed  value ="10" />   
</ complete > 

    </ started > 
  </ step > 
  < step  name="CompleteRegistration"> 
   < started > 
    <group>  
      < set-field  parameter ="patientInfo"> 

<field  name="isRegistrationDone">  
  < boolean  value ="true" />   

  </ field > 
      </ set-field > 
      < complete >  

 < linear-range  min ="10" max=” 20”  /> 
      </ complete >  
     </group>  
    </ started > 
  </ step > 
  < agent  name="ha001-doctor"> 

 < step  name="MDAssessment"> 
   <started > 
     <complete >  
       <linear-range  min ="10" max="20"/>   
     </ complete > 
    </ started > 
 </ step > 

  </ agent > 
 

Figure 4. Example of Agent Behavior Specification 
 
In Little-JIL, each step is formally defined using a 

finite state automaton. During the execution or 
simulation of a Little-JIL process, a step goes through 
the states posted, started, completed, and/or 
terminated. Although not required, for very fine-
grained control JABS supports specification of the 
behavior of an agent upon entry into each of these 
states. Figure 4 shows examples of how such behaviors 
can be specified upon entry into the “started” 
execution state for some of the steps in the process 
shown in Figure 1. In this example, once the 
PlacePatientInBed step is started, any agent made 
responsible for carrying out the step, will generate the 
complete event on this step after 10 simulation time 
units. Similarly, the second rule in Figure 4 specifies 
the time it takes for any agent assigned to the step 
CompleteRegistration to be computed using a uniform 
distribution between 10 and 20 simulation time units. 
The agent behavior specified as part of completing the 
CompleteRegistration step also sets the value of a 
boolean field inside the ‘patientInfo’ parameter to 
become true. The third rule, which is a nested rule, 
specifies that a specific doctor agent, with id ‘HA001’ 
takes somewhere between 10 to 20 simulation time 
units when assigned the task of performing 
MDAssessment.  

4.2. Summarization of Simulation Output  
 
The most basic form of output from a JSim 

simulation run is a trace. Simulation run traces include 
such information as when each instance of a step 
became ready to be executed (entered the “initial” 
state), when it was assigned to an agent’s agenda 
(entered the “posted” state), when the agent started 
performing that step (entered the “started” state), and 
when it completed the step’s execution (entered the 
“completed” state). From this basic trace output we can 
then compute a range of summary information. In 
particular, in our early work we have computed the 
following kinds of summary information:  

 
• Length-Of-Stay (LOS) for patients: This is the 

time a patient spends from arrival to discharge or 
hospital admission. 

• Resource Utilization: The fraction of time 
resource instances are actually being used (i.e. are 
assigned as agents or other resources for the 
execution of one or more steps) as opposed to 
waiting for steps to be assigned to them.  

 
Changes in Avg LOS and Doctor Utilization
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Figure 5. Sample result of simulation runs 

 
This simulation capability has allowed us to explore 

how variations in resource mixes and allocations seem 
to affect such key measures as LOS. Thus, for 
example, we have run a number of simulations in 
which the ED process was fixed (using the process 
shown in Figure 1), but with different resources mixes. 
Figure 5 shows some of the summary results. In this 
case, all resources except the number of available beds 
were kept fixed, and the number of beds was varied 
from 2 to 10. As expected, the average length of stay 
(the blue line in Figure 5) shows a decrease with 
increasing numbers of beds. However, we see less 
reduction in the average LOS as more beds are added. 
In general, this is to be expected as we have kept all 
other resources fixed. We see a diminishing effect on 



 

reducing length of stay as a result of adding just one 
type of resource. In the same graph, we have plotted 
(red line) the average utilization of doctor resources. 
We can see that, with the given resource mix, the 
doctor utilization increases steadily with increasing 
numbers of beds. This is also an expected behavior, as 
doctors were underutilized when there were fewer 
beds, and more beds allowed more patients to be 
brought in to be seen by doctors, thus reducing idle 
time for doctors. However, the doctor utilization does 
not improve in a straight line or a smooth curve. This 
unexpected outcome could be a result of the particular 
scenarios or resource mixes we have used.  It clearly 
underscores the need for careful validation of 
simulation output results, an issue that we address 
shortly. 

In our very early work, we have modeled different 
mixes of resource instances such as doctors, nurses, 
clerks, beds etc. inside the Resource Manager 
repository, all using the same ED process. We have 
also created different ED processes (with a lot more 
details than is shown in Figure 1), and run simulations 
using the same fixed resource mix. We have also run 
simulations with various numbers of patients, different 
arrival distributions, and different simulation periods. 
This work has reinforced our view that the separation 
of concerns supported by the JSim architecture makes 
it quite easy to carry out a wide range of comparison 
studies, where the analyst can focus on process 
changes, resource mix changes, patient mix changes, or 
various combinations of these factors. For example, the 
simulation results for this paper were obtained by 
simplifying a process that we had been using 
previously, but that is too large for the space available 
in this paper.  To create and simulate the process 
described here, we simply modified the process by 
deleting a few steps and abstracting out the lower level 
details of others such as PerformTests and 
PerformProcedures. Then we made minor 
modifications to the agent behavior specification to 
support this modified process. The changes in the 
resource mix specification, as it is dealt with by a 
separate component, were easy and largely 
independent of the process changes. All changes were 
completed in less than one hour. 

 

5. Future Work 
 

The early results obtained using this simulation 
facility seem encouraging. But much work remains to 
be done if we are to have enough confidence in this 
capability to use it as a predictive tool to suggest 
improvements in the performance of actual EDs. Thus, 

we suggest two future thrusts for this work: validation 
and prediction. 

 
Validation of our simulation facility: Simulations 

of a simplified ED process with minimal resources 
have usually shown output results that are in line with 
our expectation, although, as shown in Figure 5, some 
results may appear to be counterintuitive, at least at 
first. Thus we have immediately encountered the well-
known problem of validating a simulation. While we 
are testing our simulations, we understand that testing 
is of limited value, as software testing typically 
assumes the existence of an “oracle”, which 
encapsulates information about what comprises 
“correct” output. Especially in view of the fact that a 
simulation is intended to make predictions and produce 
results that are not previously known, such oracles are 
difficult to devise. One type of oracle that we are 
exploring, however, is actual practice. To gain more 
confidence in our simulation results, we plan to 
compare our simulated models with actual EDs of 
various size and complexity to see how our results 
compare to actual patient lengths of stay.  

In addition, we are carefully examining our 
simulation trace output to be sure that the simulation is 
carrying out process steps in the right order, acquiring 
resources that are appropriate, and modeling agent 
behaviors in ways that are consistent with our inputs. 
These simulation validation efforts will continue in 
parallel with our increasing attempts at prediction for 
the foreseeable future. 

 
Prediction: Our well-modularized simulation 

infrastructure architecture provides considerable 
flexibility in performing different types of simulations. 
As suggested above we plan to use this capability for 
predicting effects of changes in a) process, b) resource 
utilization, c) priorities of steps, d) resource 
substitution policies, and e) various combinations of all 
these. We plan to perform different ‘what if’ types of 
studies related to changing resource mixes, patient 
arrival patterns, and changes in process. For example, 
we want to study the effect of allowing certain steps in 
the ED process that are usually performed sequentially 
to run in parallel.  

We are also very interested in studying effects of 
dynamic changes in the process definition or resource 
assignment based on the state of the running system. 
For example, usually a nurse is the type of agent that 
performs the patient discharge activity. We would like 
to study the impact of starting to assign this step to 
doctor agents when patient waiting time crosses a 
certain threshold. Simulating this sort of dynamism 
seems to be difficult for many existing simulation 



 

systems, but seems relatively straightforward using our 
approach. Thus, attempting this kind of simulation and 
determining whether it yields results that are truer to 
actual observed practice should help us to determine 
whether the modularity and flexibility of our JSim 
architecture does indeed offer the benefits of greater 
accuracy that we have been suggesting. 

In general, our future experimentation will be aimed 
not only at attempting to improve the performance of 
EDs, but also at coming to understand better the 
software architectural choices that seem to support 
greater experimental flexibility and improved 
simulation accuracy. Clearly this work is only just 
beginning.  
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