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Abstract

In this paper, we present a computationally efficient, two-dimensional quantum mechanical sim-

ulation scheme for modeling electron transport in thin body, fully depleted, n-channel, silicon-

on-insulator transistors in the ballistic limit. The proposed simulation scheme, which solves the

non-equilibrium Green’s function equations self-consistently with Poisson’s equation, is based on

an expansion of the active device Hamiltonian in decoupled mode-space. Simulation results from

this method are benchmarked against solutions from a rigorous two-dimensional discretization of

the device Hamiltonian in real-space. While doing so, the inherent approximations, regime of va-

lidity and the computational efficiency of the mode-space solution are highlighted and discussed.

Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-

equilibrium transport are examined. This paper shows that the decoupled mode-space solution is

an efficient and accurate simulation method for modeling electron transport in nanoscale, silicon-

on-insulator transistors.

∗Electronic address: venugopr@ecn.purdue.edu
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I. INTRODUCTION

As CMOS technology progresses, device dimensions have been scaled into the nanome-

ter regime [1] [2]. Therefore, in the future, transistors may operate near their ballistic

limit rendering it important to understand ballistic device physics. As transistor dimensions

are scaled, quantum effects, which affect the threshold voltage (confinement), gate capaci-

tance (charge centroid shift), off-current (source barrier tunneling) and gate leakage begin

to manifest themselves, and semiclassical methods that disregard these effects are inade-

quate in capturing the physics of ballistic transport. This paper describes computationally

efficient, quantum mechanical transport models for ballistic n-channel MOSFETs based on

the non-equilibrium Green’s function formalism (NEGF) [3] [4].

Quantum modeling approaches rely on a self-consistent solution of the Schrödinger and

Poisson equations in order to obtain the charge distribution and current for a specific de-

vice geometry. A solution to the Schrödinger equation can be pursued at varying levels of

complexity depending on the nature of the device under study and the desired degree of

accuracy. In previous work, a simplified two-dimensional (2D) simulator for fully depleted,

silicon-on-insulator (SOI) device geometries that coupled a 1D Schrödinger and a 1D Boltz-

mann solver to model 2D transport has been described [5] [6]. Although insightful, this

solution has limited applicability as it can neither be easily extended to treat scattering

within a quantum mechanical framework nor can it capture the effect of source-to-channel

tunneling accurately. In order to treat these quantum effects, a general simulation scheme

based on the NEGF formalism, which includes a 2D discretization of the Hamiltonian oper-

ator is necessary.

Two device geometries, namely, bulk and SOI are being studied currently from a scaling

perspective. However, the SOI geometry with its good short channel immunity, is widely

accepted as the device structure that may drive CMOS technology in the future [7]. For

bulk devices, 2D solutions based on the Green’s function formalism have been demonstrated

by two groups [8] [9]. These solutions, which are based on a real-space discretization of

the full 2D effective mass Hamiltonian, are computationally expensive. Such discretization

is essential in order to treat quantum transport accurately in bulk MOSFETs because the

confining effect of the gate is lost as carriers move from the source to the drain. However,

this is not the case in thin body SOI MOSFETs where mobile charges are quantum confined
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all the way from the source to the drain (due to the thin body and the two insulator

geometry). For such geometries, the computational burden associated with the real-space

solution can be greatly reduced (without compromising on accuracy) by expanding the 2D

Hamiltonian in mode-space (characteristic modes of the Hamiltonian in the confinement

direction) and by treating the first few occupied modes. To benchmark this simplified

mode-space solution, we implement and apply, both, the 2D real-space solution and the

simplified mode-space solution to simulate carrier transport in a thin body, fully depleted,

DG n-MOSFET structure. The simulation results from the two approaches are compared

and while doing so, the various approximations inherent in the mode-space solution, its

realm of validity and the generality of the real-space solution are discussed. This paper

aims to describe the numerical methods that one can use to simulate quantum transport in

different transistor geometries with specific emphasis on the mode-space solution scheme.

Quantum boundary conditions are also derived, and the quantum mechanical features of the

simulation results are highlighted.

The paper is divided into the following sections: 1) Sec. II presents the real-space and

mode-space solutions succinctly. The size of the problem associated with each method is

highlighted. 2) Sec. III, compares simulation results obtained by applying both techniques to

model ballistic transport in a thin body, fully depleted, DG MOSFET. 3) Sec. IV, critically

examines the validity for the mode-space solution. 4) Sec. V summarizes key findings.

II. THEORY

The simulated device structure is shown in Fig.1a. A uniform rectangular grid with a

grid spacing of a, along the x direction and b, along the z direction is used. The device is

represented by a Hamiltonian matrix that is coupled to two infinite reservoirs, the source

and drain. The source/drain (S/D) extension regions are terminated using open boundary

conditions (no x dependence of the potential), and the Fermi level in these regions is specified

by the applied voltage. The width of the device is assumed to be large, and the potential

is assumed to be translationally invariant along the width (y dimension). A single band

effective mass Hamiltonian is used to model carrier transport.
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A. Real-Space solution

This section briefly explains the real-space simulation method with specific emphasis on

the self-energy concept (which is used to quantum mechanically couple the active device

to the infinite S/D contacts) and the size of the problem. In this simulation method, the

effective mass Hamiltonian is discretized in 2D real-space (x, z), to solve for its retarded

Green’s function. We begin by expanding the 3D Hamiltonian for the device in terms of

δ(x−x′)δ(z−z′) and eikjy/
√

W , where the plane wavefunction, eikjy/
√

W , represents the device

width (W). The quantum number, kj, corresponds to the eigenenergy, Ekj
= h̄2k2

j /2m
∗
y,

where m∗
y is the electron effective mass in the y direction. The real-space delta functions,

δ(x−x′) and δ(z− z′) with eigenvalues x′ and z′ respectively, combined with eikjy/
√

W , form

a complete and orthogonal expansion function set. On expansion, the Hamiltonian in block

diagonal form is

H =




h(x, z) + Ek1I 0 · · · · · · · · ·
0 h(x, z) + Ek2I · · · · · · · · ·
0 · · · . . . 0 · · ·
· · · · · · 0 h(x, z) + Ekj

I 0

· · · · · · · · · 0
. . .




(1)

where I is the identity matrix and

h(x, z) =




α0 β 0 · · · · · ·
β α1

. . . 0 · · ·
0

. . . . . . . . . 0

· · · 0
. . . αNX

β

· · · · · · 0 β αNX+1




(2)

is block tridiagonal. Note that Eqs. 1 and 2 represent infinite matrices. This is because

the device is coupled to infinite leads which have not yet been replaced by appropriate

boundary conditions. If we think of the device as being composed of vertical slices adjoining

each other, then the α’s represent coupling along the z direction within each slice while

the β’s represent coupling between adjacent slices. The α’s, with indices less than one,

represent successive slices going into the source contact while those with indices greater

than NX represent successive slices into the drain. The α’s and β’s are themselves block
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matrices and are,

α[x] =




2tx + 2tz − qV1(x) −tz 0 · · · · · ·
−tz 2tx + 2tz − qV2(x)

. . . · · · · · ·
0

. . . . . . . . . 0

· · · 0
. . . αNX

−tz

· · · · · · 0 −tz 2tx + 2tz − qVNZ
(x)




(3)

β =



−tx 0 · · ·
0 −tx · · ·
· · · 0 −tx


 (4)

The V ’s (Eq. 3), represent the potential along a vertical slice at site x and tx and tz, the

coupling energies between adjacent grid points in x and z respectively. These site coupling

energies are given by,

tx =
h̄2

2m∗
xa

2
and tz =

h̄2

2m∗
zb

2
(5)

It is clear from Eq. 1 that blocks representing different plane wave states (along the device

width) are decoupled, as there is no scattering within the device. Also, Ekj
ranges between

0 and +∞, accounting for all possible plane wave states. There is no restriction on the

solution domain and it can be easily extended to include the insulator regions provided

changes in the electron effective mass is correctly accounted for within the insulator and at

the silicon/insulator interface when discretizing the effective mass Hamiltonian.

For each plane wave eigenenergy Ekj
, we write the retarded Green’s function relevant to

2D transport as,

G(E) =
[
EI − [h(x, z) + Ekj

I]
]−1

= [E(kx, kz)I − h(x, z)]−1 (6)

where the in-plane energy is defined as E(kx, kz) ≡ E − Ekj
(note that that E(kx, kz) is

just a notation to identify the in-plane energy and that the Hamiltonian in the X − Z

plane is in a real-space basis). We then account for the infinite leads by introducing an

appropriate self-energy function [4]. Details of the self-energy (Σ) calculation are presented

in the Appendix. The self-energy represents the effects on the finite device Hamiltonian

due to the outgoing wavefunctions from an impulse excitation within the device [10]. It

allows us to eliminate the huge S/D reservoirs and work solely within the device subspace
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whose dimensions are much smaller. The size of the self-energy matrix is (NX × NZ)2. On

including the self-energies, the final form of the Green’s function matrix is

G[E(kx, kz)] = [E(kx, kz)I − h(x, z) − ΣS − ΣD]−1 (7)

Note that the Green’s function in a real-space representation, has a size of (NX × NZ)2.

Once the retarded Green’s function is evaluated, electron density and terminal current

can be computed. We define a new quantity in terms of the lead self-energies [3] [11].

Γ ≡ i(Σ − Σ†) (8)

Physically the function Γ, determines the electron exchange rates between the S/D reservoirs

and the active device region [11]. But in general it can be viewed as the measure of

interaction strength due to any perturbation source. It should be noted that, although the

device itself may be in a non-equilibrium state, electrons are injected from the equilibrium

S/D reservoirs (Fermi level is uniquely fixed for all carriers based on the applied voltage).

The spectral density functions due to the S/D contacts can be obtained as [4]

AS = GΓSG† and AD = GΓDG† (9)

where ΓS ≡ i(ΣS − Σ†
S), and ΓD ≡ i(ΣD − Σ†

D) (for clarity, we use ΓS or ΓD to denote

matrices the same size as G, with nonzero diagonal blocks ΣS − Σ†
S or (ΣD − Σ†

D)). The

spectral functions are (NX × NZ)2 matrices. Although full in general, only the diagonal

entries are of importance as they represent the state density at each lattice node. Therefore

significant savings in computational cost are derived by solving for the diagonal blocks of

the spectral functions as opposed to the entire matrix using a recursive algorithm [12]. The

source-related spectral function is filled up according to the Fermi function in the source

contact, while the drain-related spectral function is filled up according to the Fermi function

in the drain contact. Both the source and drain spectral functions contribute to the 3D

electron density, which, for each in-plane energy is [4],

n [E(kx, kz)] =
1

2πab

×
+∞∫
0

D · [f(µS, E(kx, kz) + Ekj
)AS + f(µD, E(kx, kz) + Ekj

)AD

]
dEkj

(10)
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where f is the Fermi-Dirac statistics function, and D = (2/πh̄)
√

m∗
y/2Ekj

, represents the

transverse mode state density (including spin degeneracy). Since the spectral functions

(Eq. 9) depend on the in-plane energy alone, they can be moved out of the integral in Eq. 10

which reduces to [4],

n [E(kx, kz)] =
1

ab

√
m∗

ykBT

2π3h̄2

× [
F−1/2 (µS − E(kx, kz)) AS + F−1/2 (µD − E(kx, kz)) AD

]
(11)

where the Fermi-Dirac integral, F−1/2, accounts for all transverse mode contributions (for

an analytical approximation to F−1/2 see [13]). To obtain the total 3D electron density, we

need to integrate Eq. 11 over E(kx, kz) and sum contributions from every conduction band

valley. The 3D electron density is fed back to the Poisson equation solver for self-consistent

solutions.

Once self-consistency is achieved, the terminal current can be expressed as a function of

the transmission coefficient [11]. The transmission coefficient from the source contact to

the drain contact is defined in terms of the Green’s function as [4],

TSD = Trace[ΓSGΓDG†] (12)

The transmitted current at each in-plane energy (including spin degeneracy) is,

I [E(kx, kz)] =
q

h̄2

√
m∗

ykBT

2π3

× [
F−1/2 (µS − E(kx, kz)) − F−1/2 (µD − E(kx, kz))

]
TSD [E(kx, kz)]

(13)

The total current, like the 3D charge, is obtained by integrating over all E(kx, kz) and

summing over all conduction band valleys.

B. Mode-space solution

In this simulation scheme, the Green’s function is solved for in a mode-space represen-

tation. These modes replace the δ(z − z′) dependence of the basis, when compared to the

real-space solution. This approach greatly reduces the size of the problem and provides
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sufficient accuracy when compared to full 2D spatial discretization. We begin by solving

a 1D, z directed, effective mass equation for each vertical device slice along x, to obtain a

set of eigenenergies and eigenfunctions (modes) along the gate confinement direction. The

equation that is solved is

− h̄2

2m∗
z

∂2

∂2z
Ψi(x, z) − qV (x, z)Ψi(x, z) = Ei(x)Ψi(x, z) (14)

where, m∗
z is the electron effective mass in the z direction, Ψi(x, z), the wavefunction, and

Ei(x) the eigenenergy for subband i at slice x respectively. As with the real-space solution,

the simulation domain in the confinement direction can be extended to include the insulator

regions. Each vertical slice has a width, a, and within each slice, all quantities are assumed

to be constant in the x direction.

The 3D Hamiltonian for the device is expanded in terms of δ(x−x′)Ψi(x, z) and eikjy/
√

W .

The new basis functions, δ(x − x′)Ψi(x, z) and eikjy/
√

W also constitute a complete and

orthogonal expansion functions set. The Hamiltonian in this representation is

H =




h[E1(x) + Ekj
] 0 · · · · · · · · ·

0 h[E2(x) + Ekj
] 0 · · · · · ·

0 · · · . . . · · · 0

0 0 · · · h[Ei(x) + Ekj
] 0

0 0 0 0
. . .




(15)

where,

h[Ei(x) + Ekj
] =




2tx + Ei(1) + Ekj
−tx 0 · · ·

−tx 2tx + Ei(2) + Ekj

. . . 0

· · · 0
. . . −tx

· · · 0 −tx 2tx + Ei(NX) + Ekj




(16)

is the Hamiltonian for subband i, with a planewave eigenenergy Ekj
. The subband index (i)

in Eq. 16 runs over all subbands (replaces z in real-space calculations). Numbers 1 to NX

in parenthesis replace the position x because of the discretization.

The block diagonal nature of the Hamiltonian in Eq. 15 indicates that in the ballistic

limit, subband coupling is neglected in the mode-space solution scheme (see Sec. IV). In the

case of bulk MOSFETs, inversion layer electrons become unconfined as we move towards
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the drain end of the device and strong electric fields near the drain couple different modes

even in the ballistic limit. Therefore a mode-space solution, assuming decoupled modes is no

longer applicable. Full real-space discretization provides the only accurate scheme to treat

quantum ballistic transport in such devices.

Knowing the Hamiltonian for each subband, we write the retarded Green’s function

relevant to 1D transport as [4] [11],

G(E) =
[
EI − h

[
Ei(x), Ekj

] − Σ
]−1

= [ElI − h [Ei(x)] − Σ]−1 (17)

where, the longitudinal (x) energy El ≡ E − Ekj
(replaces E[kx, kz]) of the real-space solu-

tion). The self-energy for the leads (Σ) is a function of the longitudinal energy alone, and

can derived based on the analysis in the Appendix as

Σ(El) =



−txe

ikl,1a 0 · · ·
0 · · · 0

· · · 0 −txe
ikl,NX

a


 (18)

where, E = Ekj
+ Ei(n) + 2tx(1 − coskl,na).The subband energy at the contact boundary

(source or drain) is Ei(n) and the subscript l represents the longitudinal dependence of k.

From a computational point of view, the size of the problem is measured by the size of the

Hamiltonian. In a real-space representation the size of Hamiltonian is defined by the total

nodal number in the 2D mesh, namely (NX ×NZ)2; while in the mode-space representation,

every subband is treated individually, and the size of the 1D Hamiltonian for each subband,

is measured by the nodal number along the channel direction, namely (NX)2. In case of

thin body, fully depleted SOI MOSFETs, strong body confinement causes the separation

between modes to be large in energy. Therefore the Fermi level populates only a few modes

even at high bias. Hence in practice, calculations, including the lowest few modes provide

the desired accuracy. This, coupled with the reduced size of the mode-space Hamiltonian,

implies that the mode-space approach provides enormous savings in computational burden

without loss in accuracy as compared to a real-space solution which implicitly treats all

modes (including mode coupling).

The mode-space spectral density functions due to the S/D contacts are analogous to those

in Eq. 9. They differ from the real-space solution in that their diagonal entries represent

the local density of states at site x, for mode i. The 2D electron density for mode i at a
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longitudinal energy El is

ni(El) =
1

a

√
m∗

ykBT

2π3h̄2

[
F−1/2(µS − El)AS + F−1/2(µD − El)AD

]
(19)

The net 2D electron density for each mode is obtained by integrating Eq. 19 over El. This 3D

electron density at each lattice node of our 2D real-space grid is obtained by multiplying ni

with the corresponding distribution function |Ψi(x, z)|2/b, and by summing over all subbands

(index i) and conduction band valleys. Since the eigenvalue problem is solved exactly along

the gate confinement direction, quantum effects associated with confinement and asymmetric

gate design can be handled correctly within the mode-space modeling scheme. Once self-

consistency is achieved, the terminal current is evaluated by summing contributions from

each mode and conduction band valley.

III. RESULTS

The simulated device structure (Fig. 1a) is an ultra thin body, fully depleted, symmetric,

n-MOSFET with S/D regions doped at 1020 cm−3 and an intrinsic channel. The gate length

is 10 nm, and there is no gate-to-S/D overlap. The junctions are abrupt, and the oxide

thickness for both top and bottom gates is 1.5 nm. A body thickness of 1.5 nm, and a power

supply (VDD) of 0.6 V has been used in this simulation study. The gate work function (4.25

V ) has been adjusted to yield a threshold voltage (VT ) of 0.15 V . Gate oxides are treated

as infinite potential barriers for electrons in all of the simulations.

In order to highlight the quantum effects that one observes in nanoscale transistors and

validate the simplified mode-space approach, we compare internal quantities from the real

and mode-space solutions. It should be noted that the real-space solution, implicitly includes

all modes and their coupling effects (if any). In Fig. 2a, we plot results from the solution

to a 1D effective mass equation (modes), along slice Z − Z (refer Fig. 1a) in the on-state

(VGS = VDS = 0.6V ). The local density of states (LDOS) spectrum vs . in-plane energy

(E[kx, kz]), obtained from the real-space solution is also plotted alongside in Fig. 2b. Light

areas in Fig. 2b represent regions of high state density while dark areas signify low state

density. Spatially, the LDOS goes to zero at the silicon/oxide interface (infinite potential

barriers at z = 0 and 1.5 nm) and exhibits single or multiple maxima points. If we compare

this plot, to the result obtained from the first step of the mode-space solution (refer Fig. 1a
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and Fig. 2a), we find that the spatial behavior of the LDOS along Z −Z, is clearly captured

by the mode-space solution. Note that, on superposing the mode energies onto the LDOS

spectrum (dotted lines in Fig. 2b), we find that the maximum density of states occurs

at in-plane energies that are higher that the corresponding subband energy (non-classical

behavior). This observation can be explained by examining Fig. 3, where we plot the

classical and quantum 2D density of states (DOS) as a function of the in-plane energy for

slice Z − Z (note that the subband energy depends on the location of the slice in x).

In the classical case (inset), the 2D DOS (x − z plane) is a convolution of discrete delta

functions (subbands) with a 1D DOS, that has a 1/
√

E(kx) dependence. This is because,

in the classical case there is no information about the quantum mechanical coupling of

the device to the S/D reservoirs. Since, x is treated as a free dimension, the classical 2D

DOS exhibits singularities around each subband energy. On the other hand, the real-space

solution includes coupling information through the self-energy terms associated with the

source and drain. These self-energies are composed of real and imaginary parts. The effect

of the real part is to shift the maxima of the DOS in energy, while that of the imaginary part

is to broaden the singularity in the classical DOS around each subband energy (dotted lines

in Fig. 3) leading to a tail in the quantum DOS below each subband as shown in Fig. 3. This

tail in the DOS is the cause of source-to- channel tunneling. Note that, all of the quantum

effects in the channel direction, are a result of coupling the active device Hamiltonian to the

S/D reservoirs through the self-energy terms.

In order to capture quantum effects along the channel within the mode-space solution, we

couple each subband to the S/D reservoirs through specific self-energy terms calculated using

Eq. 18. On introducing this coupling, we obtain the final form of the mode-space solution,

whose LDOS is illustrated in Fig. 4. We plot the LDOS spectrum along slice X−X (Fig. 1a).

The conduction band (solid line) and the first subband profile (dotted line) along the channel,

is superposed on this plot. With the inclusion of coupling information, this LDOS spectrum

is identical to that obtained from the real-space solution for the energy range considered.

The presence of a forbidden energy region between the conduction and first subband and the

broadening of the LDOS around the first subband energy is clearly visible. It should be noted

that the source-to-channel barrier is with respect to the subband profile as opposed to the

conduction band edge and that tunneling occurs at energies much greater than the classical

conduction band energy. States injected from the drain end of the device are reflected off
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a large barrier under high drain bias and interfere strongly. States injected from the source

that have energies slightly above or less than the source barrier also interfere, resulting in

the observed quantum oscillations in the LDOS. At energies much greater than the subband

maxima, injected states are free and there is no visible quantum interference effect. The

oscillations in the LDOS give rise to local oscillations in the 3D electron density, as charge

density is a convolution of the S/D injected LDOS and the corresponding Fermi function

(Eq. 10 and Eq. 19).

Figure 5, compares the IDS vs . VDS and IDS vs . VGS characteristics for our model device

from real and mode-space solutions. It is clear from Fig. 5 that the two solution schemes

are in close agreement with each other, thus indicating that the mode-quantum solution,

which is computationally inexpensive (order of magnitude less in computational time), is an

attractive simulation tool for modeling thin body, SOI n-MOSFETs in the ballistic limit.

It should be noted that although the 3D charge exhibits local oscillations, the current vs .

voltage characteristics from both real and mode-space solutions are smooth. This is because

current is a function of the transmission coefficient (Eq. 13), which depends on the overall

potential profile from the source to the drain. Since local charge density oscillations are

washed out when solving Poisson’s equation for the potential, the potential profile and

hence current is a smooth function of the applied voltage.

The on-current spectrum vs . in-plane/longitudinal energy from real and mode space sim-

ulations is plotted in Fig. 6. The maximum of the first subband is also indicated (dotted

line) to separate the thermionic and tunneling current components. The spectrum indicates

that conduction in this thin body MOSFET is essentially through the first mode (only one

peak). Also, exact agreement between the real and mode-space simulation results, highlights

the validity of the approximations inherent in the decoupled mode-space model (Sec IV).

Figure 6, indicates that tunneling carriers constitute ∼ 25% of the simulated on-current.

Therefore it is expected that a 1D Boltzmann treatment of a mode [5] [6], which does not

include tunneling effects would under predict the on-current. To verify if this is the case, we

compare the self-consistent current-voltage characteristics, obtained from a quantum and a

Boltzmann (classical) treatment of modes, in Fig. 7.

Figure 7 indicates that the simulated on-currents from the Boltzmann solution are re-

markably close to, but slightly higher than those predicted by the quantum solution even

though the tunneling component is missing in the classical solution. This close agreement is
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the result of self-consistency and can be understood by examining the subband profile and

charge density along the channel from the two solution schemes (Fig. 8). Note that in the

on-state, the 2D charge density at the subband maximum is prescribed by gate electrostatics

irrespective of whether the charge is due to tunneling or thermionic emission. Therefore,

the subband maximum in case of the Boltzmann solution is lowered to obtain roughly the

same charge as in the quantum case. Also note that all of this charge is thermionic in nature

in case of the Boltzmann model, whereas it has both tunneling and thermionic components

in case of the quantum model. Since tunneling carriers have a lower velocity due to their

lower longitudinal energy, the quantum model predicts a lower on-current compared to its

classical analogue in the on-state.

In the off-state, all of the current is due to tunneling. Therefore, the quantum model

predicts a degraded subthreshold swing and higher off-current as compared to its classical

counterpart. From a ballistic simulation viewpoint, it seems that in order to model the

on-current accurately, a Boltzmann treatment of the mode along the channel direction is

adequate. However, the main advantage of the mode-quantum solution is that the self-energy

concept used to model the S/D contacts can, and has been extended to treat scattering [14].

Also, source-to-channel tunneling imposes a scaling limit on the channel length (for lengths

below 10 nm). The Boltzmann solution cannot capture this tunneling limit. For a detailed

comparison of the classical and quantum models in mode-space, when applied to thicker

body transistors, refer to [15].

IV. DISCUSSION

The mode-space discretization of the Hamiltonian greatly reduces the size of the prob-

lem as compared to a full 2D spatial discretization (N2
X as opposed to (NX × NZ)2). It is

important to look at the conditions under which this approach provides good simulation

accuracy. In this section, we analytically expand the Schrödinger equation invoking the

mode-space representation, and assess the approximations made in simplifying the Hamil-

tonian. This analysis explains why the decoupled mode-space approach provides the high

degree of simulation accuracy in case of thin body DG and SG SOI MOSFETs.

We start with the 2D Schrödinger equation in the x − z domain (the y dimension is
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decoupled from the x − z domain, and can therefore be treated separately)

− h̄2

2m∗
x

∂2

∂2x
Φ(x, z) − h̄2

2m∗
z

∂2

∂2z
Φ(x, z) − qV (x, z)Φ(x, z) = [E − Ekj

]Φ(x, z) (20)

Left multiplying the mode-space eigenvectors and performing the integration in real-space

we obtain

∫
[δ∗(x − x′)Ψ∗

i (x, z)] ·
[
− h̄2

2m∗
x

∂2

∂2x
Φ(x, z)

]
dxdz

+

∫
[δ∗(x − x′)Ψ∗

i (x, z)] ·
[
− h̄2

2m∗
z

∂2

∂2z
− qV (x, z)

]
Φ(x, z)dxdz

= [E − Ekj
]

∫
[δ∗(x − x′)Ψ∗

i (x, z)] · Φ(x, z)dxdz (21)

The third term in Eq. 21 becomes,

[E − Ekj
]

∫
[δ∗(x − x′)Ψ∗

i (x, z)] · Φ(x, z)dxdz = [E − Ekj
]Φ̃i(x

′) (22)

Note that Φ̃i(x
′), is the expansion coefficient of Φ(x′, z), with respect to the mode-space

eigenvector Ψi(x
′, z) as defined by

Φ(x′, z) =
∞∑
i=1

Φ̃i(x
′)Ψi(x

′, z) and

∫
Ψ∗

i (x
′, z)Ψj(x

′, z)dz = δij (23)

where, δij is the usual Kronecker delta. We can rewrite the second term in Eq. 21 as,

∫
Ψ∗

i (x
′, z) ·

[
− h̄2

2m∗
z

∂2

∂2z
− qV (x′, z)

]
Φ(x′, z)dz = Ei(x

′)Φ̃i(x
′) (24)

Finally the first term in Eq. 21 can be expressed as

∫
δ(x − x′)Ψ∗

i (x, z)

[
− h̄2

2m∗
x

∂2

∂2x
Φ(x, z)

]
dxdz

=

∫
δ(x − x′)

[
− h̄2

2m∗
x

∂2

∂2x
{Ψ∗

i (x, z)Φ(x, z)}
]

dxdz

−
∫

δ(x − x′)Φ(x, z)

[
− h̄2

2m∗
x

∂2

∂2x
Ψ∗

i (x, z)

]
dxdz

− 2

∫
δ(x − x′)

[
− h̄2

2m∗
x

∂Ψ∗
i (x, z)

∂x

∂Φ(x, z)

∂x

]
dxdz (25)

Note that the second term in Eq. 25 reduces to −h̄2/2m∗
x∂

2/∂2x′Φ̃i(x
′) after integration. If

we assume that for all x (the shape of a mode does not change along the channel)

∂Ψ∗
i (x, z)

∂x
= 0, (26)
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Equation ( 20) becomes,

− h̄2

2m∗
x

∂2Φ̃i(x
′)

∂2x′ + Ei(x
′)Φ̃i(x

′) = [E − Ekj
]Φ̃i(x

′). (27)

Equation 27 is the decoupled mode-space transformation of the 2D Hamiltonian invoking

the assumption represented by Eq. 26. Equation 27 is indeed a 1D differential equation and

greatly reduces the size of the original 2D problem. Note that Eq. 27 has two implications.

The first is that subbands with different energies do not couple and the second is that some

coupling information of a subband with itself is also lost.

Although the potential profile varies from the source to drain, if V (x, z) retains the same

shape in the z direction, at different locations along the channel, the eigenfunctions are

the same at each x location, even though the eigenvalues are different. As a result, Eq. 27

is satisfied. In the case of SOI MOSFETs with uniform thin bodies, there is little room

for the potential to vary vertically. Therefore, Eq. 27 is a valid approximation and results

obtained from the decoupled mode-space solution are in close agreement with real-space

simulation results. This observed agreement between the real and decoupled mode-space

solutions holds true in the case of thicker bodies (upto 5 nm) as long as the device has a

uniform SOI geometry.

If we perturb the uniformity of the potential profile by squeezing the channel region of

our model device (Fig. 1b) and compare the real and mode-quantum solutions for a fixed

potential profile, we see that the IDS vs . VDS characteristics of the real-space approach

no longer agrees with that of the mode-space approach as indicated in Fig. 9. We know

that in our model device transport is through the first subband. Therefore the mismatch

between the real and mode-quantum solutions is because the mode-space solution does not

completely capture the effect of a subband coupling with itself although a part of this

information is built into the mode-space Hamiltonian as seen from its tridiagonal nature

(Eq. 2). The differences in current at high VDS could be as high as ∼ 15%. Note that the

current from the real-space solution is lower. It has been pointed out that including the flared

out portions of the S/D contacts would have a similar effect and this reduction in current

can be thought of as arising due to a quantum spreading resistance that is not captured by

the mode-space solution [16]. In the case of bulk transistors, channel depletion widths can

vary considerably from the source to drain, resulting in significant changes in the vertical

confinement potential profiles. Therefore the mode-space approach becomes inappropriate
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for bulk device simulations or simulation of devices composed of heterostructures. A coupled

mode-space representation, which includes all of the terms in Eq. 25, would be appropriate

for such structures [17].

V. SUMMARY

We presented two approaches based on the NEGF formalism (real and decoupled mode-

space), each with a different degree of complexity, that can be used to simulate 2D MOS-

FET structures under non-equilibrium conditions. These approaches were compared and

contrasted by using them to simulate an ultra small DG n-MOSFET (with a body thickness

of 1.5 nm). In doing so, quantum effects that are observed in nanoscale transistors, the

treatment of open boundaries and the importance of self-consistency were highlighted. We

showed that the real-space solution, which is the most general, is computationally expensive

due to the 2D nature of the Hamiltonian; while the decoupled mode-space solution, which

is specifically applicable to thin body, fully depleted, SOI device geometries is inexpensive

(yet accurate) for two reasons: 1) A 1D Hamiltonian is used in the mode-space solution and

2) only few modes need to be considered as modes with high energies are not occupied by

electrons and do not contribute to transport. For the model 1.5 nm body DG MOSFET,

the simulation time per bias point on a one processor SUN workstation (300 MHz) was 40

secs in case of the mode-space solution as opposed to 1.5 hrs for the real-space solution. Fi-

nally, the validity of the mode-space solution and its regime of applicability were discussed

by simulating a device with a squeezed channel region. These simulations indicated that

including the flared out regions of the S/D contacts or simulating heterostructure devices

at an effective mass level, would require a coupled mode-space simulation scheme.
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APPENDIX A: THE SELF-ENERGY CALCULATION FOR THE LEADS

To illustrate the self-energy calculation which accounts for the device leads, we consider

the effect of coupling the active device Hamiltonian to the drain. The infinite Hamiltonian

(Eq. 2) and its Green’s function (Eq. 6) can be partitioned as follows,


 Gdevice Gdevice,D

GD,device GD


 =


 E(kx, kz)I − h(x, z)device −β

−β E(kx, kz)I − h(x, z)D


 (A1)

In Eq. A1, subscript “D” is used to indicate the infinite block of h(x, z) and G, representing

the drain. The matrix block we are interested in is Gdevice as we do not care about the

Green’s function within the drain. Using Eq. A1, Gdevice can be expressed in terms of known

quantities as,

Gdevice [E(kx, kz)] = [E(kx, kz)I − h(x, z)device − ΣD]−1 (A2)

where the drain self-energy matrix is,

ΣD =




0 0 · · ·
0 0 · · ·
−β 0 · · ·







E(kx, kz)I − αNX+1 −β 0 · · ·
−β E(kx, kz)I − αNX+2 −β 0

0 −β
. . . . . .

· · · 0
. . . . . .




−1

×



· · · 0 −β

· · · 0 0

· · · · · · · · ·


 (A3)

Note that for evaluating the matrix product in Eq. A3, we only need the first block of

the inverse of the infinite matrix associated with the drain. Also, note that the diagonal

blocks of this infinite matrix are repeated due to translational invariance within the drain

(αNX
= αNX+1 = · · · ). Using this property, and partitioning the matrix as shown in Eq. A3,

a closed form expression for the first block of the inverse (denoted by gD) of the infinite

matrix, can be obtained as,

I = gD [E(kx, kz)I − αNX+1 − βgDβ] (A4)
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Once gD, has been solved for, we have,

ΣD =




0 · · · 0

0 · · · 0

0 · · · βgDβ


 (A5)

Note that, only the last vertical slice of the device couples to the drain. Therefore the self-

energy for the drain (Eq. A5) has a single non-zero block that perturbs the last diagonal block

of the device Hamiltonian. To solve Eq. A4, a basis transformation has to be performed.

The eigen vectors of E(kx, kz)I − α , diagonalize gD simultaneously. Therefore we change

basis from 2D real-space to a basis that is composed of the eigenvectors of E(kx, kz)I − α

(equivalent to a mode-space transformation at the boundary). This reduces Eq. A4 to a

set of decoupled quadratic equations that can be solved for the diagonal entries gD, in the

transformed representation. It should be noted that each of these equations results in two

roots. The root representing outgoing waves is selected as we are ultimately interested in

obtaining the retarded Green’s function for the device. An inverse basis transformation is

then applied to evaluate gD in 2D real-space. A similar procedure is invoked to solve for

the self-energy part associated with the source. The final size of the self-energy matrix is

(NX × NZ)2 for the real-space solution and (NX)2 for the decoupled mode-space solution.
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FIGURE CAPTIONS

Fig.1: (a) An ultra-thin body DG MOSFET structure with S/D doping of 1020 cm−3 and

an intrinsic channel (channel thickness = 1.5 nm). (b) The squeezed DG MOSFET structure

used to investigate the effect of mode coupling (channel thickness = 0.75 nm).

Fig.2: (a) The solution to a 1D effective mass equation (step 1 of the mode-space solution)

along slice Z − Z (refer Fig. 1a) in the on-state (VGS = VDS = 0.6V ). (b) The local density

of states from the real-space solution along slice Z − Z.

Fig.3: The classical (inset) and quantum 2D density of states (DOS) along slice Z − Z

(refer Fig. 1) in the on-state. The position of the slice along the channel determines the

subband energies (dotted lines).

Fig.4: Computed local density of states (LDOS) and the longitudinal subband profile

(dotted line) along slice X −X in the on-state. Broadening in the LDOS is due to quantum

mechanical coupling to the S/D and oscillations are due to quantum mechanical reflections.

The conduction band (solid line) is far below the subband due to confinement.

Fig.5: IDS vs . VGS and IDS vs . VDS characteristics for the model device (refer Fig. 1a)

from real (line) and mode-space (circles) solution schemes. Close agreement (∼ 1%) between

the two solutions validates the approximations inherent in the decoupled mode solution.

Fig.6: The energy distribution of the on-current from the real (solid line) and mode-space

(circles) solution schemes. The top of the first subband (dotted line) is also indicated to

separate the thermionic and tunneling current components.

Fig.7: IDS vs . VGS and IDS vs . VDS characteristics for the model device (refer Fig. 1a)

from a quantum (line) and Boltzmann (circles) treatment of the modes. The off-current

from the quantum solution is higher than the Boltzmann solution due to source-to-channel

tunneling. The on-current is lower as a result of self-consistency.

Fig.8: The 2D electron density and first subband profile, along the channel from a quan-

tum (solid line) and classical (dashed line) treatment of the modes, in the on-state. Charge

at the top of the source-barrier is primarily prescribed by gate electrostatics. Crossover

between the quantum and classical charge profiles, is due to quantum reflections and tun-

neling.

Fig.9: IDS vs . VGS and IDS vs . VDS characteristics for the device with the squeezed

channel (refer Fig. 1b) from mode-space (dashed line) and real-space (solid line) solution

schemes. The mode-space solution does not account for mode coupling. Therefore, when the
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vertical potential profile is perturbed strongly, the decoupled mode-space solution exhibits

inaccuracies.
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FIG. 4:

R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom and D. Jovanovic

25



0 0.2 0.4 0.6
10

−2

10
0

10
2

10
4

V
GS

/V
DS

I D
S
 (

A
/m

)

0 0.2 0.4 0.6
0

500

1000

1500

2000

0 0.2 0.4 0.6
0

500

1000

1500

2000

V
DS

 = 0.6 V 

V
GS

 = 0.6 V 

FIG. 5:

R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom and D. Jovanovic

26



FIG. 6:
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