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Simulating rare events in equilibrium or nonequilibrium stochastic systems
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We present three algorithms for calculating rate constants and sampling transition paths for rare
events in simulations with stochastic dynamics. The methods do not require a priori knowledge of
the phase-space density and are suitable for equilibrium or nonequilibrium systems in stationary
state. All the methods use a series of interfaces in phase space, between the initial and final states,
to generate transition paths as chains of connected partial paths, in a ratchetlike manner. No
assumptions are made about the distribution of paths at the interfaces. The three methods differ in
the way that the transition path ensemble is generated. We apply the algorithms to kinetic Monte
Carlo simulations of a genetic switch and to Langevin dynamics simulations of intermittently driven
polymer translocation through a pore. We find that the three methods are all of comparable
efficiency, and that all the methods are much more efficient than brute-force simulation.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2140273�
I. INTRODUCTION

Rare events are fluctuation-driven processes which occur
infrequently. Many natural processes can be classified as rare
events, including the nucleation of crystals or protein aggre-
gates, chemical reactions, earthquakes, and some meteoro-
logical phenomena. For these processes, the average waiting
time between events is orders of magnitude longer than the
time scale of the event itself. In this situation, conventional
“brute-force” simulation is highly inefficient. This is because
few, if any, events are likely to happen in the accessible
simulation time, and the majority of the computational effort
is spent in simulating the uneventful waiting time. Simula-
tion of rare events requires the use of specialized techniques,
such as Bennett-Chandler methods1,2 or transition path
sampling.3–5 Such techniques have been extensively used for
problems including crystal nucleation, membrane perme-
ation, ion transfer reactions, and peptide folding. However,
these methods require knowledge of the phase-space density
in the initial state and as a result they are only suitable for
�possibly metastable� equilibrium systems. By “equilibrium,”
we mean systems where detailed balance is satisfied and the
phase-space density is known. For example, in equilibrium at
constant particle number, volume, and temperature �NVT�,
the phase-space density follows the Boltzmann distribution.
For nonequilibrium systems in steady state—i.e., systems in
which there are, on average, probability currents in phase
space—the steady-state phase-space density is generally not
known a priori. Consequently, “conventional” rare event
techniques cannot be used for nonequilibrium systems. In
this paper, we present several techniques that do not require
knowledge of the phase-space density and are therefore suit-
able for rare events in steady-state systems in or out of equi-
librium.

Rare events in nonequilibrium systems constitute a host
of important problems that have thus far been generally in-
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accessible to simulations. Examples include crystal nucle-
ation under shear, polymer conformational transitions in hy-
drodynamic flows, driven transport through membranes, and
most rare events in biological systems. To our knowledge,
the only scheme to have been proposed for obtaining transi-
tion paths for rare events out of equilibrium in stochastic
dynamical systems is that of Crooks and Chandler.6 Here,
transition trajectories �paths� connecting the initial and final
states are characterized by their random number history. New
transition paths are generated by making changes in the ran-
dom number history of previously generated paths. This
method requires that paths do not diverge significantly upon
changing the random number history; for high dimensional
systems, the Lyapunov instability is likely to lead to ineffi-
ciency.

For equilibrium systems, a variety of rare event tech-
niques exist. Some of these, for example, Bennett-Chandler
methods,1,2 involve the calculation of the free energy along a
predetermined reaction coordinate. These methods do not
generate transition trajectories and, moreover, choice of an
inappropriate coordinate leads to inefficient calculation of
the rate constant. Other methods, such as transition path
sampling3–5 and transition interface sampling,7,8 do not re-
quire the specification of a reaction coordinate and do gen-
erate transition paths. These methods require that the transi-
tion occurs very rapidly, since new paths are generated by a
shooting procedure and tend to diverge, leading to ineffi-
ciency. String methods9,10 have also been developed but have
not yet been implemented for large systems. Finally, several
methods, such as milestoning11 and partial path transition
interface sampling �PPTIS�,12 use a series of interfaces in
phase space, like the methods to be discussed here. However,
milestoning assumes that the distribution of transition paths
at the interfaces follows the equilibrium distribution: an as-
sumption which is unlikely to be justified in many cases.13 In
PPTIS, one assumes “memory loss” over a distance of two

interfaces.
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In this paper, we discuss several alternative schemes for
calculating rates and obtaining transition paths in stochastic
dynamical systems. In addition to enabling the efficient
simulation of rare events in nonequilibrium steady-state sys-
tems, the methods also avoid many of the difficulties associ-
ated with existing equilibrium rare event methods. The meth-
ods do not require the specification of a reaction coordinate,
and transition paths are generated without any requirement
on their length �since paths are generated by a ratchetlike
procedure and not by shooting from previous paths�. Further-
more, although a series of interfaces in phase space is used,
no assumptions are made about the distribution of paths at
the interfaces. The first method, forward flux sampling
�FFS�, was presented in an earlier publication.14

After an introduction to the theory, we give a detailed
description of FFS �Sec. III A�, and also of two more path
sampling schemes, the “branched growth” �BG� method
�Sec. III B� and the “Rosenbluth” method �Sec. III C�. The
latter methods have been developed in analogy to efficient
schemes for sampling polymer chain configurations. The BG
method also resembles a technique used for computing rare
event probabilities in the field of telecommunications.15 In
Sec. III D, we discuss a “pruning” method for increasing the
efficiency of the path sampling schemes. All three schemes
are then demonstrated for two very different systems: in Sec.
IV A, the flipping of a genetic switch is modeled using ki-
netic Monte Carlo simulations and in Sec. IV B, we apply
the methods to Langevin dynamics simulations of driven
polymer translocation through a pore. We discuss the meth-
ods in the context of other rare event techniques and assess
their advantages and disadvantages in Sec. V. Finally, Ap-
pendixes A, B, and C contain theoretical justifications of the
algorithms, an alternative reweighting scheme for the Rosen-
bluth method, and a detailed discussion of the pruning
scheme.

II. THEORETICAL BACKGROUND

We assume that the rare event can be viewed as a spon-
taneous transition between two well-defined regions of phase
space A and B; by “phase-space,” we mean the set of all
parameters that characterize the system. We are interested in
calculating the rate constant kAB: the average rate of transi-
tions from A to B. We use the “effective positive flux” ex-
pression described by van Erp and co-workers.7,8,12 Regions
A and B are defined in terms of a parameter ��x�, such that
���A in A and ���B in B. Here, x denotes the coordinates
of the phase space. A series of nonintersecting surfaces in
phase space �0 , . . . ,�n are chosen, such that �0��A, �n

=�B, and �i��i−1. These must be chosen such that any path
from A to B passes through each surface in turn, not reaching
�i+1 before it has crossed �i. This is illustrated in Fig. 1.
Please note the change in notation in the numbering of the
interfaces, compared to our earlier paper.14

Defining the history-dependent functions hA and hB such
that hA=1 and hB=0 if the system was more recently in A
than in B, and hA=0 and hB=1 otherwise, the rate constant

7,8
kAB for transitions from A to B is given by
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kAB =
�̄A,n

h̄A
=

�̄A,0

h̄A
P��n��0� . �1�

Here, �A,j is the flux of trajectories with hA=1 �i.e., coming
from A� that cross � j for the first time; thus, �A,n is the flux
of trajectories reaching B from A and �A,0 is the flux reach-
ing the first interface �0 from A. The overbar denotes a time

average, and the factor h̄A is the average fraction of the time
that the system spends in the “basin of attraction” of A.
P��n ��0� is the probability that a trajectory that reaches �0

subsequently arrives in B instead of returning to A. Equation
�1� states that the total flux from A to B is the flux of trajec-
tories from A to �0 multiplied by the probability that such a
trajectory will later reach B. In this way, the problem of
calculating the very small flux �A,n is reduced to a calcula-

tion of a larger flux �̄A,0 and a small probability P��n ��0�.
P��n ��0� can then be expressed as the product of the prob-
abilities P��i+1 ��i� that a trajectory that comes from A and
crosses �i for the first time will subsequently reach �i+1 in-
stead of returning to A:

P��n��0� = �
i=0

n−1

P��i+1��i� . �2�

It is important to point out that Eq. �2� does not imply an
assumption that the system is Markovian. This is because the
conditional probabilities P��i+1 ��i� are implicitly weighted
over the ensemble of paths reaching �i from A, as shown in
Appendix A 1. The discussion in Appendix A 1 also shows
the equivalence of the averaging procedures used to evaluate
P��n ��0� in the three path sampling methods described in
this paper.

The methods described in this paper allow one to sample
the transition path ensemble �TPE�, as well as calculate the
rate constant. The TPE is the collection of all transition tra-
jectories �paths� from A to B that would be obtained if an
infinitely long brute-force simulation were to be performed.
Analysis of the TPE can lead to a mechanistic understanding
of the rare event in question through, for example, the cal-
culation of committor distributions.4 We shall see in Secs.
III A–III C, as well as Appendix A, that the three methods
discussed here generate transition paths belonging to the TPE
in an efficient manner and with the correct weights.

The starting point for all three methods is the choice of
the parameter ��x� and the definition of phase-space regions

FIG. 1. Schematic illustration of the definition of regions A and B and the
interfaces �0 , . . . ,�n �here, n=3�. Three transition paths are shown.
A and B. ��x� must increase monotonically as the interfaces
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�0 , . . . ,�n are crossed. However, there is no assumption that
� is the reaction coordinate: transition paths are free to fol-
low any possible path between A and B, including paths
which “loop back,” crossing some interfaces several times. A
good choice of � will improve the efficiency of the calcula-
tion but will not affect the final rate constant or transition
paths. In fact, for the test systems of Secs. IV A and IV B,
our choice of � is very simple and is unlikely to correspond
to the true reaction coordinate. The interfaces �0 , . . . ,�n are
placed between A and B, with �n=�B. We find that it is often
convenient �although not necessary� to place �0 at the border
of the A region: �0=�A. The optimum number and placement
of the interfaces will be discussed in detail in a future
publication.16

III. ALGORITHMS

A. The forward flux sampling method

The first of our three methods is forward flux sampling
�FFS�, which was introduced in an earlier paper.14 For clar-
ity, we describe the method again here, together with some
recent improvements. The FFS algorithm begins with a
simulation run in the basin of attraction of region A. The
parameter � is monitored during this run. Each time the tra-
jectory leaves A and reaches �0 for the first time since leav-
ing A, a counter q is incremented and the phase-space coor-
dinates of the system are stored. The run is then continued
until N0 points at �0 have been collected, as illustrated in Fig.
2�a�. If, during this run, the system happens to enter B, it is
replaced in A and reequilibrated. The number N0 of collected
points should be as large as possible, in order to obtain good
sampling of the transition paths. As discussed in Sec. V, if N0

is so small that it is similar to the number n of interfaces,
sampling problems will occur due to “genetic drift.” In the
examples of Secs. IV A and IV B, N0 is of the order of thou-

sands. The flux �̄A,0 / h̄A is given by �̄A,0 / h̄A=q /T, where T
is the total length of the simulation run. Figure 2�a� shows
this first stage of the algorithm: crossings of �0 that are la-
beled with a black circle contribute to q and to the collection
of points at �0. In practice, it may be convenient not to store
the coordinates of every “black circle” but rather to select
crossings in some unbiased way. We note that q must be

FIG. 2. The first �a� and second �b� stages of the FFS method. The distri-
bution of points at the interfaces depends on the history of the paths, as
illustrated by the dashed lines in �b�. The circles are members of the collec-
tion of points at the interfaces �i.
incremented for every black circle crossing.
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In the next stage of the algorithm, we estimate the prob-
ability P��i+1 ��i� of reaching �i+1 from �i, instead of return-
ing to A. Starting with the collection of N0 points at �0, M0

trial runs are carried out. Each trial run consists of selecting
a point from the collection at random and using it as the
starting point for a simulation run which is continued until
either �1 or �A is reached. If the trial run reaches �1 then a
counter Ns

�0� is incremented, and the final point of the run is
stored in a new collection of points at �1. After the M0 trial
runs, we are left with an estimate for P��1 ��0�=Ns

�0� /M0, and
a collection of N1=Ns

�0� points at �1. Using this collection of
points, M1 trial runs are then carried out, each time selecting
a starting point at random and running a simulation until
either �2 or �A is reached. This procedure is repeated for
each interface �i, each time using the collection of points
generated at the previous interface and firing trial runs as far
as �i+1 or �A. A possible way of improving efficiency by
eliminating long paths back to A will be discussed in Sec.
III D and Appendix C. The end result of the trial run proce-
dure is an estimated value of P��i+1 ��i�=Ns

�i� /Mi, for each
interface i. Multiplying these together as in Eq. �2� leads to
an estimate for P��n ��0�. This can then be multiplied by the

flux �̄A,0 / h̄A calculated in the first stage to give the rate
constant kAB.

The method described here is slightly different from that
outlined in our earlier paper.14 The collection of points at �i+1

now consists of the end points of all the Ns
�i� successful tra-

jectories from �i; previously, only a user-defined number of
points was stored and the rest were discarded. Storing a
larger number of points at the interfaces leads to better sam-
pling, with no increase in cost. In addition, the only user-
defined parameters are now the number N0 of initial points
and the number Mi of firing runs to be carried out at each
interface �as well as the number and position of the inter-
faces�. It is important to ensure that the Mi are large enough
to generate sufficient points at the next interface for good
sampling. In our earlier paper, we also described a procedure
whereby a series of “subinterfaces” between each pair of
interfaces �i and �i+1 were used to construct histograms for
P�� ��i�, which were then fitted together to obtain P��n ��0�.
The aim of this approach was to reduce the accumulation of
errors caused by the multiplication of conditional probabili-
ties in Eq. �2�. While this fitting procedure gives the correct
rate constant, we find that in practice it does not improve the
efficiency of the method and we do not therefore use it.

The FFS method generates transition paths according to
their correct weights in the transition path ensemble �TPE�,
as shown in Appendix A 3. In order to extract these paths,
the phase-space coordinates of the system must be stored for
all points along all trial runs which successfully reach �i+1

from �i. One must also store information on the connectivity
of the partial paths; i.e., each successful trial from �i to �i+1

is annotated with an index that describes its initial point at �i.
Once the trial run procedure is complete, transition paths are
obtained by following the trials that reach B back to �n−1,
following their initial points back to �n−2, and so on back to
A. As illustrated in Fig. 3, this results in a “branching tree” of

transition paths, in which partial paths close to A may be
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shared by many members of the TPE. The resolution in
phase space of the TPE is therefore better for phase-space
regions close to B than for those close to A; the TPE that is
produced is nevertheless correctly weighted.

A method similar to FFS has recently been used to study
the crystal nucleation of sodium chloride.17

B. The branched growth method

We now describe an alternative path sampling and rate
constant calculation scheme: the branched growth �BG�
method. Both the BG method and the Rosenbluth scheme of
Sec. III C are similar to techniques originally developed for
the efficient sampling of polymer configurations;1 an analogy
is used between transition paths and conformations of a poly-
mer chain, with partial paths between interfaces playing the
role of polymer segments. The BG method also resembles a
technique that is used to compute probabilities of rare events
in telecommunication systems.15

The BG method begins with a simulation in the basin of
attraction of A, which is suspended when the system leaves A
and crosses �0. The resulting system configuration at �0 is
then used as the starting point for k0 trial runs, which are
continued until either �1 or �A is reached. Each trial run is
assigned a “weight” 1/k0. If Ns

�0��0 of the trials reach �1,
then each of the Ns

�0� end points at �1 becomes a starting
point for k1 new trial runs, which have weight 1 / �k0k1� and
which are continued until �2 or �A is reached. Each of the
Ns

�1� total successful trials from �1 to �2 generates a starting
point for k2 trial runs to �3, with weight 1 / �k0k1k2�, and so
on until �n=�B is reached. Once the generation of one
branching path is over, either because B was reached or be-
cause no successful trials were generated at some intermedi-
ate interface �i, we obtain an estimate of P��n ��0� from the
total weight of the branches that eventually reach �n:
P��n ��0�=Ns

�n−1� /�i=0
n−1ki. In order to begin the generation of

the next branching path, the simulation run in the A basin is
resumed and a new starting point at �0 is generated the next
time the system crosses �0, coming from A �the system must
return to A between subsequent starting point generations�.
The same trial run procedure is then used to create a branch-
ing tree of paths from this starting point, resulting in a new

FIG. 3. Schematic illustration of the extraction of the transition path en-
semble from the FFS procedure. All partial paths that reach the subsequent
interface are shown. Partial paths that do not contribute to the TPE are
shown by dotted lines. The solid lines correspond to the TPE; the width of
the line indicates the weight of the contribution of a particular partial path to
the TPE.
estimate of P��n ��0�. After many such branching paths have
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been generated, the final estimate of P��n ��0� is simply the
average of the contributions due to all the paths �including
those which failed to reach B: these make a zero contribu-

tion�. The flux �̄A,0 / h̄A can be obtained from the total num-
ber of crossings observed in the simulation in the A basin,
divided by the total length of this run. The branching trees of
paths connecting regions A and B which arise from this sam-
pling method are correctly weighted members of the TPE, as
shown in Appendix A 3. By storing the phase-space coordi-
nates of the points in the trial runs which successfully reach
�i+1, one can obtain branching transition paths, which can be
analyzed to obtain information on the mechanism by which
the rare event occurs.

The branched growth method is illustrated schematically
in Fig. 4. As in FFS, the TPE is sampled with better resolu-
tion in the phase-space region close to B, since the transition
paths are branched.

C. The Rosenbluth method

Our third scheme, the “Rosenbluth” �RB� method, is re-
lated to the Rosenbluth scheme for sampling polymer chain
conformations.1,18,19 As for the BG method, transition paths
are generated one at a time. In contrast to BG, however, the
RB method generates unbranched paths. This means that the
TPE is sampled evenly for all values of � and also makes the
extraction and analysis of transition paths very easy. Further-
more, the RB method requires less storage of system con-
figurations, which may be useful for large systems.

For the FFS and BG methods, we show in Appendix A 3
that the TPE is automatically generated with the correct
path weights. However, as we shall see, in the RB method,
when paths are initially generated they do not have the
correct weights. A “reweighting” procedure is therefore
needed in order to correctly sample the TPE. Here, we de-
scribe a Metropolis-type acceptance/rejection reweighting
procedure;1 in Appendix B, we also discuss an alternative
“waste-recycling” scheme based on the recent work of
Frenkel.20

The generation of a transition path in the RB method
takes place as illustrated in Fig. 5. We begin with an initial
point at �0, which is obtained in the same way as for the FFS

FIG. 4. A schematic view of the generation of a branched path �thick lines�
using the branched growth sampling method. The simulation run in the A
basin is shown by a dotted line. Trial runs which fail to reach �i+1 are shown
by thin lines. The generation of the initial point for the next path is also
shown.
and BG methods, using a simulation run in the basin of at-
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traction of A. The point at �0 is used to initiate k0 trial runs,
which are continued until they reach either �1 or �A. If at
least one of these successfully reaches �1, we choose one
successful trial at random and use its end point at �1 as the
starting point for a set of k1 trial runs, which end either at �2

or at �A. Once again, a successful trial is chosen at random
and used to continue the path. This procedure is repeated
until either B is reached or no successful trials are produced.

The RB method generates unbranched transition paths,
in contrast to the FFS and BG methods. For FFS and BG,
paths for which more trial runs are successful produce more
branches and make a greater contribution to the TPE, result-
ing in “automatic” correct weighting of the transition paths.
In the RB method, however, one successful trial at each in-
terface is chosen, regardless of how many successful trials
there are. This leads to paths being generated with incorrect
weights; as illustrated schematically in Fig. 6, paths for
which more trials were successful must be given an in-
creased weight in the TPE relative to those for which fewer
trials were successful. We show in Appendix A 4 that the
weight of each generated transition path must be multiplied
by the “Rosenbluth factor” W, which is given by

W = �
j=0

n−1

Ns
�j�. �3�

In the illustration of Fig. 6, W=2 for the top path and W
=18 for the bottom path. W, in fact, corresponds to the num-

FIG. 5. A schematic view of the generation of a transition path using the
Rosenbluth sampling method. The simulation run in the A basin is shown by
a dotted line. The transition path is shown by bold lines. Trial runs which do
not form part of the transition path are shown by thin lines. The generation
of the next starting point at �0 is also illustrated.

FIG. 6. Two transition paths generated by the Rosenbluth method. The

bottom path must be reweighted by a factor of 9 relative to the top path.
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ber of branches that would have been present, had we been
using the BG scheme. In addition to the generation of paths,
we shall also discuss the computation of the probabilities
P��i+1 ��i�. For this, it is important to note that the weighting
factor for an incomplete transition path—i.e., one that con-
nects A to �i, is

Wi = �
j=0

i−1

Ns
�j�. �4�

We now describe a practical scheme for sampling cor-
rectly weighted transition paths and for calculating the prob-
abilities P��i+1 ��i�. The scheme �which we denote RB/M�
uses a Metropolis acceptance/rejection reweighting
procedure.1 An alternative “waste-recycling” approach �de-
noted RB/WR� is discussed in Appendix B. The RB/M algo-
rithm is as follows:

�1� Define values Wt
�o� and Wt

�n�. For each interface 0
� i�n, define values mi=0, Wi

�o�, Wi
�n�, pi

�o�, pi
�n�,

pi
cum=0. Define arrays of system configurations P�n�

and P�o� in which to store transition paths.
�2� Begin or continue a simulation run in the A basin.

When the system leaves A and crosses �0, suspend
this run. Denote the system configuration as x0. Set
i=0.

�3� Increment m0→m0+1. Initiate k0 trial runs from x0.
Continue each trial run until either �1 or �A is
reached. Calculate the number Ns

�0� of trials which
reach �1. Increment p0

cum→p0
cum+Ns

�0� /k0. Set Wt
�n�

=Ns
�0� and W1

�n�=Ns
�0�.

�4� If Ns
�0��0, choose one successful trial at random.

Denote the final point of this trial as x1. Add the
configurations corresponding to this trial run into the
array P�n�. Set i=1. Otherwise �if Ns

�0�=0�, return to
step �2�.

�5� Increment mi→mi+1. Initiate ki trial runs from xi.
Continue each trial run until either �i+1 or �A is
reached. Calculate the number Ns

�i� of trials which
reach �i+1. Set pi

�n�=Ns
�i� /ki. If Ns

�i��0, select one
successful trial at random and denote the final point
of this trial as xi+1.

�6� If mi=1, set pi
�o�= pi

�n� and Wi
�o�=Wi

�n�. If mi�1, draw
a random number 0�r�1. If r�Wi

�n� /Wi
�o�, set

pi
�o�= pi

�n� and Wi
�o�=Wi

�n�. If r�Wi
�n� /Wi

�o�, pi
�o� and

Wi
�o� remain unchanged.

�7� Increment pi
cum→pi

cum+ pi
�o�. Increment Wt

�n�

→Wt
�n�*Ns

�i�. Set Wi+1
�n� =Wi

�n�*Ns
�i�.

�8� If Ns
�i�=0, return to step �2�. Otherwise, increment i

→ i+1 and repeat steps �5�–�8� until i=n.
�9� If i=n: if mn=1, set Wt

�o�=Wt
�n� and P�o�=P�n�. Oth-

erwise �if mn�0�, draw a random number 0�r�1.
If r�Wt

�n� /Wt
�o�, set Wt

�o�=Wt
�n� and P�o�=P�n�. If r

�Wt
�n� /Wt

�o�, Wt
�o� and P�o� remain unchanged.

�10� The path P�o� is a member of the TPE and should be
included in any analysis of the transition mecha-
nism.

�11� Repeat steps �2�–�10� many times.

�12� For each interface 0� i�n, calculate P��i+1 ��i�
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= pi
cum/mi. The flux �̄A,0 is given by m0 /T, where T

is the total length of the simulation run in the A
basin.

In this scheme, transition paths are generated by shoot-
ing ki trials from each interface i and selecting one successful
trial at random. mi denotes the number of paths to interface i
that have been generated. When a complete path from A to B
has been generated, its Rosenbluth weight Wt

�n�, given by Eq.
�3�, is compared to the Rosenbluth weight Wt

�o� of the previ-
ous complete path to be accepted �step �9��. The newly gen-
erated path is accepted if Wt

�n� /Wt
�o��r, where r is a random

number between 0 and 1 �unless it is the first path to be
generated �mn=1�, in which case it is always accepted�. This
Metropolis scheme has the effect of reweighting transition
paths according to their Rosenbluth factors. The scheme also
incorporates Metropolis acceptance/rejection steps at every
interface in step �6�. This is necessary for correct calculation
of the probabilities P��i+1 ��i�, since the probability estimate
pi=Ns

�i� /ki obtained by firing ki trial runs from interface �i

must be reweighted by a factor Wi given by Eq. �4� which
depends on the partial path leading from A to �i. We note
that the generation of the transition path continues to inter-
face i+1 regardless of the outcome of the acceptance/
rejection step at interface i. We also note that the “previous
partial path to be accepted” at interface i need not have any
segments in common with the previous partial path to be
accepted at any other interfaces.

In Appendix A 4, we demonstrate that this scheme in-
deed samples the TPE correctly, and we discuss the differ-
ences between this approach and the Rosenbluth method for
the sampling of polymer configurations.

D. Pruning

The analogy with polymer simulations also suggests a
possible improvement to the efficiency of all three methods.
By pruning trial paths which go in the direction of region A,
we can avoid the computational expense of integrating
“failed” trials from interface i all the way back to �A. In
analogy with the Pruning method used for polymers,1,21 trial
paths which reach the previous interface at �i−1 from �i are
terminated with a certain probability. Surviving trials must
be reweighted to preserve the correct weights in the final
TPE. The implementation of pruning in the context of these
path sampling methods is described in Appendix C; for the
genetic switch and polymer translocation problems described
here, we find that although the results for kAB continue to be
correct when pruning is used, no significant improvement in
efficiency is achieved.

IV. APPLICATIONS

A. Genetic switch

We now move on to a demonstration of the methods of
Secs. III A–III C for several nonequilibrium rare event prob-
lems. Our first test system is a set of chemical reactions
comprising a symmetric bistable genetic switch, which is

simulated using a kinetic Monte Carlo scheme. This is a
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nonequilibrium system whose dynamics does not obey de-
tailed balance.14,22,23 Examples of real genetic switches in-
clude the lysis-lysogeny switch of phage � �Ref. 24� and the
lac system of E. coli,25 as well as artificially engineered bac-
terial genetic switches.26,27

Our model genetic switch is shown in Fig. 7. The switch
consists of a piece of DNA containing two genes A and B, as
well as a controlling operator site, O. The two genes encode
proteins A and B, and we assume that �when O is unoccu-
pied� each of these proteins is produced from the DNA in a
one-step process with rate constant k. In nature, of course,
protein production is a complex multistep process, the details
of which we ignore. Both proteins can dimerize and their
dimers A2 and B2 can bind to the operator site—however,
only one dimer can be bound at any time. The binding of
dimers to the operator site has the effect of controlling pro-
tein production—when A2 is bound to O, A is produced at
rate k, but B is not produced. Likewise, when B2 is bound to
O, B is produced at rate k, but A is not produced. Each dimer
therefore blocks the production of the other protein. Both
proteins are also removed �by enzymatic degradation or di-
lution due to cell growth� at a constant rate of 0.25k. The
genetic switch is bistable, having two steady states, one with
a large number of A molecules, and few B, and the other with
a large number of B and few A molecules. Switching be-
tween these states �“flipping”� occurs due to stochastic fluc-
tuations; the factors affecting the flipping rate have been ex-
tensively investigated.22,23,28,29

We simulate the switch using the Gillespie algorithm.30

This is a widely used kinetic Monte Carlo scheme for propa-
gating chemical reactions. In each simulation step, a random
number is drawn from the correct �exponential� distribution
and used to choose the time at which the next reaction will
occur, and another random number is used to determine
which reaction this will be. The simulation time and numbers
of molecules of all species are then updated accordingly. The

FIG. 7. Reaction scheme for the genetic switch. Proteins A and B can
dimerize and bind to the DNA at the operator site, O. When A2 is bound to
O, B is not produced, and when B2 is bound to O, A is not produced. Both
proteins are degraded in the monomer form. Forward and backward rate
constants kf and kb are identical for A and B.
phase space in these simulations is the number of molecules
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of each chemical species present in the system. A full de-
scription of the simulation algorithm is given in Ref. 30. An
initial version of the results for the FFS method, as well as a
discussion of some interesting features of the TPE, was pre-
sented in a previous publication.14

For the parameter �, we choose �=NB−NA, where NA is
the total number of A proteins, and NB the total number of B
proteins:

NA = nA + 2�nA2
+ nOA2

� ,

�5�
NB = nB + 2�nB2

+ nOB2
� ,

nX being the number of molecules of species X. Figure 8
shows � as a function of time for a typical brute-force simu-
lation run �note that the unit of time in these simulations is
k−1�. It is clear that the system is indeed bistable, and that
transitions are rapid in comparison to the waiting time be-
tween events. The parameters of Fig. 7 have been chosen to
give a rather fast flipping rate, which can be measured using
brute-force simulation. We define regions A and B by �A

=�0=−24 and �B=24. A “flip” is considered to have oc-
curred when the system enters region B, having come from A
�i.e., having hA=1, meaning it was in A more recently than
in B�. To calculate kAB using brute-force simulation, the in-
tegral F�t�=�0

t dt� p�t�� of the distribution p�t� of times
between flips was fitted to the Poisson function F�t�=1
−exp�−kABt�, leading to a result kAB= �9.4±0.2��10−7k. This
calculation was done over a total brute-force simulation time
of 9�109k−1, during which 8808 flips occurred.

The results of calculations of the flipping rate using FFS,
BG, RB with Metropolis acceptance/rejection �RB/M�, and
RB with waste recycling �RB/WR�, for the same parameter
set, are shown in Table I. In all cases, �A=�0=−24 and
�B=�n=24. We used n=7 and the interfaces were placed at
�i= �−24,−22,−18,−15,−12,−9,−4,24	 �0� i�n�. The
number of trials k for the RB and BG methods was ki

= �6,5 ,4 ,4 ,5 ,5 ,4	 �0� i�n�. For FFS, we chose N0

=1000 and the number M of trials at each interface was Mi

= �6000,5000,4000,4000,5000,5000,4000	 �0� i�n�. The
calculations were carried out as a series of “blocks,” each
consisting of 1000 starting points for the RB and BG meth-

FIG. 8. � as a function of time �in units of k−1� for a typical simulation run.
ods, and of one FFS run for FFS. Results were averaged over
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all blocks. Table I shows excellent agreement with the brute-
force result for all the path sampling methods. The values
of P��i+1 ��i� were found to be P��i+1 ��i�
= �0.25,0.20,0.30,0.26,0.24,0.24,0.34	 for 0� i�n. The
approximate number of simulation steps performed in ob-
taining the result in Table I is also given: it is clear that all
the path sampling methods are much more efficient than
brute-force simulation, even for this relatively rapidly flip-
ping switch. In a previous publication,14 it was demonstrated
that the improvement in efficiency of FFS over brute-force
simulation was dramatically increased when the switch flip-
ping rate was decreased. In this work, we have not attempted
to optimize the number and positioning of interfaces, or the
number of trials carried out at each interface. Table I does
not, therefore, provide a reliable guide to the relative effi-
ciency of the various path sampling methods. However, we
can make the general observation that the computational ef-
ficiency is of the same order of magnitude for all of the
methods. This issue will be discussed in detail in a future
publication.16

B. Driven polymer translocation through a pore

Our second test system represents a simplified approach
to the important problem of polymer transport through a na-
nopore. This is a widely occurring phenomenon: biological
examples include protein translocation through pores, RNA
transport across the nuclear membrane, and injection of ge-
netic material by viruses; while technological applications
include gene therapy and sequencing of DNA. In general,
translocation does not occur in equilibrium, but in response
to a driving force, such an electrical field or the action of
motor proteins. An important difference to the genetic switch
flipping of Sec. IV A is that this is not a bistable system but
rather an escape problem: translocation events occur only in
one direction and after each event the system is reequili-
brated in its original configuration.

We have applied the path sampling methods of Secs.
III A–III C to Langevin dynamics simulations of the non-
equilibrium, unidirectional translocation of a polymer
through a pore. The simulation setup is shown schematically
in Fig. 9. Our model polymer consists of N monomers, each
of which interacts with all other monomers via a spherical

TABLE I. Path sampling and brute-force �BF� results for f 
�̄A,0 / h̄A,
P��n ��0�, and kAB. The brute-force result is obtained by fitting F�t� as de-
scribed in the text. Nst is the approximate number of simulation steps per-
formed in obtaining the result in the table.

f /k�10−2 PB�10−5 kAB /k�10−7 Nst�1011

BF ¯ ¯ 9.4±0.2 14.8
FFS 1.221±0.005 7.8±0.1 9.4±0.2 1.1
BG 1.212±0.006 7.6±0.2 9.3±0.2 0.5
RB/M 1.220±0.004 7.8±0.1 9.4±0.1 1.8
RB/WR 1.223±0.004 7.7±0.2 9.4±0.3 1.0
Lennard-Jones potential with parameters � and 	:
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vlj�r� = 4���	

r

12

− �	

r

6� , �6�

where r is the distance between the monomers. This interac-
tion is truncated at r=3	. Each monomer also interacts with
its neighbors along the chain via a linear spring potential
�spring constant ss� of the form

vs�r� = ss�r − r0�2. �7�

Here, r is the distance between two neighboring monomers
and r0 is the bond length. The pore, of radius R, embedded in
a slab of width L, is modeled by a repulsive Lennard-Jones
potential with parameters �w and 	w:

vw�r� = 4�w�	w

r

12

, �8�

where r is now the shortest distance between a monomer and
the wall of the pore or slab. This interaction is also truncated
at r=3	.

We do not aim at present to undertake a detailed study of
the mechanism of polymer translocation. We therefore ne-
glect the process by which the polymer arrives at the pore
mouth, constraining the first monomer in the chain not to
move far from the pore entrance on the left-hand side. This is
achieved by applying a harmonic restraining force �spring
constant shr� to the first monomer, of the form:

fhr�r1� =− shr�r1 − R� , r1 � R

=0 otherwise.
�9�

In Eq. �9�, r1 is the distance of the first monomer from the
point �−L /2 ,0 ,0�. The force acts along the vector connecting
the first monomer to this point. If the first monomer is within
a hemisphere of radius R around the pore mouth, or is inside
the pore, or beyond the pore on the right-hand side, the re-
straining force is zero.

To model the pulling of the polymer through the pore,
we suppose that there exists some mechanism which exerts
force on any monomers which are inside the pore. This force
is, however, intermittent in time: the pore flips between states
ON and OFF at rates k1 �for the OFF → ON transition� and
k−1 �for the ON → OFF transition�. When the pore is in the

FIG. 9. �a� An illustration of the polymer simulation. �b� A “zoomed in”
view, showing the three regions used to define �, in Eq. �13�.
ON state, all monomers inside the pore experience a force
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fpull in the positive x direction. When the pore is in the OFF
state, no pulling force is exerted. Although this model is not
meant to represent any particular system, intermittent pulling
forces of this kind might be produced by motor proteins
localized inside pores. The intermittent pulling force makes
this a nonequilibrium system.

The monomers also experience stochastic forces due to
the effects of the solvent, and their dynamics is simulated
according to the usual Langevin dynamics algorithm:

ṙi
�t� =
pi
�t�

m
�10�

and

ṗi
�t� = − �pi
�t� + f i
�t� + p̊i
�t� , �11�

where ri
 is the ith component of the position vector of
monomer i, pi
 is the ith component of its momentum vector,
and f i
 is the ith component of the force acting on it due to
the other monomers, the interactions with the wall, the pull-
ing force, and �for the first monomer only� the constraint
force. The parameter m is the monomer mass, � is the friction
constant, related to the diffusion constant D by �=kB /mD,
and p̊i
 is a “random force” representing collisions with the
solvent molecules and satisfying

�p̊i
�t�p̊i��0�� = 2mkBT�
�t�

�. �12�

Equations �10� and �11� are integrated with a finite time step
dt using the predictor-corrector-type algorithm given in the
book of Allen and Tildesley.31 If, at a particular step, the state
of the pulling force is OFF, it is changed to ON with prob-
ability k1dt, and if it is ON, it is changed to OFF with prob-
ability k−1dt. Once the entire polymer has passed through the
pore �i.e., all monomers are located at x�L /2�, we replace it
in its starting position �a preequilibrated configuration�, re-
equilibrate for Teq=100	2 /D, and continue the simulation.

The parameters of the simulation were chosen such that
the monomers attract each other strongly and the polymer
adopts a globular configuration before entering the pore. To
enter the pore, the polymer is forced to adopt an energeti-
cally unfavorable extended configuration. This scenario
could model protein translocation. From the point of view of
our calculations, it has the advantage of ensuring that the
waiting time between translocation events is long compared
to the length of the events themselves. The parameter values
were N=10, R=2	, L=2	, dt=0.02	2 /D, r0=0.5	, ss

=2kBT /	2, �=2.5kBT, �w=0.3kBT, 	w=1	 fhr=5kBT /	2,
fpull=1.0kBT /	, k1=10	−2D, k−1=1	−2D, and Lx=Ly =Lz

=200	. Our units of length are taken to be the Lennard-
Jones interaction parameter 	; units of mass are m, units of
energy are kBT, and the diffusion constant defines the units of
time, which are 	2 /D. The simulation box is cuboidal, with
dimensions Lx, Ly, and Lz; periodic boundary conditions
were used in all three dimensions.

We define the parameter � in a rather trivial way. We
consider three regions, illustrated in Fig. 9�b�: the hemi-
spherical region of radius R around the left-hand pore mouth

�region I�, the region inside the pore �region II�, and the
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region outside the pore on the right-hand side �region III�.
Taking nI, nII, and nIII to be the numbers of monomers in the
three regions, we define

� =
nI/4 + nII/2 + nIII

N
. �13�

During the translocation process, � increases from a value of
��1/ �4N� to unity. We note that expression �13� is chosen
merely for convenience and is not expected to reflect the true
reaction mechanism. A simpler definition might be the num-
ber of monomers which have already translocated
��=nIII�—although this would also lead to the correct value
of kAB, in practice it gives rather few crossings of the first
interface and is therefore less efficient.

Figure 10 shows � as a function of time for a typical
brute-force simulation run. Translocation events occur rap-
idly compared to the waiting time between events. Defining
an event to have occurred at the moment that the system
crosses the interface �n=1, the waiting time distribution p�t�
can be measured and its integral F�t�=�0

t dt� p�t�� fitted to the
Poisson function F�t�=1−exp�−kABt�, in order to measure
kAB. This resulted in a brute-force measurement kAB

= �1.48±0.02��10−4D	−2, obtained by simulating 5912
translocation events.

The FFS, BG, and RB methods �using both Metropolis
acceptance/rejection and waste recycling� were applied to the
polymer translocation problem, using the definition �13� of
�. States A and B were defined by �A=�0=0.025 and �B

=�n=1.0. We used n=7, with interfaces positioned at �i

= �0.025,0.05,0.1,0.15,0.2,0.3,0.5,1.0	 for 0� i�n. For
the FFS method, we used N0=500 and the number of trials
M at each interface was Mi= �1500,1500,
1000,1000,1500,1500,550	 for 0� i�n. For the BG
method, the number of trials per point was ki

= �3,3 ,2 ,2 ,3 ,3 ,1	, while for both RB schemes it was ki

= �6,6 ,4 ,4 ,6 ,6 ,2	 �0� i�n�. In all cases, averages were
taken over a series of blocks, each consisting of 500 starting
points for the BG and RB methods, or of one FFS run. The
results, given in Table II, show good agreement with the
brute-force results. The number Nst of simulation steps used
in the calculations is significantly lower for the path sam-

FIG. 10. �a� � as a function of time �in units of 	2D−1� for a typical
brute-force simulation run.
pling techniques.
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The parameter set given above was designed so as to
allow the calculation of the translocation rate by brute-force
simulation, in order to test the path sampling methods. The
methods can also be used, of course, for much rarer transi-
tions where brute-force simulation is not feasible. We have
also carried out calculations of kAB for an altered parameter
set, which is as above, except that the monomer-monomer
Lennard-Jones interaction parameter � is increased to �
=5kBT, and the wall-monomer interaction parameter �w be-
comes �w=1kBT. This implies very strong attraction between
the monomers and very strong repulsion between the mono-
mers and the pore. The same interfaces were used. For FFS,
the same parameters were used: N0=500 and Mi

= �1500,1500,1000,1000,1500,1500,550	. For the BG
method, the number of trials per point was ki

= �4,5 ,3 ,4 ,7 ,10,2	, while for both RB schemes it was ki

= �12,15,9 ,12,21,30,6	. These parameters were chosen for
convenience, but no systematic attempt was made at optimi-
zation; thus, the results should not be used to compare effi-
ciencies of the various path sampling methods, although
once again, we see that the efficiency of all the methods is
within about the same order of magnitude, with the RB
method being somewhat less efficient. The results for this
rarer translocation problem are given in Table III. Since the
rate constant is 44 times smaller in this case, we can suppose
that to obtain a brute-force result of comparable accuracy,
approximately 44�20�108�9�1010 simulation steps
would be required.

V. DISCUSSION

In this paper, we have described three methods for the
calculation of rates and the sampling of transition paths, for
rare events in equilibrium or nonequilibrium stochastic dy-

TABLE II. Path sampling and brute-force results for f =�̄A,0 / h̄A, P��n ��0�,
and kAB. Units of f and kAB are D	−2. The brute-force result is obtained by
fitting F�t� as described in the text. The errors represent the standard error in
the mean of a series of independent estimates. Nst is the approximate number
of simulation steps performed in arriving at the result given in the table.

f �10−1 PB�10−3 kAB�10−4 Nst�108

BF - - 1.48±0.02 20.0
FFS 1.084±0.006 1.36±0.02 1.48±0.02 5.5
BG 1.084±0.006 1.35±0.02 1.47±0.02 3.2
RB/M 1.086±0.006 1.31±0.03 1.43±0.03 4.9
RB/WR 1.092±0.006 1.35±0.03 1.47±0.03 4.9

TABLE III. Path sampling and brute-force results for f =�̄A,0 / h̄A, P��n ��0�
and kAB, for the polymer translocation problem with the altered parameter
set. Units of f and kAB are D	−2. The errors represent the standard error in
the mean of a series of independent estimates. Nst is the approximate number
of simulation steps performed in arriving at the result given in the table.

f �10−2 PB�10−5 kAB�10−6 Nst�108

FFS 9.88±0.06 3.4±0.1 3.4±0.1 3.6
BG 9.70±0.06 3.6±0.1 3.5±0.1 7.1
RB/M 9.77±0.03 3.8±0.3 3.7±0.3 20.9
RB/WR 9.83±0.03 3.4±0.2 3.3±0.2 17.6
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namical systems in stationary state. What is the origin of the
increased efficiency of these methods over brute-force simu-
lations? A general characteristic of rare events is that the
system makes many “failed attempts,” in which a fluctuation
drives the system in the direction of B, for each “successful”
transition from state A to state B. In a brute-force simulation,
one does not capitalize on these failed attempts but simply
waits for the rare successful transition. In the methods de-
scribed here, once the system crosses a particular interface,
this configuration is stored and trial runs are used to try to
extend the path to subsequent interfaces. The interfaces thus
allow us to capitalize on those fluctuations that drive the
system in the direction of B, since the system advances from
one interface to the next in a ratchetlike manner. This is the
origin of the increase in efficiency over brute-force simula-
tion. Of course, situations may arise in which the majority of
the fluctuations in the direction of B, in fact, lead into “blind
alleys” rather than generating transition paths. This problem
could perhaps be overcome by again exploiting the analogy
with polymer simulations to develop a scheme based on the
recoil growth method.1

The approaches described in this paper differ greatly
from existing path sampling methods for rare events. The
most widely used method for generating the transition path
ensemble is transition path sampling �TPS�.4 TPS samples
the TPE using a dynamic Markov chain Monte Carlo algo-
rithm. Here, a new path is generated by shooting off trajec-
tories in the forward and backward directions from a point in
the old path, after slightly changing its momentum coordi-
nate. The new path is then accepted or rejected, usually via a
Metropolis acceptance/rejection criterion �which requires
knowledge of the phase-space density of the new initial
point, meaning that TPS cannot be used for nonequilibrium
systems�. The acceptance criterion is optimized by tuning the
maximum momentum displacement. However, even with de-
terministic dynamics, the Lyapunov instability of the system
is often so large that when the smallest momentum displace-
ments possible are used, the trial trajectories still diverge in a
few picoseconds from the old ones; for stochastic dynamics,
the situation is likely to be worse. TPS alleviates this prob-
lem by mainly shooting off trajectories near the top of the
barrier; however, this drastically hampers the relaxation of
the transition paths and, as a result, TPS is inefficient for
transitions that take longer than a few picoseconds. The
Lyapunov instability also explains why TPS cannot conve-
niently be adapted to simulate nonequilibrium systems by
only shooting in the forward direction, in the manner of the
methods described here: shooting in the forward direction
from early points in the transition paths is very unlikely to
succeed. The nonequilibrium scheme of Crooks and
Chandler6 is also expected to suffer from trajectory diver-
gence for multidimensional systems. The methods described
in this paper suffer much less from these problems associated
with the Lyapunov instability. This is because trial runs
which are fired from interface �i are only required to reach
�i+1 in order to make a contribution to the path ensemble. If
the distance between interfaces were to be very large, the

Lyapunov instability might lead to problems in reaching �i+1,
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but in this case, the interfaces can simply be positioned more
closely. These methods should therefore prove useful for
studying diffusive rare events.

The schemes presented here use the same formulation
for the rate constant as the transition interface sampling
�TIS� method of van Erp et al.7 and van Erp and Bolhuis.8 In
TIS, however, paths from A to interface �i are sampled using
the “shooting” methodology of TPS. Although TIS is gener-
ally more efficient than TPS for rate constant calculations,
like TPS, it cannot be used for nonequilibrium systems, since
knowledge of the phase-space density is required. TIS also
suffers from the Lyapunov instability in the same way as
TPS and is therefore only suitable for very short transition
paths.

Other schemes have also been proposed which use a
series of interfaces between regions A and B, including par-
tial path transition interface sampling12,32 and milestoning.11

Milestoning assumes that the points in the TPE at the inter-
faces are distributed according to the stationary phase-space
density—for example, the Boltzmann distribution. PPTIS as-
sumes “memory loss” over a distance of two interfaces.
These assumptions allow the methods to be used for diffu-
sive problems where transition paths are long. However,
such assumptions are unjustified in many cases,13 even for
equilibrium problems. Moreover, these methods cannot be
used for nonequilibrium problems where the phase-space
density is unknown.

For the methods described in this paper, the use of inter-
faces does not involve any assumptions about the transition
mechanism, or about the transition paths. The role of the
interfaces is simply to improve the efficiency of the sam-
pling; they have no effect on the transition paths that are
obtained. This is because the final points of the trial runs
from interface i−1 are used as the initial points of the trials
from interface i, so that the correct dynamics of the system is
preserved throughout the transition path. The points at the
interfaces are not assumed to follow the steady-state phase-
space distribution. In fact, for the genetic switch, we find that
the distribution of points at the interfaces is very far from the
steady-state one.14

It is interesting to make some general points on the na-
ture of the path sampling in the different schemes discussed
here. The FFS and BG methods proposed here are examples
of static Monte Carlo schemes, in which new paths are gen-
erated independent of previous paths. The RB/M scheme
could be interpreted as a dynamic Markov chain Monte
Carlo algorithm, since newly generated paths are compared
with previously generated ones. However, new trajectories
are here generated from scratch, in contrast to most dynamic
importance sampling algorithms �including TPS�, where pre-
vious paths are used to generate new ones. The methods
described here have the general advantage of static schemes
that they may be less likely to get stuck in particular regions
of state space, a common problem in dynamic importance
sampling schemes.

In this paper, we have demonstrated that all three of the
methods provide a dramatic improvement in efficiency over
brute-force simulations, for calculations of the rate constant.

For the problems studied here, the efficiency of all three
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methods was roughly of the same order of magnitude, with
the RB method being slightly less efficient. A much more
detailed study of the efficiency of the methods, in which
analytical expressions are derived for the computational cost
of the three algorithms and for the statistical accuracy of the
resulting estimates of the rate constant, will be presented in a
future publication.16 This should allow systematic optimiza-
tion of the choice of parameters, for particular methods ap-
plied to particular problems. The choice of which method to
use may depend not only on the computational efficiency
with which the rate constant can be calculated but also on
practical issues such as the fact that the BG and RB methods
require less storage of system configurations than FFS. In
cases where one is interested in analyzing the TPE to obtain
information on the transition mechanism, the RB method
may be preferable, since it generates unbranched transition
paths in a convenient, one-at-a-time fashion.

The methods described in this paper are only suitable for
stochastic dynamical schemes, since they rely on the fact that
many trials can be fired from one initial point. Many rare
events are simulated using molecular dynamics, which is
generally entirely deterministic. Is it possible to use schemes
of this type for molecular-dynamics simulations? Our view is
that it is indeed possible, if a weak Andersen thermostat33 is
used as a noise generator. This approach was used by Bol-
huis to apply TPS to diffusive barrier crossings.34 As long as
the noise source does not increase the time scale of the
Lyapunov divergence, it is unlikely to disturb the dynamics
of the system. Further investigation in this direction is
planned.

Finally, the methods as formulated here are suitable for
nonequilibrium systems in stationary state, i.e., systems
where detailed balance is not obeyed, there are fluxes in
phase space and the phase-space density is not known, but
nevertheless the average properties of the system are time
independent. These conditions apply to a wide class of sys-
tems which have not previously been accessible to rare event
simulations. However, another very interesting class of non-
equilibrium rare events occurs in systems that are not in sta-
tionary state—for example, systems with a time-dependent
external driving force. In future work, we aim to investigate
under what circumstances these methods can be used for
time-dependent problems.
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APPENDIX A: JUSTIFICATION OF THE ALGORITHMS

1. Averaging of probabilities

In this section, we comment on expressions �1� and �2�
for the rate constant kAB. Equation �1� states that kAB is the

time-averaged flux �̄A,n of trajectories reaching �n, coming
from A, per unit of time that the system spends in state hA
=1. This is then equal to the time-averaged flux �̄A,0 of
trajectories crossing �0 for the first time since leaving A,
multiplied by the probability P��n ��0� that any one of these
trajectories will subsequently reach �n=�B, before returning
to A. Equation �2� states that for a particular trajectory,
P��n ��0� is equal to the probability of reaching �1 from �0,
then, given that �1 has been reached, of subsequently reach-
ing �2, and so on. In the branched growth method, P��n ��0�
is indeed estimated for individual trajectories; for a particular
starting point at �0, the product �i=0

n−1P��i+1 ��i� is explicitly
evaluated by creating a branching tree of paths and counting
the number of branches that reach �n. An average is then
taken of this estimate over many such branching paths. In the
branched growth method, therefore, we obtain

P��n��0�BG =��
i=0

n−1

P��i+1��i��
�0

, �A1�

where the notation � ��0
denotes an average over all paths

which begin from �0.
In the FFS and RB methods, however, averages are

taken over the estimates of P��i+1 ��i� for each interface i,
and these averages are multiplied:

P��n��0�FFS/RB = �
i=0

n−1

�P��i+1��i���i
. �A2�

In Eq. �A2�, � ��i
denotes an average over all trial runs fired

from the points at �i – note that these points at �i are the end
points of paths extending from A to �i. We now demonstrate
that Eqs. �A1� and �A2� are consistent.

Beginning with Eq. �A1�, we multiply and divide by
��i=0

n−2P��i+1 ��i���0
:

P��n��0�BG =
�P��n��n−1��i=0

n−2P��i+1��i���0

��i=0
n−2P��i+1��i���0

���
i=0

n−2

P��i+1��i��
�0

= �P��n��n−1���n−1��
i=0

n−2

P��i+1��i��
�0

�A3�

since �i=0
n−2P��i+1 ��i� is the weighting factor for a particular

path that starts from �0 in the ensemble of paths that connect
�0 to �n−1. We now multiply and divide by

n−3
��i=0 P��i+1 ��i���0
:
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P��n��0�BG = �P��n��n−1���n−1��
i=0

n−3

P��i+1��i��
�0

�
�P��n−1��n−2��i=0

n−3
P��i+1��i���0

��i=0

n−3
P��i+1��i���0

= �P��n��n−1���n−1
�P��n−1��n−2���n−2

���
i=0

n−3

P��i+1��i��
�0

.

Extending this analysis through the remaining interfaces, we
arrive at the result that P��n ��0�BG= P��n ��0�FFS/RB.

2. Weights of paths

In this section, we show that all three methods sample
the true transition path ensemble �TPE�: i.e., that transition
paths are sampled with the correct weights. We define the
TPE to be all paths that would be obtained in an infinitely
long brute-force simulation run, which obey the conditions
that their first point is in A, their last point is in B, and all
other points lie between A and B. These paths consist of any
number N of simulation steps. The weight of a particular
transition path in the TPE is

P��x	� = C���A − ��x0����x0�

��
i=0

N−2

pi,i+1����xi+1� − �A����B − ��xi+1��

�pN−1,N����xN� − �B� , �A4�

where pi,i+1= p�xi→xi+1�, the probability of making a step
from point xi to point xi+1, �0�x0� is the steady-state phase-
space density of the first point in the path, which is in region
A, and C is a normalization constant. The first term in Eq.
�A4� is the phase-space density of the initial point; the �
function ensures that point x0 lies in A. The next term is a
product over all simulation steps i in the path, except the last
point: pi,i+1 is the probability of taking a particular simula-
tion step and the � functions ensure that point xi+1 lies be-
tween �A and �B. The final � function ensures that the last
point in the transition path lies in the B region.

We now divide the transition path into a series of partial
paths. A partial path Y j, consisting of a successive set of
points �y1

�j� , . . . ,yNj

�j�	, is defined to be a part of a trajectory
�the whole trajectory being �x0 , . . . ,xN	�, which begins just
after the trajectory crosses interface � j for the first time and
ends just after it crosses either � j+1 or �A. The first partial
path is denoted Y−1. This begins just after the trajectory
leaves A and ends just after it crosses �0 for the first time, or
returns to A. Figure 11 illustrates the division of two different
trajectories into partial paths. In Fig. 11�a�, for example,
y1

�−1�=x2, yN−1

�−1�=y5
�−1�=x6, y1

�0�=x7, yN0

�0�=y11
�0�=x17, y1

�1�=x18,

and yN1

�1�=y25
�1�=x42. We also define a “success” function,
��Ym�, by
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��Y j� = 1 �A5�

if partial path Y j ends at � j+1 and

��Y j� = 0 �A6�

if partial path Y j instead ends in region A. For example, in
Fig. 11�a�, ��Y−1�=1, ��Y0�=1, and ��Y1�=1, whereas in Fig.
11�b�, ��Y−1�=1, ��Y0�=1, and ��Y1�=0.

Denoting the initial point of the path yA
x0, we can
now rewrite Eq. �A4� as

P��x	� = C���A − ��yA���0�yA� � �
j=−1

n−1

� �
i�Yj

pi,i+1���Y j� ,

�A7�

where the innermost product is now over all points in the
transition path which belong to partial path Y j—the � func-
tions of Eq. �A4� are implicit in the definition of Y j. The
factor ��Y j� ensures that each partial path reaches the next
interface. The final step xN−1→xN is included in partial path
Yn−1.

3. The FFS and BG methods

The FFS and BG methods begin with a simulation run in
the basin of attraction of A, from which points are collected
immediately after the simulation crosses �0. The probability
distribution for the partial paths that connect A to �0 is

P−1��x	� = C−1���A − ��yA���0�yA�� �
i�Y−1

pi,i+1���Y−1� .

�A8�

Here, the � function ensures that the initial point yA lies in
region A. �0�yA� is the steady-state phase-space density for
point yA. The product is over all the points in partial path
Y−1, which connects region A to �0, and the factor ��Y−1�
ensures that the path reaches �0 rather than returning to A.
Finally, C−1 is a normalization constant. Having obtained the
point at �0, trial runs are then used to extend the transition
path to subsequent interfaces. In FFS, points are selected at
random from a collection at �0, while in BG, k0 trials are run

FIG. 11. Illustration of the division of a path into partial paths. �a� A path
which begins in A and reaches B. Points 2–6 belong to the partial path Y−1,
points 7–17 to Y0, and points 18–42 to Y2. �b� A path which begins and ends
in A. Partial paths are coded as follows: Y−1 open circles, Y0 squares, and Y1

triangles.
from each point at �0. However, this makes no difference to
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the probability distribution for the resulting paths that con-
nect �A to interface j, which is

P j��x	� = Cj���A − ��yA���0�yA�

� �
m=−1

j−1

� �
i�Ym

pi,i+1���Ym� . �A9�

Once again, the inner product is over all points that form part
of partial path Ym. Extending this analysis to the nth inter-
face, we obtain the result that the FFS and BG methods
sample paths according to the correct distribution function,
given by Eq. �A7�.

4. The RB method

We now turn to the Rosenbluth method, implemented
with the Metropolis acceptance/rejection scheme �RB/M�, as
described in Sec. III C. We show that this method generates
paths with the correct weights, as given by Eq. �A7�, and we
point out some differences between the RB/M method and
the Rosenbluth procedure usually used for polymer
sampling.1

In the RB/M method, the Rosenbluth weights Wt
�n� and

Wt
�0�, which are compared in the acceptance/rejection step,

depend on all the trial runs which were used to produce the
paths. The acceptance/rejection procedure therefore depends
on all trial runs, not just the ones that are selected to form
part of the transition path. In order to demonstrate the valid-
ity of the method, we consider the probability of generating
and accepting a particular “decorated transition path”—by
which we mean a transition path from A to B, together with
its kj −1 attendant unselected trials for each interface j.

Let us suppose that we have reached interface � j in the
RB path generation procedure. The probability of generating
a particular trial run �or “trial partial path”� Y j

b to � j+1 or �A

is

Pgen�Y j
b� = Dj �

i�Yj
b

pi,i+1, �A10�

where Di is a normalization constant and the product is over
all steps in the trial run Y j

b. Having generated a set of kj trial
runs, the probability of selecting a particular one, Y j

*, to ex-
tend the chain to the next interface is

Psel�Y j
*� =

��Y j
*�

�b=1

kj ��Y j
b�

, �A11�

where the index b runs over all the kj generated trial runs Y j
b.

We now consider the generation of a new decorated transi-
tion path, consisting of a chain of partial paths Y j for −1
� j�n. The probability of obtaining a particular path leading
from A to �0 is, as in Eq. �A8�:

P−1��x	� = C−1���A − ��yA���0�yA�� �
i�Y−1

pi,i+1���Y−1� .

�A12�

We then shoot kj trial runs at each interface � j, for 0� j
�n. At each interface, we denote the trial run that is selected

by an asterisk and the kj −1 trials which are not selected by
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the index b�. The probability of generating a particular deco-
rated transition path consisting of selected trial paths Y j

* and

unselected trial runs Y j
b� is

Pgen�n� = C����0 − ��yA���0�yA�� �
i�Y−1

pi,i+1���Y−1�

� �
j=0

n−1 �Pgen�Y j
*�Psel�Y j

*� �
b�=1

kj−1

Pgen�Y j
b��� .

�A13�

Having generated a decorated transition path �here denoted
n�, we now compare its Rosenbluth factor to that of the last
decorated transition path that was accepted �here denoted n�.
The probability Pacc�o→n� of acceptance obeys the relation

Pacc�o → n�
Pacc�n → o�

=
Wt

�n�

Wt
�o� , �A14�

where Wt
�n� and Wt

�o� are the Rosenbluth factors:

Wt
�n� = �

j=0

n−1

�
b=1

kj

��Y j
b�n��, Wt

�o� = �
j=0

n−1

�
b=1

kj

��Y j
b�o�� , �A15�

where the index b runs over all �selected and unselected� trial
runs at interface j which belong to the decorated transition
path.

The flow of probability during the path sampling proce-
dure from decorated path o to decorated path n is given by

K�o → n� = N�o�Pgen�n�Pacc�o → n� , �A16�

where N�o� is the weight of the old augmented path in our
ensemble. When our sampling reaches a steady state, de-
tailed balance will be obeyed in the space of decorated paths:

K�o → n� = K�n → o� . �A17�

Substituting Eqs. �A10�–�A16� into �A17�, we find that

N�n�
N�o�

=
���A − ��yA�n����0�yA�n��
���A − ��yA�o����0�yA�o��

��Y−1�n���i�Y−1�n�pi,i+1

��Y−1�o���i�Y−1�o�pi,i+1

�
� j=0

n−1Pgen�Y j
*�n����Y j

*�n���b�=1
kj−1 Pgen�Y j

b��n��

� j=0
n−1Pgen�Y j

*�o����Y j
*�o���b�=1

kj−1 Pgen�Y j
b��o��

�A18�

from which we can conclude that a particular decorated path
is sampled by the RB/M method with weight:

N��x	� = ���A − ��yA���0�yA���Y−1� �
i�Y−1

pi,i+1

� �
j=0

n−1

Pgen�Y j
*���Y j

*� �
b�=1

kj−1

Pgen�Y j
b�� , �A19�

where again, the index b� denotes unselected trial runs. We
would now like to know the weight with which a particular
undecorated transition path is sampled in the RB/M method.
This weight is given by the sum of N��x	�, taken over all
decorated paths which have identical backbone chains: i.e.,
which represent identical transition paths, decorated by dif-

ferent sets of unselected trial runs. We know, however, that
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�
�

�
b�=1

ki−1

Pgen�Yi
b�� = 1, �A20�

where �� denotes a sum over all possible combinations of
ki−1 unselected trials from interface i. Taking this sum over
the distribution function of Eq. �A19� and substituting in Eq.
�A10�, we find that the Rosenbluth method indeed samples
transition paths with the correct weight �A7�.

The RB/M method described in this paper differs from
the well-used Rosenbluth technique for polymer sampling.1

There, the Rosenbluth factor of the newly generated polymer
configuration is not compared to that of the previously ac-
cepted configuration but rather to that of a randomly chosen
chain from the system. Moreover, the Rosenbluth factor of
this chain must be recalculated �by generating a new set of
trial moves� when the chain is selected rather than being
stored when the configuration was first generated. This is
necessary in the case of polymers because of the interactions
between polymer chains, which depend on the current state
of the system. The RB/M technique of Sec. III C, which is
much less computationally intensive, is appropriate for path
sampling because of the absence of interactions between dif-
ferent transition paths.

APPENDIX B: “WASTE RECYCLING”

In Sec. III C, we described the implementation of the
Rosenbluth path sampling scheme, with a Metropolis-type
acceptance/rejection procedure for reweighting the paths.
Correct reweighting can also be achieved using an alterna-
tive approach, in which ensemble averages are computed
over all generated paths, taking explicit account of their
weights. This scheme, known as “waste recycling,” was
originally proposed by Frenkel,20 in a Monte Carlo simula-
tion context.

Let us suppose that we wish to compute the average of a
quantity X for paths in the TPE. We know that paths from A
to B which are generated by the Rosenbluth scheme should
be weighted according to their Rosenbluth factors W
=� j=0

n−1Ns
�j�. We could, of course, simply compute

�X�TPE =
�b=1

Q W�b�X�b�

�b=1
Q W�b� , �B1�

where the index b refers to the individual paths which are
generated and Q is the total number of generated paths. The
problem with this is that, as the path sampling proceeds, both
the numerator and denominator of Eq. �B1� will increase in
proportion to the number of paths sampled. At the end of a
long sampling run, one will be faced with the problem of
dividing two enormously large numbers. The waste-recycling
scheme avoids this problem.

In order to use waste recycling to obtain the probabilities
P��i+1 ��i�, as well as �X�TPE for any chosen property X of the
transition paths, the following procedure is used:

�1� Choose a number nc �typically, nc�3–10�. Define
values Xcum=0 for all properties X of the TPE which

one wishes to compute. For each interface �0� i

Downloaded 07 Mar 2006 to 192.16.189.17. Redistribution subject to
�n�, define values mi=0, ci=1, pi
cum=0, and arrays

Wi and pi, of size nc. Define an array of transition
paths P, also of size nc.

�2� Begin or continue a simulation run in the A basin.
When the system leaves A and crosses �0, suspend
this run. Denote the system configuration as x0. Set
i=0, W0�c0�=1.

�3� Initiate ki trial runs from xi. Continue each trial run
until either �i+1 or �A is reached. Calculate the num-
ber Ns

�i� of trials which reach �i+1. Set pi�ci�
=Ns

�i� /ki and Wi+1�ci+1�=Wi�ci�*Ns
�i�. Increment ci

→ci+1.
�4� If ci�nc+1, continue to step �5�. Otherwise �i.e., if

ci=nc+1�, increment mi→mi+1 and

pi
cum → pi

cum +
�b=1

nc pi�b�Wi�b�
�b=1

nc Wi�b�
. �B2�

Select one member of the array Wi with probability
psel�b*�=Wi�b*� /�b=1

nc Wi�b�. Set Wi�1�=Wi�b*�, pi�1�
=pi�b*�, and ci=2.

�5� If Ns
�i��0, choose one successful trial at random.

Denote the final point of this trial as xi+1. Add the
configurations corresponding to this trial run to the
path P�ct�. Set i→ i+1. Otherwise �if Ns

�i�=0�, return
to step �2�.

�6� Repeat steps �3�–�5� until i=n.
�7� If i=n: increment cn→cn+1.
�8� If cn�nc+1: return to step �2�. Otherwise �i.e., if

cn=nc+1�: increment mn→mn+1 and

Xcum → Xcum +
�b=1

nc Wn�b�X�P�b��

�b=1
nc Wn�b�

. �B3�

Select one member of the array Wn with probability
psel�b*�=Wn�b*� /�b=1

nc Wn�b�. Set Wn�1�=Wn�b*�,
P�1�=P�b*�, and cn=2.

�9� Repeat steps �2�–�8� many times.
�10� For each interface 0� i�n, calculate P��i+1 ��i�

= pi
cum/mi. Calculate �X�TPE=Xcum/mn.

The key idea of waste recycling is that one generates
paths in “groups”—each group having nc members. Once a
group of nc paths has been generated, the quantity
��b=1

nc Wn�b�X�P�b��� / ��b=1
nc Wn�b�� is added to the cumulative

average for the property X. One member of the group is
then selected with probability proportional to its Rosenbluth
weight W to become the first member of the subsequent
group. The algorithm described above also includes separate
“grouping” procedures for every interface: the index ci de-
notes the position of the partial path in the group connecting
A to �i and Wi�ci� denotes the Rosenbluth factor of this
partial path as given by Eq. �4�. Once a group of partial
paths connecting A to �i contains nc members, the average
P��i+1 ��i� is incremented by ��b=1

nc Wi�b�pi�b��/
��b=1

nc Wi�b��and one partial path is chosen with probability
proportional to Wi to be the first member of the next group.
This grouping procedure at each interface is necessary in
order to correctly evaluate P��i+1 ��i� using the partial path

weights given by Eq. �4�.
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In general, waste recycling can lead to very large in-
creases in efficiency for Monte Carlo schemes in which a
large set of possible moves �here paths� is generated, after
which only one is accepted. This is not the case for our
Rosenbluth path sampling scheme, where paths are gener-
ated one at a time. We therefore expect only a moderate, if
any, increase in efficiency for the waste-recycling scheme as
compared to the Metropolis acceptance/rejection approach,
for this particular application. In fact, as shown in Tables
I–III, the efficiency of the waste-recycling and Metropolis
acceptance/rejection schemes is comparable for the two test
cases investigated here. Nevertheless, we have described and
tested the scheme for the sake of clarity, completeness, and
future reference.

APPENDIX C: PRUNING

For some problems, propagating trial paths from �i back
to �A may be a major computational expense. In this case,
computational efficiency could be enhanced using
“pruning”—in analogy to the pruned-enriched Rosenbluth
method for polymer sampling.1,21 In the context of path sam-
pling, this means that trial runs from �i are not continued
until they reach �A but are rather terminated with probability
Pp on reaching the preceding interface �i−1. Surviving paths
are reweighted in order to maintain correct sampling of the
TPE. We now discuss briefly the implementation of the prun-
ing procedure for the three methods and show for the poly-
mer translocation problem of Sec. IV B that the procedure
leads to correct results for the rate constant.

1. Forward flux sampling

The FFS algorithm proceeds as described in Sec. III A
until an interface i is reached, such that �i−1��A. Each of the
Ni points in the collection at �i is then assigned a weight
f �i�=1. Selecting points at random, we carry out trial runs to
�i+1. If a trial run arrives at �i−1, it is terminated and counted
as a “failure” �i.e., it is counted as if it had reached �A�, with
probability Pp

�i−1�. The run continues with probability 1
− Pp

�i−1�, and its weight is multiplied by 1/ �1− Pp
i−1�. If it sub-

sequently reaches �i−2, it is terminated with probability
Pp

�i−2�, and continues with probability 1− Pp
�i−2�, with a weight

which is now 1/ ��1− Pp
i−1��1− Pp

i−2��. This process is contin-
ued until the trial run is terminated, it reaches �A or it finally
arrives at �i+1. The “number of successes” Ns

�i� is now given
by the sum of the weights of all successful trials from �i

arriving at �i+1. On beginning the next trial run procedure,
from �i+1 to �i+2, we choose points from the collection at
�i+1 with probability proportional to their weights f �i�. Each
of the new trial runs then begins with weight f �i+1�=1. After
performing Mi+1 trials, the number of successes Ns

i+1 is the
sum of the weights f �i+1� of all successful trials, and points at
�i+2 are subsequently chosen according to their weights f �i+1�.
Note that all trial runs begin with unit weight and not with

the weight of their starting point in the collection at �i.
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2. Branched growth

In the branched growth method, as described in Sec.
III B, a branching “tree” of paths is created, in which ki trials
are fired from each “parent” branch at interface i. Without
pruning, the weight of each of the ki “daughter” branches is
the weight of the parent branch multiplied by 1/ki. When
pruning is included, these weights are modified. Suppose a
trial run begins from interface i with weight h�i�. This weight
h�i� will be equal to 1/� j=1

i−1kj multiplied by any factors due to
pruning events that have occured during the generation of the
path from �A to �i. Now suppose that this trial run does not
proceed directly to �i+1 but rather goes back to �i−1. It will
then be terminated with probability Pp

�i−1�. However, let
us suppose that it survives �with probability 1− Pp

�i−1��.
Its weight now becomes h�i� / �1− Pp

�i−1��. If it subsequently
continues in the backward direction as far as �i−2 and sur-
vives the pruning procedure there, its weight will be
h�i� / ��1− Pp

�i−1���1− Pp
�i−2���, and so on. Due to the pruning

procedure, not all branches reaching a particular interface
will have the same weight �in the absence of pruning, the
weight of all branches reaching �i is 1 /� j=1

i−1kj�. The final
result for PB is given by the sum of the weights of all
branches that finally reach �B.

3. Rosenbluth

The Rosenbluth path sampling method is modified by
pruning in a similar way to FFS. We focus here only on the
Metropolis acceptance/rejection version of the method. Hav-
ing generated a point at interface �0 using a free simulation
in region A, we proceed as described in Sec. III C, until we
reach an interface i, such that �i−1��A. We make ki trial runs
from this interface. Each trial run begins with weight f �i�=1.
As for FFS, trial runs that reach �i−s are terminated with
probability Pp

i−s and otherwise continue with weight f �i� mul-
tiplied by 1/ �1− Pp

i−s�. After the ki trials are completed, the
number of successes Ns

�i� is defined as the sum of the weights
of the trials that eventually reached �i+1. This affects the
evaluation of the Rosenbluth weight of the partial path up to
interface i: Wi=� j=1

i−1Ns
�j�. This weight is compared with that

of the previously accepted partial path up to interface i, and,
if accepted, pi

�o� becomes pi
�n�=Ns

�i� /ki. If Ns
�i��0, then one of

the successful trials is chosen with probability proportional
to its weight f �i�. The final point of this path becomes the
starting point for shooting trials to the next interface, each of
which begins with unit weight f �i+1�=1.

TABLE IV. FFS and brute-force results for f =�̄A,0 / h̄A, P��n ��0�, and kAB,
for the polymer translocation problem of Sec. IV B, with pruning probability
Pp

i =0.5 at all interfaces. Units of f and kAB are D	−2. The errors represent
the standard error in the mean of a series of independent estimates. Nst is the
approximate number of simulation steps performed in arriving at the result
given in the table

f �10−1 PB�10−3 kAB�10−4 Nst�108

FFS 1.085±0.004 1.38±0.02 1.50±0.02 4.1
BG 1.081±0.004 1.36±0.02 1.47±0.02 2.5
Rb/M 1.091±0.003 1.32±0.02 1.44±0.03 4.1
Rb/WR 1.082±0.003 1.31±0.03 1.42±0.03 8.2
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4. Test of the pruning algorithms

In order to demonstrate that the pruning procedure de-
scribed above does lead to correct path sampling, we have
repeated the polymer translocation calculations of Sec. IV B,
using a pruning probability Pp

i =0.5 for all interfaces. This
value for Pp was chosen arbitrarily. All parameters remained
the same as those of Sec. IV B: the initial polymer parameter
set was used. Table IV shows the results obtained; in com-
parison with Table II, it is clear that the pruning procedure
indeed leads to correct results. Comparing also the total
number of simulation steps required to obtain the results of
Table IV, we find that no dramatic improvement in efficiency
is achieved by using pruning for this system. For this reason,
we did not attempt to optimize Pp. Nevertheless, pruning
may be of use for other systems.
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