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Abstract Demand response is receiving increasing in-
terest as a new form of flexibility within low-carbon
power systems. Energy models are an important tool to
assess the potential capability of demand side contribu-
tions. This paper critically reviews the assumptions in
current models and introduces a new conceptual frame-
work to better facilitate such an assessment. We propose
three dimensions along which change could occur,
namely technology, activities and service expectations.
Using this framework, the socio-technical assumptions
underpinning ‘bottom-up’ activity-based energy de-
mand models are identified and a number of shortcom-
ings are discussed. First, links between appliance usage
and activities are not evidence-based. We propose new
data collection approaches to address this gap. Second,
aside from thermal comfort, service expectations, which
can be an important source of flexibility, are under-
represented and their inclusion into demand models
would improve their predicative power in this area.
Finally, flexibility can be present over a range of time
scales, from immediate responses, to longer term trends.
Longitudinal time use data from participants in demand
response schemes may be able to illuminate these. The

recommendations of this paper seek to enhance the
current state-of-the-art in activity-based models and to
provide useful tools for the assessment of demand
response.
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Introduction

Demand response – time-shifting electricity demand,
usually in response to a variable price signal – has
numerous potential benefits within electricity systems
(Aghaei & Alizadeh, 2013; Albadi & El-Saadany, 2008)
and is recognised as having the potential to support the
integration of renewable energy into power systems,
alongside energy storage, interconnection, and flexible
generation (Budischak et al., 2013; Delucchi &
Jacobson, 2011; Elliston, Diesendorf, & MacGill,
2012; Rasmussen, Andresen, & Greiner, 2012). De-
mand response is a subject that is receiving growing
attention from the energy industry and research commu-
nity and there are numerous studies describing its po-
tential benefits (Boßmann & Eser, 2016; Haider, See, &
Elmenreich, 2016; Siano, 2014; Torriti, Hassan, &
Leach, 2010). Of the increasingly rich literature on
demand response, much is located in engineering and
applied energy journals, and focussed on technical po-
tential and on energy storage systems, aspects of
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demand response that arguably assume and require least
human interaction.

It is, however, important to consider socio-technical
questions about the extent to which people and organi-
sations might be willing and able to engage in demand
response (Darby & McKenna, 2012). What demand
response tariffs and technologies are acceptable to con-
sumers (Fell, Shipworth, Huebner, & Elwell, 2015), and
what might be their likely uptake? What factors affect
the flexibility of everyday practices (Powells, Bulkeley,
Bell, & Judson, 2014)? Should demand response tech-
nologies be designed around constraints of minimising
inconvenience or discomfort? One of the challenges that
results from this type of question is the difficulty of
incorporating social science insights about demand re-
sponse into the quantitative engineering models that are
used to evaluate future low-carbon power system sce-
narios (Higginson, McKenna, Hargreaves, Chilvers, &
Thomson, 2015).

Energy models play a critical role in shaping
energy policy and decision-making and as such it
is important to assess their ability to account for
demand response. The paper investigates in detail
the assumptions underpinning ‘bottom-up’ activity-
based demand models, as this particular class of
energy systems model is particularly suitable for
demand response studies. Given the interest and
value in evaluating demand response within low-
carbon studies, and the fact that there appears to be
an under-realised potential for activity-based models
to contribute to this field (Good, Karangelos,
Navarro-Espinosa, & Mancarella, 2015a), the prima-
ry aim of this paper is to examine how activity-
based demand models may be enhanced to provide
more useful tools for the assessment of demand
response. The primary contribution of this paper is
therefore the identification of the socio-technical
assumptions used in activity-based models of energy
demand and their evaluation for the purposes of
demand response simulation.

Background

Socio-technical implications of smart grids

In Blumsack & Fernandez, 2012, Blumsack and
Fernandez claimed that ‘researchers and policymakers
need better models to evaluate the performance of smart

grid systems, and to tie performance back to deployment
goals… (and that) The pace of development… has been
moving faster than our ability to understand the techni-
cal and social implications of such a complex system’
(Blumsack & Fernandez, 2012). This remains true. In-
deed, our ability to understand the implications of smart
grid development is impeded by this dominant framing
of smart grids as technical in nature, rather than socio-
technical. This bias persists even in a domestic setting,
as noted in analyses of the smart home literature (Wil-
son, Hargreaves, & Hauxwell-Baldwin, 2015; Gram-
Hanssen & Darby, 2016). Human participation in a
smart grid is all too often portrayed as consent to adopt
a packaged ‘solution’, the outcomes of which are
modelled on designer expectations rather than empirical
data. Yet this hardly fits with what we know about
demand (and supply) in terms of energy services
(Sovacool, 2011), or practices (Baborska-Narozny, Ste-
venson, & Ziyad, 2016; Walker, 2014), or with what we
know of the inherent variability of quantified energy
demand, given that it is an outcome of diverse practices
in diverse situations (Janda, 2014; Lutzenhiser &
Bender, 2008). Learning, adaptation and skills, too, tend
to be left out of the picture, although these strongly
influence the nature and patterns of demand and the
potential for these to change over time (Darby, 2006;
Glad, 2012). The socio-technical challenge of demand
response can be viewed as part of the broader one
concerning smart grids. As with smart grids, therefore,
we adopt the approach that, while there is value in
assessing the role of enabling technology, reframing
these subjects in broader socio-technical terms opens
up new perspectives that merit exploration.

When assessing the potential for residential de-
mand response, there is a need to turn first of all to
questions of how energy services are accessed and
how activities are undertaken. This sort of inquiry
indicates where, when and how electricity for a
service or activity is most likely to be necessary.
Seen from another perspective, it shows where,
when and how flexibility might be incorporated into
an energy system. The literature on thermal comfort
and adaptive response is a powerful example of this,
e.g. (Nicol & Humphreys, 2002; Shove, Chappells,
Lutzenhiser, & Hackett, 2008). In this paper we
adopt the framing of demand response in terms of
activities, services, and technologies, with the aim of
better understanding the socio-technical implications
of demand response for modellers and policy.
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Activity-based demand models

‘Bottom-up’ models1 simulate the use of individual
appliances and loads within a dwelling and aggregate
them together to provide an estimate of the energy
demand of the whole dwelling. Figure 1 shows the
overall architecture of one such model, in this case the
CREST Demand Model (McKenna & Thomson, 2015).

A characteristic feature of such models is a core
representation of the occupancy and activity patterns
of individual residents within the dwelling (highlighted
‘activities’ in the figure – which is why they are also
known as ‘activity-based’models). These are then com-
bined with appropriate control settings (which we iden-
tify as ‘service expectations’ in the figure) to determine
stochastic usage events for the appliances and fixtures
(‘technologies’ in the figure) that have appropriate usage
statistics. Due to their representation of activities, the
electricity-using technologies used during these activi-
ties, and their associated service expectations, activity-
based models have an appropriate high-level architec-
ture for exploring demand response from a socio-
technical perspective.

Activity-based models for demand response studies

Within the field of energy research,2 activity-based
models were initially developed primarily to investigate
the impact of low-carbon technologies on low-voltage
distribution networks (Baetens et al., 2012; Widén &
Wäckelgård, 2010). The development of such models,
therefore, has been shaped by the requirements needed
to ensure models are fit for this purpose. For example, a
primary requirement for low-voltage network studies is
the need to account accurately for the diversity of de-
mand, as this is of critical importance to the sizing of
low-voltage lines and transformers, and therefore of
concern to network planners. This requirement led to
use of stochastic techniques to account for the (at least
partially) random nature of domestic electricity demand
(McKenna & Thomson, 2016). It also led to

representation of the dependencies between loads within
and between dwellings, to ensure that loads on the
network are appropriately correlated in time. It is for
this reason that activities are represented within such
models – they provide a useful bottom-up variable with
which to simulate domestic loads with an appropriate
degree of time-diversity.

As well as their primary aim of supporting low-
voltage distribution network studies, the potential for
such models to contribute to demand response studies
has been recognised (Richardson, 2010; Widén &
Wäckelgård, 2010). In practice, however, the use of
such models for this purpose has been limited to the
‘technology’ dimension, for example, assuming a cer-
tain proportion of thermal and wet appliances can be
shifted based on introduction of smart controls (Ceseña,
Good, & Mancarella, 2015; Gudi, Wang, &
Devabhaktuni, 2012; Redpoint and Energy, 2012). Here
we are interested in the potential to enhance these
models to explore more of the socio-technical demand
response space.

The need for improved tools to evaluate demand
response

The primary aim of this paper is to examine how
activity-based demand models may be enhanced to pro-
vide more useful tools for the assessment of demand
response. A model is, by definition, a simplified repre-
sentation of some complex system in the real world and
so modellers are required to make certain simplifying
assumptions about the system under investigation.
Bottom-up models in particular are required to minimise
model complexity as this allows for greater computa-
tional efficiency given the requirement to produce high-
resolution output for large numbers of households.

The areas in which modellers choose to simplify or
include complexity can be largely a matter of judgement
or intuition, and can often be less than explicit. These
judgements and intuitions are, however, critical to the
structure and function of a model and deserve careful
scrutiny in light of the purpose the model is intended to
serve. This paper therefore examines in particular the
assumptions that are associated with activities, service
expectations, and the presence and use of technologies.
When we need to refer to these assumptions in general
we shall use the broad term ‘socio-technical
assumptions’.

1 While activity-based models are by definition bottom-up, not all
bottom-up models are activity-based. This paper focuses on activity-
based models due to their potential relevance for demand response
studies. A more general review of models for demand response,
including both top-down and bottom-up models (though not activity-
based models) is found in Boßmann and Eser (2016).
2 Note that activity-based models are also used within the field of land
use and transportation modelling (Keirstead & Sivakumar, 2012).
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In summary, the fundamental research questions of
this paper are:

& What socio-technical assumptions are used in
bottom-up activity-based models of domestic ener-
gy demand?

& What recommendations can be made for improving
present modelling methods?

Method

Analytical framework: Three dimensions of demand
response

Figure 2 offers a ‘thinking tool’ that helps visualise the
potential socio-technical space of demand response. The
three dimensional space describes different demand re-
sponse mechanisms that can be explored: technology,
service expectations and activities. Moving along any of
these dimensions offers the potential for various demand
response solutions

The ‘technology change’ dimension represents
technology-enabled demand responses. In their purest
form such responses draw on some form of storage. A
smart fridge, for example, could use its thermal capacity
and operating tolerance to deliver a response by altering
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the timing of its compressor cycle without affecting the
service or activities of its users.

The ‘service expectation change’ dimension implies a
degree of flexibility in the delivery of energy services such
that users might be affected but need not be active, such as
altering thermostat settings and thereby relaxing the bound-
aries of thermal comfort. Finally, the ‘activity change’
dimension symbolises a change in either the timing or type
of activity being undertaken and implies more participation
from the user, such as postponing the laundry or preparing a
hot meal at lunchtime rather than in the evening.

Adopting for the moment the simplifying assumption
that it is possible to move along any one of these dimen-
sions independently,3we can imagine, for example,moving
from the current status quo (0,0,0), along the technology
axis towards technology-enabled demand response (1,0,0).
Picture a smart grid with smart appliances, electric vehicles,
distributed energy generation and storage technologies, and
automated smart control systems managing the complex
task of scheduling the operation, without impacting peo-
ple’s lives directly (Haider et al., 2016).

Alternatively, moving instead from the origin along
the activity change axis to (0,1,0) would require active
rescheduling energy services, such as vacuum cleaning
at a different time. A move towards the purely service
expectation axis (0,0,1), by comparison, would be a
willingness to review meanings around cleanliness, re-
ducing the frequency of vacuum cleaning or using a
broom instead.

In practice these dimensions will overlap and this com-
bination affords the greatest demand response potential. A
technology enabled smart washing machine (1,0,0) in
combination with a willingness to change the time of use
(0,1,0) and overall reduction in the frequency of use (0,0,1)
would provide the greatest shifting potential.

Reference models

To achieve our aim of examining the socio-technical
assumptions in activity-based demandmodels, we focus
on models that meet the following three criteria:

& simulate energy demand at household level,
& are based on some form of activity data
& have the potential to be used for demand response

studies

We have selected five models meeting the above
criteria for detailed review. These are listed in Table 1.

There are related models that have not been included
in the review because they do not meet the above
criteria. For example, some purely activity-based
models do not simulate actual household energy de-
mand (Aerts, Minnen, Glorieux, Wouters, & Descamps,
2014; López-Rodríguez, Santiago, Trillo-Montero,
Torriti, & Moreno-Munoz, 2013; Wilke, Haldi,
Scartezzini, & Robinson, 2013), while Paatero and
Lund (2006) simulate appliance use based on deriving
switch-on probabilities from monitored electricity con-
sumption data, rather than activity information.

Identification of assumptions commonly made be-
tween these models is based on a critical assessment of
the papers that describe each model, with explicit refer-
ence to these where appropriate. Where assumptions
have not been explicitly referenced we base our assess-
ment on the CREST model (McKenna & Thomson,
2016; Richardson et al., 2010). This is open source
and freely available for download, and developed in
Excel VBAwhich makes scrutiny of its underlying code
easily accessible by other researchers. The assumptions
it is built on, both explicit and implicit, are as a result
more accessible than for models where the code is not
available. In addition, its open-source nature has meant
that it has been widely adopted and developed in the
academic and industrial community,4 and, by extension,
so too its underlying socio-technical assumptions. The
‘data’ used to derive the results reported in this paper are
therefore the published papers describing the models, as
well as the published code of the CREST model.

We have separated the assumptions out into the three
‘dimensions’ introduced in the previous section: tech-
nology, service expectations and activities. To be clear,

& The term ‘activities’ here refers not only to activities
as defined in national time use surveys (Torriti,
2014) but also the related concepts of occupancy,
active-occupancy (where a resident is at home and
active), and broader assumptions about the residents
of a dwelling.

3 In practice, moving along one dimension cannot be done completely
independently of the others; inevitably change in one direction will
affect change in the other directions also. As an example from a related
field, technological improvement in energy efficiency is associated
with a ‘rebound effect’ where service expectations increase. So while
this cube is shown as a completely open space, in practice it is more
like a three-dimensional maze with pathways that define the sub-set of
the total possible space that can actually be reached. 4 http://www.lboro.ac.uk/research/crest/demand-model/
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& ‘Technology’ can refer to appliances, lighting, water
fixtures, heating, ventilation and cooling systems,
solar thermal and photovoltaics, the building ther-
mal envelope, etc. In practice, however, the focus is
predominantly on appliances, as simulating their
usage is a primary output of such models.

& ‘Service expectation’ refers to the quantifiable level
of service expected by a resident from a technology
e.g. a thermostat set-point or the amount of time the
heating is on.

The assumptions that are judged to be most critical to
our focus on demand response are described below and
their relevance is discussed in more detail in the Discus-
sion section. We have however made an effort to list
socio-technical assumptions more broadly in the hope
that this may be a useful resource for those interested in
improving such models more generally. We also note
that this is a qualitative assessment of the assumptions; a
quantitative assessment is out of the scope of this work,
but we will return to suggestions how to address them in
the Discussion section.

Analysis of model assumptions

Activities

Assumption 1: Time use data represents energy use

The primary sources of data for ‘activities’ in the models
reviewed here are national time use studies (Lader,
Short, & Gershuny, 2006), which sample large sections
of a population with self-administered time use diaries.
Their use for energy research has long been suggested
(Boardman, 1990), but only in recent years has time use

data entered models like the ones reviewed here. Having
not being collected with this purpose in mind, however,
the data has at least four failings.

Firstly, the Harmonised European Time Use Survey
(HETUS), which seeks to provide consistency of time use
codes over time and between member states, does not
differentiate between ‘energy intensive’ and ‘low energy’
alternatives of the same activity. BFood preparation^ (code
311) does not distinguish between a three-course cooked
meal and the cutting up of an apple. Similarly, BLaundry^
(code 331) could refer to the running of a tumble dryer or
hanging washing on a line. Reverse-engineering the load
profile from these generic activity codes is therefore
subject to systematic errors. Associating appliance use with
activities requires more refined data collection instruments.

A second limitation is the poor coverage of par-
allel and overlapping activities. The HETUS uses
‘primary’ and ‘secondary’ activities. Some ‘energy
related activities’ may however not be captured as
either. Bundled activities, such as listening to the
radio while ironing with the lights on, do not get
captured as collective sets. Many energy intensive
activities do however happen in periods of intensive
activity (Durand-Daubin, 2013).

Thirdly, the definition of an activity as being made up
of 10-min episodes has a strong influence on which
activities are captured and which are omitted. Short
activities, like boiling a kettle or opening a window do
not warrant recording for many people, yet have con-
siderable significance for energy models.

Fourth, time use research is focused on the individu-
al, whereas electricity use in households is the product
of collective (and interdependent) activities resulting
from complicated household dynamics. Some time use
studies have begun to collect data from all household
participants, but available data is limited.

Table 1 list of models reviewed

Model name References

StROBe (Stochastic Residential Occupant Behaviour) and IDEAS
(Integrated District Energy Assessment Simulations)

Baetens et al., 2012, 2015; Baetens & Saelens, 2016

Multi-energy building energy demand model Good, Zhang, Navarro-Espinosa, & Mancarella, 2015b

A highly resolved modelling technique to simulate residential
power demand

Muratori, Roberts, Sioshansi, Marano, & Rizzoni, 2013

CREST Demand model McKenna & Thomson, 2015; Richardson, Thomson,
Infield, & Clifford, 2010

A high-resolution stochastic model of domestic activity patterns
and electricity demand

Widén & Wäckelgård, 2010
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Assumption 2: Activities transition stochastically
(Markov-chains)

National time use surveys comprise quantities of
data that are sufficiently large that their wholesale
replication and direct use within models has been
avoided. Instead, models include only a relatively
small amount of data which statistically summarises
certain properties of the original data, and which are
then used to generate synthetic sequences of activi-
ties in the quantities required. All five models in
Table 1 generate synthetic sequences of activities
using the Markov-chain technique, whereby a se-
quence of discrete states is simulated, based on the
observed probabilities in the time use data, and by
means of which people transition between states by
continuously moving from one time step to the next.
The sequence of synthetic activity states is deter-
mined by a stochastic process: a random number is
generated and compared with the observed transition
probabilities to determine the change of state. Over a
large number of runs, the synthetic output will have
aggregated statistical properties that can closely
match the original data (McKenna, Krawczynski,
& Thomson, 2015).

While the Markov-chain technique provides a num-
ber of benefits, such as enabling models to be self-
contained and thus supporting their distribution and
use, they are inherently based on certain implicit
socio-technical assumptions. Most critically, they are
based on the assumption that activities are random var-
iables that depend on a fixed number of independent
variables such as: day of the week, total number of
residents in a household, and activity states in a fixed
number of previous time periods. While transition prob-
abilities may vary in time, these dependencies do not.
Furthermore, they are assumed to be the same for all
activities i.e. the factors that affect food preparation are
constant throughout the day and are the same as those
that affect commuting. While this is arguably an ade-
quate simplification for generating synthetic activity
sequences which match the probability distribution of
the original time use data, it may not fully capture more
complex activity sequences (transitions spanning sever-
al time periods and activities) and may thus underesti-
mate clustering effects, which could have a significant
effect on energy demand profiles. This limits a model’s
capabilities to simulate demand response, as discussed
further in the Discussion section.

Assumption 3: We are all the same

Dwellings are assumed to be occupied only by perma-
nent residents of those dwellings, and they are assumed
to be ‘average’ adults. By not distinguishing house-
holds and their residents by characteristics such as
gender, age, health, employment status, work patterns
or indeed whether children, elderly relatives, guests or
others are present, factors are omitted that may have
strong associations with energy demand. Another risk
is that the characteristics of an average resident may
have little meaning for demand response purposes if
few people, in practice, conform to the characteristics
of the average: considerable potential for change may
be lost.

Further assumptions

Further oversimplified assumptions include that resi-
dents perform one activity at a time and that, when
performing an activity, a resident is in a discrete state,
or, in other words, activities are not combined so that,
for example, a continuous combination of childcare and
watching TV is not a recognised state, which makes it
impossible to account for the use of multiple appliances
associated with activities performed in parallel. This
implies the potential under-estimation of concurrent
appliance usage and, hence, peak energy demand. Al-
though this is likely less of an issue for aggregations of
dwellings and so adequate for the purposes of network
modelling, it does not provide the granularity necessary
for estimating demand response.

Furthermore, a ‘state’ is considered to fully and
completely describe an activity, such that the activity
state of ‘cooking’ completely describes the whole of the
activity, regardless of whether they are making salad or
using the oven and residents in the same state are indis-
tinguishable from one another, at least in terms of their
activity.

Finally, in dwellings with multiple residents, the ac-
tivity states of individual residents are conflated, or
merged, as a combined activity state for the whole
dwelling. For example, in a two-resident dwelling, the
combined state could be described as ‘one resident at
home and one resident awake’. However, this could
represent more than one combination of individual ac-
tivity states, as follows: it could be that one resident is at
home and awake, and one is not at home and not awake
(which will probably result in variable electricity
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demand within the dwelling), or it could be that one
resident is awake but not at home, and one is not awake
but at home (which will only involve baseload con-
sumption). Though quite different, the individual states
are conflated, and the ability to perform the reverse
process is lost i.e. it is not possible to assign a disaggre-
gation of the combined state to the individual residents.
As is clear, there is a risk of incorrectly anticipating the
energy consumption in the home.

A focus on ‘states’ may also serve to obscure the
potential for learning and change over time. As pointed
out previously people live in more or less dynamic
interaction with the systems and appliances in their
homes and it is reasonable to expect demand response
to change over time – in scale, type and duration - as
they grow accustomed to the concept, the tariffs and the
activities involved and as the technologies involved
change and develop. Hence the importance attached to
customer education and experimentation in demand re-
sponse programmes (Darby & McKenna, 2012; Jessoe
& Rapson, 2014; Stromback, Dromacque, Yassin, &
VaasaETT, 2011).

Technology

Assumption 1: Appliances are directly linked
to activities

Simulating activities is a primary requirement of
activity-based demand modelling and the models
reviewed here make fundamental assumptions about
the causal association between activities and appliance
use. For example:

& While activities can involve any number of associ-
ated appliances, appliances are assumed to be asso-
ciated with one activity only (Baetens & Saelens,
2015; Good et al., 2015b; Muratori et al., 2013;
Richardson et al., 2010; Widén & Wäckelgård,
2010) and this precludes their usage in association
with another activity.

& Appliances are not considered to be ‘switched on’
unless their associated activity is taking place.

& The dependence of appliance-usage on activities is
time-homogeneous (Baetens & Saelens, 2015;
Good et al., 2015b; Muratori et al., 2013;
Richardson et al., 2010; Widén & Wäckelgård,
2010), which means that the probability distribution

of an appliance being switched on is the same as its
associated activity.

The risk of all three assumptions is that appliances
may be simulated with a temporal usage profile that will
be an (inaccurate) function of the associated activity. If,
for example, the oven appliance is associated with food
preparation then it will be modelled to be switched on in
the morning when people have reported preparing food
for breakfast, despite the fact that in practice they are
much less likely to be using the oven for food preparation
in the morning than in the evening. The issue is that these
assumptions are made in the absence of data. There is an
absence of good evidence about the relationships be-
tween activities and appliances, meaning they are not
well understood, and their specification within models
remains largely a matter of judgement. The implications
of this are discussed further in the Discussion section.

Assumption 2: Stochastic appliance ownership and use

Appliances are assumed to be independent of other
appliances, both in terms of the probability of being
present within a dwelling and of being used. For exam-
ple, the presence and sequential use of a washing ma-
chine and a drier are highly correlated but this is not
represented in the models above. The risk is that a model
produces combinations of appliances that are present in
dwellings and their usage that, while correct on average,
might include specific cases that occur rarely or never in
reality. Furthermore, appliances are assumed to be aver-
age (Baetens & Saelens, 2015; Good et al., 2015b;
Muratori et al., 2013; Richardson et al., 2010; Widén
&Wäckelgård, 2010) both in terms of type of appliance
(e.g. power characteristics) and how frequently they are
used (e.g. switch-on probabilities calibrated in relation
to national average energy demand estimates for an
appliance type). The risk is that diversity of appliance-
use may not be accurately captured.

Assumption 3: Appliances are used the same in every
home

Another simplifying assumption is that appliance-
activity dependencies are the same for every dwelling.
Although, in practice, certain types of household or
resident may be more or less likely to own certain types
of appliances and to use them to a greater or lesser
extent, this is not represented in the models. If there is
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a diversity of such associations both within and between
dwellings, the risk is that models are not accurately
representing this.

Service expectations

Assumption 1: Thermal comfort expectation is constant

Previous sections have described how appliance use is
modelled by associating the probability of being
switched on with activities performed by household
residents. The use of heating technologies, however, is
modelled differently, and is instead associated with the
representation of a service expectation: thermal comfort.
Thermostat set-points are modelled as random variables
that are assigned to a dwelling based on empirical prob-
ability distributions, and indoor temperatures are explic-
itly modelled such that a heating or cooling system is
operated to meet a given thermal comfort expectation of
the dwelling.5 A benefit of this approach is that it
explicitly captures the fact that, regardless of dwelling
or heating/cooling technologies, people have different
thermal comfort expectations and this contributes to
some of the wide diversity of energy use associated with
indoor environments. Thermostat settings are, however,
modelled as an independent variable and, once assigned,
remain constant. Factors that may have an important
effect on thermal comfort expectations risk being omit-
ted. These could include:

& type or presence of residents (e.g. all types of house-
holds have the same service expectation; all resi-
dents within a dwelling have the same expectations
to be met in all rooms)6;

& activities (no concept of different levels of lighting
or heating needed for different activities);

& potential relationships between different service ex-
pectations (e.g. people who have higher indoor tem-
perature set-points might have correspondingly
higher washing machine set-points);

& exogenous variables such as external temperature,
irradiance, or demand response signal.

Assumption 2: All other service expectations are
stochastic

Service expectations not associated with thermal com-
fort, such as the frequency of washing machine use or its
temperature are a function of stochastic processes of
assigning switch-on probabilities, rather than the result
of some households having different expectations of
cleanliness or hygiene and so are based on statistical
probabilities rather than empirical evidence. As
discussed further in the Discussion section, the issue is
that lack of representation within models of service
expectations related to energy use limits the capability
of such models to evaluate the potential and impact of
demand response: that is, if new washing materials and/
or changed social norms bring downwash temperatures,
it may have a dramatically greater effect on consump-
tion than a change in the number of washes.

Discussion

The assumptions listed above relate to activity, technol-
ogy and service expectations, all of which have a bear-
ing on how demand responsemay be achieved. Building
on some of these findings, this section develops recom-
mendations for how activity-based models may be en-
hanced in each of these three areas.

The next section discusses the missing link between
activities and appliance use, the following section pro-
poses means to better reflect the impact of technologies
on demand response and the final section elaborates on
the importance of representing service expectations.

Interconnected activities and appliances

To what extent are people willing and able to change the
timing of their activities? Activities are highly intercon-
nected, and time-shifting one activity will have an im-
pact on others in complex ways. Activity-based demand
models ignore this complexity, and make the simplify-
ing assumption that activities are dependent only on
what a person did in the previous time step. While this
type of simplification has been reasonable for the pur-
poses of accounting for demand diversity within low-
voltage network studies, it is not amenable to accounting
for demand response. For demand response studies,
there is a need, therefore, to better understand depen-
dencies among activities, such that it is possible to

5 If empirical data is not available on thermostat set-points, they are
assigned based on average or arbitrary values.
6 We note that Baetens et al. explicitly model space heating settings as
dependent on dwelling occupancy (Baetens & Saelens, 2015).
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evaluate the impact of removing, adding, or time-
shifting them.

Recognising the limitations above, there is a move
towards more complex models of activity (Aerts et al.,
2014; Flett & Kelly, 2016; Wilke et al., 2013). These are
characterised by i) the use of higher-order Markov-
chains, or ‘survival models’ of activities, and ii) by pro-
viding greater detail about the characteristics of the
household occupants and their occupancy patterns. The
aim of these modifications is to simulate patterns of
occupancy more accurately, to move away from the
assumption of occupants as ‘average’ adults, and to create
more meaningful characterisations of households e.g.
single working male, retired couple, etc. The challenge
with all such efforts to provide greater accuracy and detail
on the simulated household is that it implies a greater data
burden as larger sample sizes are needed to derive mean-
ingful activity statistics (McKenna et al., 2015).

In improving the representation of the associations
and dependencies of activities, such models are making
progress towards bottom-up models that can simulate
demand response, though this remains to be proven.
While it may be possible to capture the complexity of
interconnected activities endogenously, by changing the
simplifying assumptions and basing new ones on data
that explicitly captures dependencies, this is a challeng-
ing task due to the complexity of the subject, though one
that merits further exploration (McKenna, Higginson,
Hargreaves, Chilvers, & Thomson, 2016).

Time use activity data, for example, implicitly cap-
tures many of the complexities of people’s connected
activities. Such data have been collected for many de-
cades in multi-national studies (Gershuny & Sullivan,
2003). Two methodological additions are needed for
these data to address questions of demand side flexibil-
ity. Firstly, activities need to be associated with actual
electricity loads at household level. For this the collec-
tion tool (conventionally paper diaries) could be
complemented with smart meter readings for a given
household during this period. Secondly, since flexibility
is a dynamic property, a dynamic collection of changes
to demand (and activities) in response to interventions
could reveal extent, cost and conditions under which
flexibility is forthcoming (Grunewald, 2016).

The Meter study collects such data using electricity
recorders with 1 s resolution and a research app to
collect activities from all household members above
the age of eight (Grunewald, 2015). The app based
approach simplifies participation and lends itself to

interactive testing of responses to price signals and other
interventions, such as a change in information or tech-
nology. To deliver robust findings such data needs to be
collected at a large scale and validated against represen-
tative control groups.

Presently, time use data tends to be collected for
single days only. Capturing multiple dayswould illumi-
nate some of the intra-week rhythms and response pat-
terns potentially present in people’s everyday lives.
Furthermore, repeated deployment of such data collec-
tion will provide detailed insights into trends over time,
such as the adoption of technologies and changes in
social norms and practices (for instance the impact of
on demand TV).

This data could be used within activity-based models
to differentiate between households of different
characteristics.

Describing appliance usage

Technology-change, i.e. replacing specific appliances or
loads with smarter alternatives, is among the most
straightforward applications of activity-based models
to evaluate load profile changes. Modelling new phys-
ical components (e.g. a heat pump rather than a gas
boiler) and the consequent change in operating pattern
is a reasonably well-established modelling task e.g.
(Kelly & Beausoleil-Morrison, 2008). However, there
may well be issues with the timing and extent of tech-
nology use when a heating system is replaced by new
technologies: a gas central heating system, heat pump,
smart electric thermal storage heater, biomass stove,
micro-CHP system or Passivhaus-standard refurbish-
ment have characteristics that mean they cannot be
viewed as functionally equivalent, although all are
intended to result in a comfortable dwelling (Isaksson,
2011; Skjølsvold & Ryghaug, 2015). Rather, they offer
different types of service, with different response times
and types of control, which may in turn influence a
range of household activities and characteristics, such
as bedtimes, laundry routines and allocation of space for
different activities and for storage tanks or fuel.

Considerations such as these again call into question
several of the assumptions listed above, such as that:

& Appliances are associated with one activity.
& The dependence of appliance-usage on activities is

time-homogeneous.
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& Appliance-activity dependencies are the same for
every dwelling.

These assumptions, and the way they are specifically
implemented in models, often seem to be largely a
matter of modellers’ intuition. While the timing of ac-
tivities is well understood through national time use
surveys (Torriti, 2014), and there is an increase in data
on, and understanding of, the timing of individual ap-
pliance usage (Zimmerman et al., 2012), this cannot be
said of the relationship between the two.

There is little recognition of the socio-technical na-
ture of appliance adoption and use, and their potential
impact on service expectations. The simulation of ap-
pliance usage in activity-based demand models is based
on an explicit assumed causal one-way relationship
between activities and appliances, yet there is a distinct
lack of data on which to base this. A consequence is that
such models produce appliance usage profiles that may
not capture the full impact of new technology adoption.

From the perspective of demand response studies, the
timing of appliance energy use is of primary interest,
followed by estimates of the impact of changing that
timing. Yet, where the technology investigated is as-
sumed to be activity-dependent, activity-based models
do not have a firm evidence base to support such studies.
This highlights a gap in the current understanding of
energy use that is fundamental to the task of evaluating
the scope for demand response in power systems. There
is, as a result, a clear requirement for data that fills this
gap. While there are considerable data collection efforts
in activities and appliance usage separately, there is a
need now for large-scale data collection exercises that
help to understand how they are related, thereby in-
creasing the overall value of the data when viewed as
a whole. TheMeter study referred to previously is a step
in this direction.

Representing service expectations ‘feedback loops’

Service expectations, as discussed previously, form an
important dimension of the demand response space.
Even so-called ‘technical’ demand response solutions
require householders to engage, whether to accept their
data being shared, adapt to new tariffs and learn to
manage their comfort levels using new technologies.
However, reduced expectations, such as a willingness
to settle for a cold meal instead of a hot one, doing
laundry at lower temperature settings, or showering

rather than bathing, could enhance the scope for demand
response even more. The regularity with which people
might be expected to be flexible also depends on their
service expectations – what changes could be called
upon on a daily basis, possibly becoming part of new
practices, or are responses limited to extreme conditions
such as the threat of a blackout?7

The current state of the art in activity-based model-
ling allows for exploration of variations in thermal com-
fort expectations, making it possible to quantify the
impact of deviations from typical thermostat set-points
and ‘dead bands’ and estimating the value this could
have within the wider power system. This requires the
service expectation to be represented within the model,
and then compared with the service variable, which acts
as the signal that controls the technology delivering the
service. In other words, if the indoor winter temperature
requirement is 19 °C in one home and 21 °C in another
(the service expectation), models will ‘switch on’ the
heating as required to keep those buildings, with their
particular thermal properties in those climactic condi-
tions, at that internal temperature, providing variation
across different households. One way of viewing this is
as a service expectation ‘feedback loop’ which drives
the extent to which technologies are used to achieve the
required level of service. Accounting for the diversity of
service expectations in the population is a means for
models to account for the diversity in energy demand in
the population.

While it is obviously useful and relevant to be able to
model thermal comfort (and, therefore, thermal energy
demand) in this way, other sorts of service expectations
and the associated feedback loops which drive electricity
use, are not represented. This makes it impossible to
quantify the potential impact of demand response chang-
es along this dimension. Some models make an effort to
include a representation of variability in demand e.g. hot
water draws and duration of showers, but do not include
the service representation nor a feedback loop. As a
result, while it is possible to model what would happen
as a result of the change, there is no way of understand-
ing the impact on people’s lives implied by the change.

This leads to the conclusion that for demand response
studies there is a value in including further explicit
representations of service expectation feedback loops
within activity-based demand models. This in turn leads

7 Compelling examples of the latter are offered by Goldman, Barbose,
and Eto (2002) and Costa (2013).

Energy Efficiency (2018) 11:1583–1597 1593



to the following research question: what are the critical
service expectations in households, how can they be
specified, represented and quantified (perhaps even if
in the same simplified manner as thermal comfort), and
furthermore how do these vary within and between
households? While clearly this would still involve sim-
plification of highly complex social practices, it would
nonetheless be a considerable step forward in improving
activity-based demand models and more generally in
incorporating insights from the social sciences into en-
gineering models of demand response.

Conclusions

The aim of this paper was to expose socio-technical
assumptions in current activity-based demand models
and to make suggestions to overcome the limitations
they pose. Our three key findings are:

1. Present methods assume a causal relationship be-
tween activities and appliances. In the absence of
data, this specification is arbitrary and left to
modellers’ intuition. Present methods could be im-
proved given data that describes this relationship.

2. Present methods lack representations of service ex-
pectations, beyond thermal comfort. Service expec-
tations are an important determinant of energy use
within homes, and could offer considerable poten-
tial for demand response. Present methods could be
improved by more and better representations of
service expectations.

3. Present methods are based on time use data for a
single person for a single day. As it is for a single
day, this data does not capture the inherent flexibility
of people’s activities. Present methods could be im-
proved given time use data that covers multiple days,
and ideally shows how people’s activities change in
response to a demand response signal.To estimate
residential demand response capacity in a given
electricity system, there is a value in considering
the scope for flexibility in people’s service expecta-
tions and activities, their interplay, and the co-
evolution of expectations and activities with techno-
logical change. This substantially enlarges the pos-
sibility space for demand response evaluation.

Activity-based models include representations of ac-
tivities, service expectations and technologies and so

have a promising high-level architecture for exploring
the socio-technical demand response space. Despite their
promise, though, there is at present little exploration of
demand response potential beyond a focus on technology
change, and there are also shortcomings in such models.
In particular, activity-based models tend to rely on some
questionable assumptions about the nature of electricity
demand and the relationships between technology, activ-
ity and energy services. An assessment of these socio-
technical assumptions leads to three conclusions regard-
ing specific areas for improvement to realise more effec-
tive activity-based demand response modelling.

Current activity-based models explicitly assume a
causal one-way relationship between activities and ap-
pliances. Yet there is a distinct lack of data on which to
base this, with the risk of incorrect simulated appliance
profiles. There is a requirement for collection and un-
derstanding of data describing the relationship between
activities and appliance energy use, and how this varies
within and between households.

Activity-based models lack representations of the
service expectations which, to a large degree, explain
the variation of energy use across contexts. Because
these are not represented, there is no way of quantifying
the potential impact of demand response changes asso-
ciated with service expectation change. This leads to a
second area for enquiry: how can service expectations in
households best be specified, represented, and quanti-
fied in ways that are both suitable for modelling and
reflect established and emerging routines and flexibil-
ities, insofar as these can be captured?

Finally, for the purposes of activity-based modelling of
demand response there is a value in time use activity data
that is longitudinal, i.e. covering the same households over
lengthy periods of time and ideally supplemented by
information about how households react to experiencing
a price-based or other form of demand response signal.
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