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Abstract Hydrologic models have potential to be useful tools in planning for future climate variability.

However, recent literature suggests that the current generation of conceptual rainfall runoff models tend to

underestimate the sensitivity of runoff to a given change in rainfall, leading to poor performance when eval-

uated over multiyear droughts. This research revisited this conclusion, investigating whether the observed

poor performance could be due to insufficient model calibration and evaluation techniques. We applied an

approach based on Pareto optimality to explore trade-offs between model performance in different climatic

conditions. Five conceptual rainfall runoff model structures were tested in 86 catchments in Australia, for a

total of 430 Pareto analyses. The Pareto results were then compared with results from a commonly used

model calibration and evaluation method, the Differential Split Sample Test. We found that the latter often

missed potentially promising parameter sets within a given model structure, giving a false negative impres-

sion of the capabilities of the model. This suggests that models may be more capable under changing cli-

matic conditions than previously thought. Of the 282[347] cases of apparent model failure under the split

sample test using the lower [higher] of two model performance criteria trialed, 155[120] were false nega-

tives. We discuss potential causes of remaining model failures, including the role of data errors. Although

the Pareto approach proved useful, our aim was not to suggest an alternative calibration strategy, but to

critically assess existing methods of model calibration and evaluation. We recommend caution when inter-

preting split sample results.

1. Introduction

Water resource planning is essential to ensure the ongoing security of water supply for domestic, agricul-

tural, industrial and environmental needs. Long-term streamflow projections inform this planning and help

to anticipate potential future shortfalls in surface water supply. Estimates of water availability should take

into account both historical observations of river flow and also potential changes in environmental condi-

tions such as climate or land use.

Hydrologic processes exhibit variability and cyclical behaviour on a variety of time scales, from familiar short

term cycles (diurnal, event and seasonal) to multidecadal [Hurst, 1951]. Alongside the reality of climate vari-

ability is the potential for long term trends due to climate change [e.g., Covey et al., 2003; Forster et al.,

2007]. A number of elements of the hydrologic cycle could be affected, including rainfall and evapotranspi-

ration [Meehl et al., 2007; Donohue et al., 2010; McVicar et al., 2012]. Although the effects on precipitation are

uncertain [Covey et al., 2003], many parts of the world, including southern Australia are likely to see reduced

rainfall [Chiew et al., 2009] and catchments may be persistently drier in the future than the past.

Hydrologic models are useful tools in planning for future variability in climate. They allow hydrologists to

estimate the impact that long-term changes in climatic variables, such as rainfall, might have on water avail-

ability for human consumption or environmental needs. In this research we focus on conceptual rainfall run-

off models, which aim to represent mathematically the concepts underlying physical processes, without

direct reference to physically based equations. Conceptual models generally have minimal data require-

ments, require minimal computing time, and often provide comparable simulations to more complex mod-

els [e.g., Refsgaard and Knudsen, 1996], so they are relatively popular in practice. As reviewed below, many

studies have concluded that conceptual models are generally not suitable when climatic conditions change
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(nevertheless they are often used in such conditions), and the intention of this paper is to revisit this conclu-

sion. Before reviewing this literature in detail we describe the tests that are commonly used to support the

conclusion, specifically the concept of split sample testing.

To increase the level of confidence in the predictive capability of a given model, Kleme�s [1986] recom-

mended a scheme known as the Split Sample Test, whereby a portion of historic recorded data is withheld

from the calibration period, and used to check that the model can perform well over a period that it was

not calibrated to–– hereafter referred to as an evaluation period rather than using the common terms vali-

dation, verification or confirmation [Oreskes et al., 1994; Andr�eassian et al., 2009]. In cases where a model will

be applied in conditions different to the calibration period, Kleme�s [1986] suggested that the calibration

and evaluation periods be specifically chosen so as to reflect a similar contrast in conditions, a test known

as the Differential Split Sample Test (DSST). In the context of a changing climate, whereby rainfall may be

subject to long term trends, the DSST involves evaluating a model over a period that is significantly drier or

wetter than the calibration period. More recently, variants of the DSST have been proposed, including

the idea of using multiple calibration and evaluation periods via a sliding window in time [Coron et al., 2012,

2014].

Studies that have applied the DSST to assess the capabilities of models over a changing climate have gener-

ally reported unfavourable results. Model predictive ability following a change in climate does not appear

to improve with more complex models, as demonstrated by Refsgaard and Knudsen [1996] who tested three

models of varying complexity on three catchments in Zimbabwe. Furthermore, a number of studies have

identified significant bias following application of the DSST. Hartmann and B�ardossy [2005] applied a

lumped conceptual model to a 2000 km2 catchment in Germany, calibrating successively to ‘‘wet,’’ ‘‘dry,’’

‘‘warm’’ and ‘‘cold’’ years. They found that models calibrated to the wet periods systematically overestimated

flow during dry periods unless the objective function explicitly included performance measures calculated

over longer (e.g., annual) time steps. Coron et al. [2012] applied three conceptual models to 216 catchments

and reported that ‘‘calibration over a wetter (drier) climate than the validation climate leads to an overesti-

mation (underestimation) of the mean simulated runoff’’ (ibid. p1). Chiew et al. [2009] applied two concep-

tual models to provide climate change projections based on downscaled GCM outputs across south east

Australia. Testing model performance over various periods with different climatic characteristics, they

reported reductions in Nash Sutcliffe Efficiency (NSE) value of 0.1–0.3 compared to the calibration period,

and long term bias of 30–40% in some cases. The recent workshop entitled Testing simulation and forecast-

ing models in non-stationary conditions [Thirel et al., 2015a], held under the auspices of the International

Association of Hydrological Sciences (IAHS), further confirmed––for a wide range of models and catch-

ments––that hydrological models tend to perform poorly if applied under changing climatic conditions

[Thirel et al., 2015b, and citations therein].

Some researchers have sought to quantify acceptable changes in climatic variables such as rainfall, such

that a calibrated model still provides acceptable results. Vaze et al. [2010] tested four rainfall-runoff models

in 61 catchments in South East Australia, and reported that the calibrated parameter sets generally gave

acceptable simulations provided rainfall changes were not too large––no more than 15% less or 20%

greater than rainfall over the calibration period. Similarly, Singh et al. [2011] identified an acceptable change

of 10% drier or 20% wetter for five catchments across the continental USA.

Other studies have phrased the problem in terms of the nonstationarity of model parameters across differ-

ent climatic conditions. Merz et al. [2011] applied the HBV model to 273 catchments in Austria and found

that parameters relating to snow melt and the nonlinearity of runoff generation tended to change with

time, showing significant correlation with climatic variables such as temperature. Coron et al. [2014] similarly

observed problems with parameter robustness in twenty mountainous catchments in southern France.

Some studies have observed that even if a rainfall-runoff model may appear to perform poorly in the DSST,

it is usually possible to find a parameter set that can match a given period, even if it is unusually dry or wet,

provided that the model is directly calibrated to that period exclusively. This observation led to Li et al.

[2012] recommending that ‘‘if a hydrological model is set up to simulate runoff for a wet climate scenario

then it should be calibrated on a wet segment of the historic record, and similarly a dry segment should be

used for a dry climate scenario’’ (ibid., p. 1239). Similar sentiments were expressed by Vaze et al. [2010].

However, this solution is limited to providing predictions that are within the range of climatic conditions

experienced in the past [cf. Refsgaard et al., 2014]. Choi and Beven [2007] tested a hydrologic model in a
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South Korean catchment and evaluated it over a variety of climatic conditions. Despite good performance

according to classical performance measures on the time series as a whole, no parameter set tested was

considered behavioural over all 15 of their categories of climatic conditions.

Despite these problems, some studies have had success searching for robust parameter sets, that is, parame-

ter sets that can replicate streamflow over a wide variety of climatic conditions. Hartmann and B�ardossy [2005]

formulated a number of objective functions based on least squares calculations at different time steps (e.g.,

daily, annual, decadal). Methods that combined both annual and daily objective functions into a single ‘‘meta-

objective’’ were shown to reduce the error in annual flows from 30% to 10%. Shamir et al. [2005] applied simi-

lar multitimescale logic but based their analysis on flow statistics (signatures) rather than least squares meas-

ures. The result was an ensemble of parameter sets that performed well on all time scales considered; the

identifiability of parameters in the Sacramento model was also improved. B�ardossy and Singh [2008] intro-

duced the statistical concept of data depth to hydrological modeling. A parameter set has greater depth if it

is located closer to the centre of a cloud of well performing sets. They found that parameter sets with greater

data depth were more robust in split sample tests and less sensitive to random errors in input data.

Although in the above discussion we have used the term model quite loosely, henceforth we adopt the termi-

nology outlined in Andr�eassian et al. [2009] where model structure refers to a set of equations representing a

catchment whereas the term model refers to a model structure populated with a particular set of model param-

eters. A number of studies have concluded that a particular model structure is unsuitable for modeling under a

changing climate [e.g., Vaze et al., 2010]. Others have suggested that a given model structure needs changing to

do so [Merz et al., 2011] or have gone further and actually produced a model structure specifically designed to

simulate under changing climatic conditions [e.g., Ramchurn, 2012; Hughes et al., 2013]. However, given the suc-

cess of the studies mentioned above in finding more robust parameter sets under changing climates, perhaps

the greater part of the problem lies with calibration and evaluation techniques rather than model structures. We

suggest that a conclusion of model structure invalidity actually requires a much higher standard of proof than

the tests of model evaluation suggested by Kleme�s [1986]. To conclude that a model structure is invalid is to

assert that no suitable parameter combinations exist [e.g., Vogel and Sankarasubramanian, 2003]; whereas

Kleme�s [1986] methodology seeks only to test the suitability of a chosen parameter set(s).

This research sought to investigate the apparent deficiency of a range of conceptual rainfall runoff model

structures, across a large sample of catchments. The key research question was, Are current conceptual rain-

fall runoff model structures deficient in their ability to simulate streamflow responses to long term changes in cli-

mate? As described above, some existing literature portrays rainfall runoff models as suffering from poor

performance if applied in climatic conditions different to those against which they were calibrated. The

hypothesis tested here is that the poor performance is due to poor or insufficient model calibration and evalu-

ation techniques rather than deficient model structures.

To conclude this section, we wish to clarify our intended meaning when using words such as deficient. Gupta et

al. [2012] among others note that different hydrologists have different perspectives when defining model ade-

quacy, contrasting the ‘‘physical science’’ viewpoint (where adequacy means consistency with the physical sys-

tem) with the ‘‘engineering’’ viewpoint (where adequacy means that the model can emulate system input-

output behaviour). In the context of rainfall runoff models, a physical science viewpoint would insist that a

model can realistically represent the dominant physical processes occurring in a river catchment, whereas an

engineering viewpoint would focus on whether the model streamflow outputs match with observations. We

affirm the physical science viewpoint and the need to advance hydrologic science by developing more physi-

cally realistic models. However, the general nature of our research question requires testing a large variety of

case studies (86 catchments, 5 model structures, see section 2 and cf. Gupta et al. [2014]), which renders detailed

consideration of physical processes in each individual case difficult. Therefore, we use the word ‘‘deficiency’’ in a

sense consistent with the engineering viewpoint, and this study investigates the ability of models to provide an

empirical match with observed streamflow data, in catchments subject to long-term changes in climate.

2. Method

2.1. Rationale

To explain the methodology, let us consider a simple hypothetical case study. A rainfall runoff model struc-

ture A is applied to a catchment B using a calibration method C. Let us assume that method C is a single
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objective optimization, such as would commonly

be used within a DSST, optimizing to a single

objective function that varies between 0 (poor)

and 1 (good). In order to conduct a DSST, the

observed data are split so as to reserve a period

for independent evaluation. The evaluation

period is much drier, on average, than the cali-

bration period. The result is a very good score

over the calibration period (say, 0.9) but a very

poor score over the drier evaluation period (say,

0.2). Since the purpose of the exercise is to iden-

tify a model that performs well in evaluation

[Kleme�s, 1986], it is tempting to conclude that

model structure A has failed for catchment B, or

that poor data quality is degrading performance.

However, consider Figure 1. The parameter set

identified in optimization lies in the red hashed

region, whereas a solution in the blue dotted

region is desired. However, the fact that the

parameter set identified as optimal over the cali-

bration period is in the red region, does not

imply that no parameter set exists in the blue region. For example, it may be that the model structure itself

is capable of simulating well in evaluation, but the relevant parameters remained poorly identified in this

particular calibration exercise. Some other parameter set which has slightly lower (but still good) perform-

ance over the calibration period may exist that also performs adequately in evaluation. This latter question

remains untested in this hypothetical case, and is the subject of this paper. Note also that a parameter set

in the red region may result from a calibration procedure caught in a local optimum [see e.g., Arsenault et

al., 2013].

Continuing the hypothetical case study, the periods are now switched, and the period that was the evalua-

tion period now becomes the calibration period, and vice versa. The calibration is re-run and the result is

that the score over the dry period is much increased (say, to 0.8) at the cost of some performance over the

nondry period (say, to 0.5). In summary, in this hypothetical we have conducted two separate calibrations

to two independent periods, and in each case we have obtained a parameter set that performs well over its

training data, but poorly over the evaluation data. Figure 2a considers this as a two dimensional plot. Since

Figure 1. Explanatory diagram for possible outcomes of a Differential

Split Sample Test, using idealized categories. The results of such a

test can be considered to lie in a two dimensional objective function

space.

Figure 2. (a) Results of two hypothetical calibrations, plotted in two dimensional objective space. (b) Two Pareto Fronts joining the two

points from Figure 2a. Each front is composed of multiple parameter sets. Obtaining curve a would demonstrate that a model structure

has relatively greater potential for simulation under changing climatic conditions than would curve b.
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both periods have had a turn at being calibration and evaluation periods, we dispense with this language

altogether, and name them simply Period 1 and Period 2. For clarity we use the descriptions ‘‘nondry’’ and

‘‘dry,’’ respectively. If parameter sets which are robust to changes in climatic conditions exist, they will have

high values on both the x axis and the y axis. Whether or not our rainfall runoff model structure A meets

this condition depends upon the shape of the line that joins the two points and describes the trade-off

between one objective and the other–– the Pareto Front [Pareto, 1927]. Under this scheme, a model struc-

ture with Pareto Front a in Figure 2b is more likely to produce robust simulations under changing climate

than a model structure with Pareto Front b. Each Pareto Front is composed of numerous parameter sets,

and Pareto Front a indicates robust simulations are possible because it contains parameter set(s) that have

good performance on both the x axis and the y axis (e.g., [0.8, 0.75]). Such robust parameter set(s) are akin

(but not identical) to the hydrologic optimum of Andreassian et al. [2012], which they define as the parame-

ter set ‘‘that ideally would permit representing the catchment under all possible calibration periods encom-

passing climate forcings of interest, i.e. one allowing extrapolation.’’ [ibid. p2206] In contrast, the two

endpoints of the curve are the mathematically optimum parameter set(s) obtained via optimization to each

of the single objectives in turn.

Based on the above, the search for parameter sets that are robust to changing climatic conditions can be

informed if we know the shape of a model structure’s Pareto Front. In this study we therefore applied a mul-

tiobjective optimizer to define the Pareto Front. Note that the method is intended only to critically assess

existing methods of model calibration and evaluation; in this paper we are not suggesting that this method

should be adopted for general use in rainfall-runoff model calibration.

The remainder of this section is organized as follows: we first present the method for identifying the Pareto

Front, called AMALGAM [Vrugt and Robinson, 2007]; we then present the rainfall runoff model structures to

be tested; the catchment case studies; input data; the objective functions used; and methods for checking

the results of the AMALGAM algorithm.

2.2. Multicriteria Analysis and Pareto Search Method

Multicriteria analysis has been used in hydrology for some time in various contexts [Efstratiadis and Kout-

soyiannis, 2010]. Early examples included optimizing treatment and monitoring of groundwater contamina-

tion [Cieniawski et al., 1995; Ritzel et al., 1994] and the incorporation of multiresponse data in hydrologic

modeling [Seibert, 2000; Madsen, 2003]. Some authors adopted multiobjective approaches to improve iden-

tifiability of highly parameterized distributed models [e.g., Muleta and Nicklow, 2005; Bekele and Nicklow,

2007; W€ohling et al., 2013]. Other studies have used multicriteria approaches to integrate different data

types into model calibration, including ‘‘soft’’ information (such as local or expert knowledge [Seibert and

McDonnell, 2002]) and regionalized information [Kim and Lee, 2014]. Gupta et al. [1998] suggested the

potential for multiobjective calibration of rainfall runoff models using different aspects of the same

observed time series of flow (e.g., high flow versus low flow metrics), and a number of studies have adopted

this approach [e.g., Booij and Krol, 2010; Kollat et al., 2012]. The use of hydrologic signatures in model cali-

bration can be seen as a variant on the multicriteria approach, although methodological approaches vary

[e.g., Shamir et al., 2005; Yadav et al., 2007; B�ardossy, 2007; Winsemius et al., 2009; Vrugt and Sadegh, 2013].

Gharari et al. [2013] noted that in addition to trade-offs between different metrics in the same time period,

there are also trade-offs between model performance during one period and performance during another.

They defined Pareto Fronts on both of these levels, and then designed a meta-Pareto analysis to choose

parameter sets that provided the best overall compromise on the objective functions considered, over all

periods considered. A key difference with the current study is that they were proposing a new model cali-

bration approach, whereas in the current study we are using Pareto analysis to critically assess existing

methods of model calibration and evaluation.

A number of algorithms to search for Pareto fronts are available in the hydrologic literature with notable

early contributions being the development of the hydrology-specific multiobjective calibration algorithms

MOCOM-UA [Yapo et al., 1998] and MOSCEM [Vrugt et al., 2003]. However, the concept is used in many

fields and numerous algorithms from outside the field of hydrology are potentially applicable (e.g., Storn

and Price, 1997; Deb et al., 2002]. Algorithms are generally evolutionary rather than gradient-based, and this

led Vrugt and Robinson [2007] to suggest a hybrid approach whereby the evolutionary process is conducted

not only between different model parameter sets, but also between different search algorithms. The
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resulting Pareto search meta-algorithm, called AMALGAM (A MultiAlgorithm, Genetically Adaptive Multiob-

jective method), calls upon four commonly used methods for multiobjective searches (NSGA-II––Deb et al.

[2002]; Particle Swarm Optimization (PSO)––Haario et al. [2001]; Adaptive Metropolis Search (AMS)––Ken-

nedy et al. [2001]; and Differential Evolution (DE)––Storn and Price [1997]). These search algorithms are run

simultaneously during an AMALGAM run, and the evolution of the population of parameter sets is directed

by a combination of the search algorithms, with the influence of each in proportion to its performance at

that point in the search. Vrugt and Robinson [2007] reported efficiency gains of up to a factor of 10 in some

multiobjective problems. For this research, we adopted AMALGAM to search for Pareto Fronts.

2.3. Rainfall-Runoff Model Structures

The intention of this study is to test a variety of model structures chosen to reflect common usage in the

study area and, where possible, breadth of design of conceptual rainfall runoff models. Since this study is

focused in Australia three model structures that are commonly used in Australia were selected: GR4J [Perrin

et al., 2003]; SIMHYD [Chiew et al., 2002]; and IHACRES [Jakeman and Hornberger, 1993; Ye et al., 1997]. We

adopt the version of IHACRES used in similar studies in Australia [e.g., Vaze et al., 2010] which incorporates

the two parallel storages of IHACRES ‘‘Classic’’ [Jakeman and Hornberger, 1993; see also Jakeman et al., 1990]

with the option for a threshold of runoff production proposed by Ye et al. [1997]. These three model struc-

tures, GR4J, SIMHYD and IHACRES are the result of three different ways of formulating conceptual rainfall

runoff models, as follows: (1) SIMHYD is an attempt to represent physical processes in conceptual equations,

so that it has separate components for such processes as interception, infiltration excess overland flow,

interflow/saturation excess flow and baseflow [Porter and McMahon, 1975; Chiew and McMahon, 1994; Chiew

et al., 2002]; (2) IHACRES has much less emphasis on physical processes, having been derived from mathe-

matical analysis of the number of parameters that could reasonably be inferred from typical calibration data

[Jakeman et al., 1990; Jakeman and Hornberger, 1993]; and (3) GR4J has a similarly low emphasis on physical

processes but was derived using an empirical approach that tested a large number of candidate structures

and used a rejection method based on the empirical match with calibration data [Perrin et al., 2001, 2003].

We consider that these three approaches to model formulation cover the majority of conceptual rainfall

runoff models currently in the literature.

In addition, two further model structures were included. GR4JMOD [Hughes et al., 2013] was chosen as a

case study for improvement of rainfall runoff models. Hughes et al. [2013] started with the GR4J model [Per-

rin et al., 2003] and tested a number of changes designed to better simulate environments with long-term

(i.e., multiyear) catchment storage. Their changes allowed the soil moisture to deplete below the level

required for runoff production, effectively increasing catchment ‘‘memory.’’ They also added exponents to

increase nonlinearity of runoff production and actual evapotranspiration. Note that Hughes et al.’s [2013]

module to account for changes in Leaf Area Index was not adopted here. Lastly, one model structure has

been selected because it is widely used in the literature and in practice in the USA, namely SACRAMENTO

[Burnash et al., 1973].

These model structures are summarized in Table 1. Model complexity varied, with the number of concep-

tual storages ranging from two to four, and the number of free parameters ranging from four to thirteen.

Table 1. Details of the Five Conceptual Rainfall Runoff Model Structures Tested in This Study

Name Original Authors

Number of

Free Parameters Comments are Model Code

GR4J Perrin et al. [2003] 4 Checked against code provided by authors

SIMHYD Chiew et al. [2002] 7 Code provided by authors

IHACRESa Jakeman and

Hornberger [1993];

Ye et al. [1997]

8 Code based on original papers and Andrews [2013]

GR4JMOD Hughes et al. [2013] 8 GR4J (see above), with changes

implemented based on Hughes et al.’s [2013] paper

SACRAMENTOb Burnash et al. [1973] 13 Based on code from the website of the

National Oceanic and Atmospheric Administration (NOAA)c

aNote that IHACRES parameter PETref was set to zero.
bNote that three SACRAMENTO parameters were fixed (RSERV, SIDE and RIVA) as per Duan et al. [1994].
chttp://www.nws.noaa.gov/iao/sacsma/fland1.f, accessed 30 March 2015.
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All models take the same inputs, namely, rainfall and potential evapotranspiration (PET––note the adopted

version of IHACRES used PET rather than temperature). A lumped modeling approach was taken, whereby a

single time series was derived for rainfall and PET in each catchment (section 2.5). The modeling framework

was implemented in a hybrid Matlab-Fortran system whereby the rainfall runoff models were run in Fortran

95 (checking against the code of the original authors where available–Table 1) which was called by the

AMALGAM code in MATLAB provided by Vrugt and Robinson [2007].

2.4. Study Area

This study was conducted in 86 catchments in southern and eastern Australia (Figure 3). This region is well-

suited to studying hydrological responses to long-term shifts in climate, because the variability of annual

flows is relatively high on a global scale [Peel et al., 2001] and there have been a number of dry periods last-

ing several years or even decades on which to test model simulations. For example, the reduction in rainfall

since the 1970s in the south west corner of Australia relative to the 1960s [e.g., Petrone et al., 2010] has led

local water authorities to run their long-term planning simulations using post-1975 data only. The south-

east of the country experienced a severe and prolonged drought throughout much of the 2000s, known as

the Millenium Drought [Potter et al., 2010]. River flows during the Millenium Drought, even given the low

rainfall, were unexpectedly low in some areas [Potter and Chiew, 2011; Chiew et al., 2014; Saft et al., 2015].

These droughts had numerous impacts on Australian society, including installation of alternative water

sources such as desalination in most major cities, the cessation of irrigation in some areas causing changes

in rural communities, and revision of water allocation arrangements to include water trading and provision

for environmental flows [see e.g., Aghakouchak et al., 2014].

The 86 study catchments were chosen from a wider set of ‘‘Hydrologic Reference Stations’’ [Turner, 2012]

defined by Australia’s Bureau of Meteorology as a set of catchments ‘‘with minimal water resource develop-

ment and land use disturbances’’ (ibid, p6) such as regulation from large reservoirs and broadscale land use

changes. Of the 154 Hydrologic Reference Stations that lie within southern Australia, (broadly defined as

south of the Tropic of Capricorn), the list was refined according to:

1. Data quality checking including inspection of quality flags, missing data, plotted daily data, inspection of

double mass curves for flow and rainfall, and plotting long term climatic averages on axes similar to

Figure 3. Study catchments used in this analysis.
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those used by Budyko [1971]––specifically, Actual Evapotranspiration versus Potential Evapotranspiration,

both normalized by rainfall [see also Zhang et al., 2001].

2. Rain gauge coverage: Catchments were checked for coverage of rainfall gauges, and catchments with rel-

atively low coverage were flagged.

3. Spatial rainfall contrasts: As mentioned above, a spatially lumped modeling approach was adopted,

meaning that a single rainfall time series was used over a catchment (namely, the spatial average). Catch-

ments with high spatial contrasts in rainfall are more difficult to simulate using a lumped approach,

because the average rainfall is generally less representative of the rainfall extremes within the catch-

ment. While a certain degree of rainfall contrast is usually inevitable due to topographic differences, the

catchments with relatively higher contrast were flagged. Rainfall contrasts were assessed using the

gridded rainfall data as described in the next section.

The final data set of 86 catchments (Figure 3) was chosen so as to exclude those catchments with the clear-

est data issues, the lowest rain gauge coverage, and/or the highest spatial rainfall contrast, while aiming to

preserve both the majority of catchments, and the spatial and climatic coverage inherent in the original

data set.

The set of 86 catchments vary in size from 4.4 to 1106 km2, with 49 of the catchments between 100 and

500 km2 (see Figure 4). All of the catchments are in the temperate climate zone, falling within Group C of

the K€oppen-Geiger climate classification scheme [Peel et al., 2007]. This means that the average maximum

temperature of the hottest month is greater than 108C, and the average maximum temperature of the cold-

est month is between 08C and 188C. Mean annual rainfall is generally less than 1200 mm/yr, while catch-

ment average slope is generally less than 25% (Figure 4). Forest cover is generally high, with tree cover

exceeding 90% in over half of the catchments. Catchment elevation ranges from sea level to 2000 m AHD,

although most catchments do not exceed 1500 m AHD. Winter snowfall occurs in some catchments, but

the snowpack is generally not sufficient to significantly affect hydrology. The development of small private

waterbodies (referred to as ‘‘farm ponds’’ in the USA and ‘‘farm dams’’ in Australia) was also assessed where

available. Over half of the catchments had an estimated farm dam storage of less than 5 ML/km2, which can

be considered quite low [Nathan and Lowe, 2012], although three catchments had more than 20 ML/km2.

These physical properties will be related to model performance later in the paper.

2.5. Input Data

The two main inputs to the rainfall runoff models were rainfall and potential evapotranspiration (PET), each

derived as a timseries on a daily time step. Rainfall was derived from the interpolated gridded product of

Jones et al. [2009] which is available as a set of daily grids at a resolution of approximately 5 km, based on

Figure 4. Catchment properties for the 86 study catchments. The whiskers extend a maximum of 1.5 times the interquantile range. Values beyond the whisker are marked as outliers

and are denoted as 1. Catchment average slope was derived based on analysis of a DEM (section 2.5) and represents the spatial average of cell-by-cell slope values. Forest cover was

from Lymburner et al. [2011] and is the sum of the four landuses in the ‘‘tree’’ category. Farm dam development is based on the dam locations and estimated volumes published by the

Department of Environment, Land, Water and Planning [2015a,b]. For catchment area and rainfall data, see section 2.5.
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gauged rainfall data and including land elevation as a spatial co-variate. For each day to be simulated, the

spatial average across the catchment was derived from the daily grids from Jones et al. [2009]. PET estimates

were derived using the Wet Environment method from Morton [1983]. Given the relatively low spatial vari-

ability of potential evapotranspiration, this was extracted for the catchment centroid only, from the gridded

data sets produced by Jeffrey et al. [2001].

In the case of both rainfall and PET, the catchment boundary was required in order to extract information

from the gridded data sets. Catchment boundaries were derived using flow analysis on Shuttle Radar

Topography Mission (SRTM) data on a grid size of 1 s (approximately thirty metres). The post processed ver-

sion by Gallant et al. [2011] was used for the flow analysis, which was done in ESRI’s ArcHydro toolbox using

the D8 method to define flow pathways.

Streamflow data for the Hydrologic Reference Stations are publically available from www.bom.gov.au/hrs

(accessed 2 January 2014). Quality codes were inspected and periods with quality issues were excluded

from the analysis. Since quality code systems are different for each state of Australia, the details of this

checking depended on location.

2.6. Defining Dry Periods and Wet Periods

As described in section 2.1, the intention of the Pareto analysis is to search for parameter sets within a given

model structure that provide a favourable trade-off between performance in dry climatic conditions and

performance in wet climatic conditions. There were two separate tasks in order to develop this logic into a

working system: first, to define ‘‘dry periods’’ and ‘‘wet periods’’ more precisely (this section), and second to

choose a single objective function as an indicator of model performance over a given period (described in

the next section).

To define dry periods, it would be possible to simply select the driest X% of years (or months), regardless of

where those years may fall in the historic record. The results would be a set of years that are not concurrent.

However, one of the key aspects of the recent droughts in Australia was not only their severity but also their

length and persistence; the persistent dry conditions have been shown to be associated with lower than

expected streamflow response [Petrone et al., 2010; Potter and Chiew, 2011; Hughes et al., 2012, 2013; Potter

et al., 2013; Saft et al., 2015]. Therefore, we focused on sequences of dry years in this research, with the inten-

tion of examining multiyear droughts. While a number of studies have proposed methods of defining

drought [see e.g., Mishra and Singh, 2010, 2011, and citations therein] there is no single accepted method

for doing so. In this study we opt for a relatively simple definition, where we define the ‘‘dry period’’ to be

the driest consecutive set of years of a given length in the historic record. Given that the Millennium

Drought is generally considered to have lasted from 1997 to 2009 [Chiew et al., 2014], we considered adopt-

ing a length of 13 years, or alternatively a round figure such as 10 years. However, in some places the

drought was punctuated by an average or wet year midway through an otherwise dry spell (e.g., the year

2000 in the state of Victoria). It was felt that such a year could dominate the calculation of performance

metrics relative to the drier years that are the topic of interest. Therefore, it was decided to use a shorter

period, specifically seven years, instead. Thus, the dry period for this paper (also called ‘‘Period 2’’) is defined

as the driest set of seven consecutive years in the historic record. This is defined according to streamflow,

not rainfall.

While it is possible to define a ‘‘wet period’’ in a similar way, (i.e., by identifying the wettest series of concur-

rent years in the historic series), we have elected to adopt a method similar to that described in the hypo-

thetical in section 2.1. We defined ‘‘Period 1’’ as all years in the historic record, apart from Period 2––that is,

Period 1 is the complement of Period 2. This definition meant that Period 1 contains the majority of the his-

toric data. Since the intention of this paper was to provide a critique of the single-objective calibration

approach (i.e., single objective calibration to the nondry period and subsequent evaluation to the dry

period), it was logical to provide as much calibration data as possible to this approach, such that the

method under scrutiny was given the best possible chance to succeed. In any case, when calibrating to

objective functions such as the Kling Gupta Efficiency used in this paper [Gupta et al., 2009] (see next sec-

tion), the wetter periods tend to be matched preferentially since the components of the KGE (linear correla-

tion, error in mean and error in standard deviation) tend to be more strongly influenced by larger flow

values. Thus, performance in Period 1 is an acceptable surrogate for performance over the wettest years in

a given time series. For convenience, Period 1 will be referred to as the ‘‘nondry’’ period.
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We acknowledge that, in a given case study, Period 1 will usually contain some years that are relatively dry.

Period 1 may contain entire sequences of droughts that were not the most severe on record, plus portions

of the most severe drought not captured within Period 2 in cases where drought duration exceeds 7 years.

Conversely, Period 2 may contain years that were immediately prior to or following the drought of interest,

in cases where the most severe drought is less than 7 years in duration. Nonetheless, these simple defini-

tions were sufficient to examine differences in model performance between wet and dry periods, particu-

larly for catchments where droughts tended to be longer and more severe.

Using these definitions, the flow series in each catchment was analyzed so as to define Period 1 (nondry)

and Period 2 (dry). As expected, the mean annual flow tended to be significantly less over Period 2 than

over Period 1 (Figure 5a); for example, in over a quarter of catchments the flow reduction exceeded 70%.

Figure 5b shows the distribution of start years over the set of 86 catchments. The duration of the Millen-

nium Drought is considered to have been 1997–2009 [Chiew et al., 2014], so it is not surprising that the

starting year of Period 2 is commonly within the range 2000–2004 (48 out of 86 catchments).

2.7. Objective Functions

When deciding which objective function to use, the NSE [Nash and Sutcliffe, 1970] was the first candidate

considered because its common use in practice means that values of NSE can be interpreted by a relatively

wide audience. However, we encountered problems using the NSE. In some cases the NSE value was quite

high (i.e., �0.8) but upon further investigation the simulations were significantly biased. Gupta et al. [2009]

provide an explanation for this in their decomposition of the NSE into the linear correlation and terms

related to the error in the mean (i.e., the bias) and error in the standard deviation. Gupta et al. [2009] noted

that the bias term is normalized by the observed standard deviation, which means that in catchments with

high flow variability (as in this study) the magnitude of the bias can be high without penalising the NSE

score. One option was to add a bias weighting to the NSE, as applied by, for example, Vaze et al. [2010].

However, Gupta et al. [2009] noted a further problem with the treatment of the standard deviation r in the

NSE, regarding the ratio rsimulated/robserved. Although this ratio should ideally have a value of unity, the

mathematically optimum value for NSE occurs when the ratio is equal to the linear correlation. Given these

problems, this study adopted the alternative objective function proposed by Gupta et al. [2009], called the

Kling-Gupta Efficiency, or KGE. The KGE is a function of the same three components as the NSE (linear corre-

lation; error in mean; error standard deviation) but the formulation removes the interactions between the

components, providing a more robust measure of model performance. For those readers who are not famil-

iar with KGE scores, in the supporting information we provide a table that relates the KGE to the more

Figure 5. (a) Boxplot of mean annual flows in Period 2 (dry period) expressed as a ratio to Period 1 (nondry period). The whiskers extend a

maximum of 1.5 times the interquantile range. Values beyond the whisker are marked as outliers and are denoted as 1. (b) Histogram

showing the most common starting years for the 7 year Period 2.
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familiar NSE objective function (supporting information Figure S3), and also highlights the problems noted

by Gupta et al. [2009].

2.8. Results Checking

Since AMALGAM is an evolutionary algorithm, it is possible that calibration runs may proceed in different

directions through the parameter space and have divergent end results [see e.g., Arsenault et al., 2013;

Peterson and Western, 2014]. To check the consistency of the AMALGAM results, we started with a relatively

low number of function evaluations (10,000) and ran the algorithm three times, resulting in three different

Pareto Fronts. These Pareto Fronts were checked for consistency both visually and using the numerical rule

that the Euclidian Distance separating any two of the three curves could not exceed 0.01 at any point on

the curves. If this numerical rule was violated, the number of function iterations was doubled and the analy-

sis re-run and re-checked. Around one quarter of the case studies passed at the first iteration (i.e., 10,000

function evaluations). Case studies that failed the numerical test at 40,000 iterations were manually (visually)

checked and accepted only if the differences were judged to be immaterial to the conclusions of this paper.

The presentation of results in the following section initially focuses on one objective (i.e., one period) at a

time, before moving to consideration of the two objectives (i.e., performance over dry and nondry periods)

simultaneously. Presentation of the AMALGAM results in this way implicitly assumes that AMALGAM is a suf-

ficiently powerful search algorithm to find the optimum of a single objective. Another way of stating this

assumption is that the endpoints of the Pareto Curves are assumed to be accurate. To test this assumption,

the single-objective optimization algorithm CMA-ES [Hansen et al., 2003] was applied. CMA-ES has been

widely used across a number of fields and tested favourably in the context of hydrology compared to more

common methods in hydrology such as Shuffled Complex Evolution [see Duan et al., 1992; Arsenault et al.,

2013; Peterson and Western, 2014]. In the current study, CMA-ES was trialed in ten catchments, for each of

the five model structures, for each of the two objectives (KGE over Period 1 and KGE over Period 2). This

gave a total of one hundred CMA-ES case studies. Similarly to AMALGAM, CMA-ES was run three separate

times and if the results were not consistent, the number of restarts (the only user-defined parameter in

CMA-ES) was increased by one (starting from zero restarts) and the process was repeated.

For brevity, the CMA-ES results are not shown in the body of this paper but are provided in the supporting

information (supporting information Figure S4). In summary, the results indicated that AMALGAM was a capa-

ble and reliable optimizer to a single objective. Optimization results (in terms of KGE scores) were within

0.005 in 76 of 100 cases. In the remaining 24 cases AMALGAM produced the best result in 15 and CMA-ES in

9. There were a few cases where AMALGAM results were significantly better than CMA-ES. In fact, ordering

the case studies according to the absolute difference between the two results revealed that the top five cases

(cases of greatest difference) were all cases where AMALGAM found a better solution than CMA-ES. We also

note that, on average, the AMALGAM algorithm generally used less function evaluations than CMA-ES,

although this varied based on the case study. Given these favourable results, we will now present the AMAL-

GAM results with similar confidence as we would have in a dedicated single-objective optimizer.

3. Results

3.1. Performance When Optimizing to Each Objective in Isolation

As demonstrated in the previous section, although a tool for multiobjective problems, the AMALGAM algo-

rithm can also be used to provide results of a single-objective optimization, by considering the endpoints of

the Pareto curves only. In this section, we present single-objective Differential Split Sample Test results,

extracted from the wider set of AMALGAM outputs.

In general, optimizing the rainfall runoff models to KGE over Period 1 (nondry) provided good KGE values

over Period 1 (Figure 6a). The median KGE score across all 86 catchments was 0.8 or higher, regardless of

which rainfall runoff model structure was chosen. For those readers who are not familiar with KGE scores, in

the supporting information we provide a table that relates the KGE to the more familiar NSE objective func-

tion (supporting information Figure S3). The GR4J and GR4JMOD model structures appeared to perform

best. However, when the same parameter sets were evaluated by simulating flows over the driest 7 consec-

utive years (Period 2), model performance was much lower (Figure 6c). The model structures with the high-

est calibration KGE scores (GR4J and GR4JMOD) showed negative evaluation KGE values in more than 25%
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of catchments. IHACRES was comparatively better, with a median score of 0.67. Nonetheless, in general, the

performance was markedly reduced when moving from wetter to drier climatic periods. Furthermore, some

of the lowest values of KGE in evaluation corresponded to relatively high KGE values in calibration (Figure 7).

These findings are consistent with the literature review [e.g., Vaze et al., 2010; Coron et al., 2012; Thirel et al.,

2015b].

If the dry period (Period 2) was used as the calibration period instead of the evaluation period, results dem-

onstrated that the rainfall runoff models are generally able to replicate the flows during dry conditions, pro-

vided they are directly calibrated to them in isolation. However, there were some exceptions, particularly

for the GR4J model structure, as shown by the outliers in Figure 6d. The reduction in performance between

the calibration period (dry period, Figure 6d) and the evaluation period (nondry, Figure 6b) is less pro-

nounced than in the previous case (Figures 6a and 6c) but is still evident. As above, some of the lowest val-

ues of KGE in evaluation corresponded to relatively high KGE values in calibration (Figure 7).

In summary, the model structures tested were generally able to replicate flows over a given set of climatic

conditions, whether dry or wet, provided that they were directly calibrated to those conditions [Li et al.,

Figure 6. Values of Kling Gutpa Efficiency (KGE) for calibration and evaluation when optimized to Period 1, the nondry period (top) and Period 2, the dry period (bottom). Note that neg-

ative values exist but are not shown. The whiskers extend a maximum of 1.5 times the interquantile range. Values beyond the whiskers are marked as outliers and are denoted as 1.
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2012]. The key problem was that the parameter sets identified by optimization to one set of climatic condi-

tions performed poorly in different conditions; that is, the mathematically optimum parameter sets identi-

fied were not robust to changes in climate. In subsequent discussion, the results presented in this section

will be referred to as the results of a ‘‘single-objective DSST,’’ since the models were calibrated to only one

objective at a time; i.e., KGE in one set of climatic conditions, with subsequent evaluation in different cli-

matic conditions. These single-objective DSST results are used in this paper as a baseline method represent-

ing common practice.

3.2. Pareto Curve Results

For each of the five model structures, AMALGAM was applied to derive a Pareto Front between the two

objectives (i.e., between KGE in Period 1 (nondry) and Period 2 (dry)) in each of the 86 study catchments. To

explain and interpret these results, we first use the example of the Rocky River upstream of Gorge Falls (Sta-

tion A5130501), a 190 km2 catchment on Kangaroo Island, South Australia (mean annual rainfall5 730 mm/

Figure 7. Scatter plots of calibration versus evaluation KGE values when calibrating to Period 1, the nondry period (top) and Period 2, the

dry period (bottom). Each circle represents a catchment, with values of calibration KGE scores on the x axis plotted against evaluation KGE

scores for the same parameter set on the y axis. Note that negative values exist but are not shown.
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yr; rainfall-runoff ratio 0.1). The dry

period in this catchment was

found to be 2001–2007 inclusive,

and average streamflow over this

period was only 40% of the long-

term average. For this station and

the IHACRES model structure, the

single-objective DSST metrics

were:

1: KGEnondry calibrationð Þ50:835;

KGEdry evaluationð Þ 5 0:581;

2: KGEdry calibrationð Þ50:833;

KGEnondry evaluationð Þ 5 0:621:

These figures indicate that the sin-

gle objective approach identified

parameter sets that performed

well in one set of climatic condi-

tions or the other, but not both.

Let us now consider whether the

Pareto approach can identify robust parameter sets that perform well in both periods. Figure 8 shows the

Pareto Front identified by AMALGAM, displayed in two-dimensional objective function performance

space. The results quoted above form the endpoints of the Pareto curve in this space (i.e., the endpoints

are [0.581, 0.835] and [0.833, 0.621]). Since AMALGAM is an evolutionary method that uses a finite popula-

tion, the front is displayed not as a continuous line but as a set of discrete points, one for each parameter

set (in this case N5 100). A number of those parameter sets are in the region of the objective space

where KGEdry and KGEnondry both exceed 0.8. Thus, given that the values of both objectives are favourable

for the same parameter set, we may cautiously conclude that the IHACRES model structure is capable of

providing robust simulations over changing climatic conditions (assuming that the KGE can be consid-

ered a suitable indicator of simulation performance). Henceforth in this paper we will use the terminology

‘‘false negative’’ to refer to cases such as this where suitable parameter set(s) exist within a model struc-

ture, but the DSST fails to find them.

Next, let us consider the results for

other model structures applied to

the same catchment. While one

model structure (SACRAMENTO)

performed better, the remainder

did not, as shown in Figure 9. The

GR4J and GR4JMOD structures were

capable of high KGE scores in either

the dry period or the nondry period,

as indicated by the end-points of

the Pareto curves (cf. Figure 6).

However, the curves joining these

points do not approach the region

of favourable trade-off mentioned

above; that is, there were no param-

eter sets robust to changes in cli-

mate for these structures in this

catchment. Note that in Figure 9,

the individual markers have been

replaced by lines for ease of

viewing.

Figure 8. Pareto Front identified by AMALGAM between the two objectives, for the

Rocky River upstream of Gorge Falls (A5130501), using the IHACRES rainfall runoff

model structure.

Figure 9. Pareto curves for each model structure for the Rocky River upstream of

Gorge Falls (A5130501).
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The results for GR4J and GR4JMOD in Figure 9 provide an instructive case study in model assessment. The

endpoints of the curves are similarly placed for each of these two models. Thus, use of a single-objective

DSST (as presented in the previous section) would lead to the erroneous conclusion that the alterations to

GR4JMOD by Hughes et al. [2013] made negligible difference to the model’s capabilities. In contrast, Figure

9 shows that this is not the case by the divergence of the purple GR4JMOD curve from the orange GR4J

curve. Although the difference in this case is relatively modest, it is not an isolated case––four further case

studies are shown in the supporting information (supporting information Figure S5). Thus, use of the single-

objective Differential Split Sample Test may result in situations where highly successful model improve-

ments are discarded as ineffective.

3.3. Identifying Model Structures That Meet Modeling Standards

One difficulty in moving from a single catchment example to the full set of 86 catchments is the challenge of

displaying the results meaningfully across such a large sample. For the interested reader, the Pareto curves for

every combination of model structure and catchment are provided in full in the supporting information Fig-

ures S1 and S2. Although we experimented (not shown) with measures to characterize the shape of the Pareto

curve, here we focus instead on whether or not a given rainfall runoff model structure is capable of robust

simulations under changing climatic conditions, as indicated by high KGE values. Graphically, such model

structures have Pareto Curves that contain parameter sets that are relatively close to the ‘‘perfect’’ point, [1, 1].

Although it is difficult to say exactly how close is ‘‘sufficient’’ for a given case study, for the present study it

is useful to define some subjective performance standards. By defining what ‘‘success’’ is (albeit in a subjec-

tive fashion), these standards allow us to more easily summarize the skill of the Differential Split Sample

Test in identifying ‘‘successful’’ model structures. Two attempts at defining such a standard are depicted in

Figure 10. In Standard 1, a ‘‘successful’’ model is one in which the model efficiency (KGE) at some point on

the Pareto Curve exceeds 0.7 in both the dry and nondry periods. Standard 2 is similar except that the KGE

benchmark is now 0.8; a higher standard of performance. Many other different standards could be formu-

lated, and it is expected that the most suitable standard may depend upon the particular objectives of the

study at hand. For the purposes of interpreting results in this paper, we will proceed with these two stand-

ards, and denote any parameter set that meets a given standard to be ‘‘suitable’’ (note that concepts of

model adequacy are discussed in section 4.2).

For each case study (i.e., combination of model structure and catchment) we now ask two questions:

1. Would a suitable parameter set be found by a single-objective DSST calibrating over the nondry period

(y-axis) and evaluating over the dry period (x axis)? (Note that this corresponds to the left hand extreme

of the Pareto Curve, such that the y-axis ordinate is maximized).

Figure 10. Pareto fronts for Catchment 405274, with annotations regarding the meeting of modeling standards 1 (light grey) and 2 (dark

grey). The ticks and crosses refer to results for the single-objective DSST to Objective 1 (left of the line) and AMALGAM (right of the line).
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2. Would a suitable parameter set be found by AMALGAM? i.e., is any portion of the Pareto Curve within

the boxes of Figure 10?

We note that the DSST in point (1) above could equally be defined the other way around, with calibration

over the dry period and evaluation over the nondry. However, climate projections for southern Australia

generally agree that long-term average rainfall is likely to reduce under climate change [e.g., Chiew et al.,

2009]. Thus, it is more relevant within this study area to evaluate models in conditions that are drier than

the calibration period.

There are three possible combinations of answers to the above questions:

a. Suitable parameter set(s), i.e., parameter set(s) that meet the performance standard, were found by both

the single-objective DSST and AMALGAM;

b. Suitable parameter set(s) were not found by the single-objective DSST but were found by AMALGAM;

and

c. Suitable parameter set(s) were not found by either method.

To explain these categories graphically, consider the curves in Figure 10, which show Pareto results for

Home Creek at Yaark (Station 405274, 181.6 km2, mean annual rainfall5 744 mm/yr; rainfall-runoff ratio

0.18). As an example, we consider the results for Standard 2 (dark grey). Only two of the model structures

have a portion of the Pareto Curve within the box for Standard 2––SACRAMENTO (red) and IHACRES (green).

This means that GR4J, GR4JMOD and SIMHYD are all in category (c) with respect to Standard 2. With respect

to SACRAMENTO, although it can fulfil Standard 2, the parameter set that would be chosen by the single-

objective DSST to Objective 1 (i.e., the endpoint [0.51, 0.90]) does not fulfil Standard 2. Thus, SACRAMENTO

is in category (b) with respect to Standard 2. For IHACRES, the parameter set that would be chosen by the

single-objective DSST to Objective 1 (i.e., the endpoint [0.92, 0.88]) does fulfil Standard 2. Thus, IHACRES is

in category (a) with respect to Standard 2.

Hypothetically, if the results across all catchments and model structures indicated a dominance of case (a),

then we would conclude that there are in fact few problems with current rainfall runoff model structures

simulating changing climates (in the ‘‘engineering’’ sense; section 4.2), although there might still be some

scope to improve them. However, the results presented above (e.g., Figure 6) have already demonstrated

that this is not the case. Thus we are left with (b) or (c). Dominance of (b) would indicate that common sin-

gle-objective calibration methods (as commonly used in the Differential Split Sample Test) generate an

abundance of false negatives, and thus the problem is with the calibration methods, not with the model

structures themselves. Dominance of (c) would support the argument that the model structures themselves

need to be improved in order to provide an empirical match with streamflow data.

The results (Figure 11) depend on the modeling standard used, and on the model structure tested. Looking

first at the lower of the two standards (Standard 1), for some model structures (e.g., GR4J, GR4JMOD, SAC-

RAMENTO) the cases are relatively evenly split between cases (a), (b) and (c). This means that it was just as

common for failure in a DSST to be the result of the calibration method as it was the result of the model

structure. Thus, with regards to the hypothesis, both the models and the calibration methods need

improvement in order to successfully model changing climatic conditions.

The IHACRES model structure once again provides an interesting case study. IHACRES was able to attain

Standard 1 in a very high proportion of catchments: 74 out of 86 (i.e., 37 catchments in category (a) plus 37

catchments in category (b)). This would suggest that the model structure itself is relatively well suited to simu-

lating changes in climate and does not require change to provide an empirical match with data. However, of

the 74 that were successfully modeled by IHACRES, the single-objective DSST was only able to find a suitable

parameter set in 37 cases (category a). The remainder (category b) were catchments where AMALGAM found

a suitable parameter set but the single-objective DSST did not. This is not a particularly favourable success

rate for the DSST, and suggests the need to review the use of single objective optimization methods in model

calibration.

However, the interpretation shifts if Standard 2 is adopted instead of Standard 1. In this case the number of

catchments where the modeling standard is not met is around 50% in the case of GR4JMOD and SACRA-

MENTO, and greater for GR4J and SIMHYD. The IHACRES model is able to meet this modeling standard in

59% of cases (241 27551 out of 86 catchments) compared to 87% (74) for Standard 1. Thus, if this higher
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standard is adopted, one possible conclusion is that the current generation of rainfall runoff model struc-

tures, including IHACRES, require improvements to simulate changes in climatic conditions in order to pro-

duce an empirical match with data. An alternative explanation is that the failure to attain the modeling

standard is due to data errors (section 4.3).

The pie charts to the far right of Figure 11 present the results in the case where a modeller is able to apply

all five of the model structures to every catchment and has the freedom to adopt the best model whatever

it may be. In this case, suitable parameter sets are found during the single-objective Differential Split Sam-

ple Test in 53% of catchments (46 out of 86) for Standard 1, and 33% of catchments (28 out of 86) for Stand-

ard 2. There still remains a significant portion of catchments that are not modeled satisfactorily by any of

the 5 model structures: 12 catchments out of 86 (14%) in the case of Standard 1, and 30 catchments out of

86 (35%) in the case of Standard 2.

3.4. Examination of Catchments Where Models Failed

We examined those catchments where the model structures failed to meet Standard 1 and/or Standard 2.

Two main avenues were explored: first, we analyzed the Pareto Curves and considered what the form of

these curves may indicate about the type of model failure; and second we examined the physical and cli-

matic properties of these catchments. For brevity, some elements of this discussion are summaries only,

with a reference to the supporting information for more detail.

Having failed to meet the standard, every instance considered was one where no single parameter set could

simulate flows satisfactorily in both wet and dry periods. However, we categorized failure instances further

according to whether or not the model structure was able to meet the standard in a given objective when

optimized to it in isolation. The results varied by model type: for example, GR4J and GR4JMOD were excep-

tionally good at meeting the modeling standards in a given objective provided that they were calibrated to

it in isolation; i.e., the maximum possible value in each objective was high, but there was also a high degree

of tradeoff in between these endpoints. We categorized this type of failure with the phrase ‘‘Model structure

can simulate both dry and wet periods, but not with the same parameter set.’’ In contrast, this type of failure

was not common with IHACRES and SIMHYD, particularly for Standard 2, in which the category ‘‘Appears to

be deficient in this catchment, regardless of climate’’ claimed the highest proportion of failures. The full

results of this analysis are shown in the supporting information Figure S7.

Next, we focussed on the physical properties, including location, of the catchments where the model struc-

tures failed. For this analysis, we examined only those catchments where none of the model structures were

Figure 11. Effectiveness of the single-objective Differential Split Sample Test (DSST) and AMALGAM in finding parameter sets that meet

the two performance standards. Case A means suitable parameter sets were found by both the DSST and AMALGAM; Case B means suita-

ble parameter sets were not found by the DSST but were found by AMALGAM; and Case C means neither method found suitable parame-

ter sets. ‘‘Any model’’ means that the modeller able to apply all five of the model structures and has the freedom to adopt the best model

whatever it may be.
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able to meet the required standard. As per Figure 11, there were 12 such catchments in the case of Stand-

ard 1 (labeled ‘‘FF’’ since they failed both standards) and a further 18 in the case of Standard 2 (labeled ‘‘PF’’

since they passed one standard and failed the other).

In terms of geographic location, the instances of model failure are relatively well dispersed. In terms of fail-

ure to meet Standard 1, there appeared to be two regions where model structures were more likely to fail:

the central part of the state of Victoria, and the northern-most catchments tested in the state of Queens-

land. There were also a number of catchments failing Standard 2 in the eastern highlands of New South

Wales. A map is provided in the supporting information (supporting information Figure S6).

Figure 12 shows the physical characteristics of catchments where model structures failed one or both stand-

ards. We selected five characteristics for testing, based on their perceived importance to hydrology: catch-

ment area; rainfall; slope; forest cover; and degree of development of private farm dams. Soil type and

geology are also perceived to be important, but there are few high-quality national soil type/geology data

sets that are numerical (i.e., noncategorical). In addition to the five characteristics above, the observed

severity of drought was also included, measured as the ratio of mean annual flows during the dry period to

mean annual flows during the nondry period. From Figure 12a, catchment area appears to have little bear-

ing on the failure of the model structures. However, Figures 12b and 12c show that cases of model structure

failure tended to be in drier catchments, and where flow reductions during Period 2 were greatest.

To further investigate these results, we applied the nonparametric one-sided Rank-Sum Test, otherwise

known as the Wilcoxon-Mann-Whitney test or the Mann-Whitney U test (as described by e.g., Wilks [2011],

see also Wilcoxon [1945] and Mann and Whitney [1947]). This evaluates the probability of the null hypoth-

esis that two groups of data (in this case, characteristics of catchments where a modeling standard was/

was not met, respectively) came from the same underlying distribution. By concentrating only on relative

ranks rather than actual values, this test resists being influenced by one or two extreme values, which is

important because some catchment characteristics have quite skewed distributions. The results (Table 2)

confirmed that the catchments where the modeling standards were not met tended to be those with

lower rainfall, lower slope and a greater relative reduction in flow during the 7 driest consecutive years.

Catchment area was less strongly related to modeling performance than these three, and forest cover

less so again.

Since the group that failed Modeling Standard 1 (Group FF) is such a small sample size, we provide a catch-

ment-by-catchment list of characteristics for each member of group FF in supporting information Table S1.

Inspection of the individual characteristics of group FF reveals that although there appears to be differences

Figure 12. Physical characteristics of catchments where model structures failed one or both standards. Four boxplots are shown for each characteristic: all catchments (marked A;

N5 86); cases where both standards were passed (marked PP; N5 56); cases where Standard 1 was passed but Standard 2 was failed (marked PF; N5 18); and cases where neither

standard was met (marked FF; N5 12). Farm dam data were only available for Victoria, so that the N values are different in plot f (NA5 39, NPP5 27, NPF5 6 and NFF5 6). The whiskers

extend a maximum of 1.5 times the interquantile range. Values beyond the whiskers are marked as outliers and are denoted as 1.
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between the boxplots for catchment average slope and forest cover, the reality is more complex, with

group FF being spread across a relatively wide range in both cases.

In terms of farm dams, estimates of farm dam volume were only available for catchments in the State of Vic-

toria (N5 39). Two of the three catchments where farm dam density exceeds 20 ML/km2 were catchments

where modeling standard 1 was not met, and it is possible that harvesting of water by farm dams in these

catchments is causing difficulties in modeling. However, the other catchments had much lower levels of

development of farm dams so it is unlikely that farm dams are degrading model performance in these

catchments. Further research is required to investigate whether rainfall-runoff modeling in the two catch-

ments with farm dam density exceeding 20 ML/km2 might be aided by quantification of farm dam

interception.

The results of this study are partially consistent with recent findings of Saft et al [2015] who analyzed

changes to the relationship between rainfall and runoff on an annual time step, in the same study area.

They found that changes to the relationship were more likely in drier catchments (upheld here) with low

slope (upheld here) and low forest cover (not upheld here, although the catchments used in this study gen-

erally had greater forest cover than those in Saft et al. [2015]). Note that although bushfires are relatively

common throughout Australia, we could not find any evidence linking bushfire history with the failure of

models to attain the modeling standards (supporting information Text S2).

4. Discussion

4.1. Results Summary

Although the results above are specific to the catchments, data, models and objective functions used, they

are potentially relevant to any study that has rejected a model structure based on a poor match with

streamflows in an independent evaluation period (e.g., a DSST). The results show that a significant propor-

tion of such rejections may be spurious because parameter sets may exist that fulfil a given set of perform-

ance criteria but remain undetected during calibration. Thus, poor performance in evaluation in a split

sample test is a poor basis on which to reject a model hypothesis, although it is adequate for rejecting the

model/calibration method combination.

As noted in the method section, the Pareto framework used here was intended only to critically assess exist-

ing methods of model calibration and evaluation; in this paper we are not suggesting that the method

should be adopted for use in rainfall-runoff model calibration. The reasons for this are explained below (sec-

tions 4.3 and 4.7).

4.2. Getting the Right Answers for the Wrong Reasons?

We now consider whether or not a parameter set or model structure that is found to fulfil the adopted KGE

performance criteria (i.e., get the ‘‘right answer’’) can be considered ‘‘adequate’’ or ‘‘valid.’’ First, it is widely

acknowledged that one performance criteria (e.g., KGE) is insufficient to ensure a holistic match with

observed flows [Oudin et al., 2006; Gupta et al., 2009; Berthet et al., 2010; Andreassian et al., 2012], even if

jointly considered over two contrasting periods as demonstrated here. As an example, consider the progres-

sion of modeling bias with time for the parameter sets shown in Figure 13. Even though long-term bias is a

Table 2. Results From the Nonparametric Rank-Sum Test to Test Whether Catchment Characteristics Differed Between Catchments

Where a Given Modeling Standard Was Not Met (by Any Model Structure) and Those Where It Wasa

Relating to Modeling Standard 1 Relating to Modeling Standard 2

p Value

Significant

at 95% Level? p Value

Significant

at 95% level?

Catchment area 0.0953 no 0.0304 yes

Mean annual rainfall 0.0002 yes <0.0001 yes

Dry period flow ratio 0.0003 yes <0.0001 yes

Catchment average slope 0.0165 yes 0.0001 yes

Forest Cover 0.4161 no 0.2343 no

Farm Dam Development 0.0553 no 0.0041 yes

aColumns two and four indicate the probability that the observed differences in characteristics between the two groups of catch-

ments arose purely by chance.
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component of the KGE, the 10 year rolling average bias still deviates considerably from zero for the three

parameter sets shown in each case, and shows some similarity with the results of Coron et al. [2014], particu-

larly in catchment 613002. Choosing a parameter set that performs well in both periods (red) does not guar-

antee unbiased simulations over the modeling period, although GR4JMOD performs better in this aspect in

the second case (A5040517) than the first (613002). This analysis of bias, based on the format of Coron et al.

[2014], is shown for other selected case studies in the supporting information (supporting information Fig-

ures S8–S11). From these examples it is clear that a high KGE score may mask underlying discrepancies in

matching the observed data. Furthermore, even a near-perfect match with observed streamflows would

not necessarily imply that a rainfall runoff model is ‘‘adequate’’ or ‘‘valid,’’ depending on the philosophical

viewpoint. As discussed in the Introduction, a near-perfect match with observed streamflows corresponds

to adequacy in an operational or ‘‘engineering’’ sense [Gupta et al., 2012] but a ‘‘physical science’’ approach

would ask whether the model is getting the right answers for the right reasons [Kirchner, 2006; Gupta et al.,

2012]. Under this viewpoint, models are adequate only if consistent with dominant physical processes. As

noted in the introduction, this is difficult to test in practice for a large sample of catchments, and thus we

do not assess the adequacy of models in this physical science sense. Given that some processes that are

thought to be important are not represented by some conceptual models used in this study (e.g., intercep-

tion in the case of IHACRES––Jakeman and Hornberger [1993]; Savenije [2004]) it is unlikely that such models

could be considered adequate in the physical science sense, regardless of their goodness of fit.

4.3. The Role of Data Errors

Data errors are ubiquitous in hydrology and can confound the results of hydrologic studies. For example,

for the data used in this study, the streamflow data are subject to uncertainty in the stage-discharge rela-

tionship [McMillan et al., 2010], while the gridded rainfall data are subject to measurement error in the

underlying point rainfall data [e.g., Ne�spor and Sevruk, 1999] plus interpolation error associated with creating

a spatial grid of values based on point measurements [Jones et al., 2009; Tozer et al., 2012].

Although optimization to a single performance measure (e.g., KGE or NSE) remains common in practice,

during optimization the mathematical compensation for input and output errors can lead to spurious

Figure 13. Long-term simulation bias (right) for three selected parameter sets (left), after Coron et al. [2014, Figure 5), for two selected case studies. Simulation bias is plotted as a 10

year moving average, and the 10 year moving average streamflows are also plotted for reference, in blue. The case study catchments are 613002 (Harvey River at Dingo Road, Western

Australia; 147.5 km2; mean annual rainfall5 992 mm/yr; rainfall-runoff ratio 0.21) and A5040517 (First Creek at Waterfall Gully, South Australia; 5.1 km2; mean annual rainfall5 992 mm/

yr; rainfall-runoff ratio 0.19). Despite similar positions in objective space for the red parameter set, changes in long term average streamflow are more faithfully tracked in A5040517 than

613002.
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results [Thyer et al., 2009]. The mathematically optimum parameter set is actually a function of the input

and output errors, and a different set of errors may result in an entirely different ‘‘optimum’’ set. In this

paper, since the input and output errors were not explicitly accounted for, the Pareto Fronts generated are

similarly a function of the errors in the input and output data. The complex interactions of model structural

error with input and output error further complicate the situation [Renard et al., 2010].

The uncertainty in model inputs and flow data propagate through to uncertainty in parameters and projec-

tions, and this can be quantified in various ways [e.g., Beven and Binley, 1992; Freer et al., 1996; Kavetski et al,

2006a,b; Renard et al., 2010, 2011]. Common methods identify not a single parameter set (as in optimiza-

tion) but an ensemble of parameter sets, which together are consistent with knowledge of input and output

uncertainty, and allow quantification of uncertainty through consideration of multiple possible model

simulations.

We affirm that the quantification of uncertainty is an important aspect of any study aiming to provide

model projections or forecasting to inform decision making. In contrast, the aim of this study was to revisit

the conclusion that rainfall runoff models suffer from poor performance if applied in climatic conditions dif-

ferent to those against which they were calibrated. Given that previous studies have used single objective

optimization and the DSST to make conclusions about model validity [Vaze et al., 2010] and parameter sta-

tionary [Merz et al., 2011], we tailored our method to specifically investigate how reliable the outcomes of

such tests may be. The Pareto approach proved useful in this context, but we reiterate that the method

used here is not recommended as a general calibration method, in part due to its inability to estimate pre-

dictive uncertainty.

4.4. Relevance to Future Model Improvements

The results of this study are instructive toward future efforts to improve rainfall runoff models. The key les-

son for model improvements is this: where improvements are trialed, it is possible that their full benefit will

not be seen if evaluated using the DSST in isolation, due to the chance of false negatives. This was shown

very clearly (see Figure 9 and supporting information Figure S5) for the comparison between GR4J [Perrin et

al., 2003] and the modified version GR4JMOD by Hughes et al. [2013]. Numerous cases were found where

the DSST led to a false conclusion of negligible benefit from the changes of Hughes et al. [2013].

Some studies, such as Brigode et al. [2013] demonstrated a DSST using a method (e.g., DREAM––Vrugt et

al. [2008]) that generated an ensemble of parameter sets. Because such ensemble methods inherently

provide information about a wider range of parameter sets, they may be more likely to identify sets that

demonstrate the true capabilities resulting from a model improvement. However, this depends strongly

on details of methodology, with a key choice being whether or not to explicitly represent the uncertainty

of inputs and outputs [e.g., Renard et al., 2010, 2011] or adopt objective functions that compensate for

these errors without representing them explicitly (as adopted by Brigode et al., 2013, cf. Schoups and

Vrugt, 2010].

As discussed above, in this study we did not account for data errors, and so instances of apparent model

failure may be related to cases of particularly poor data quality. However, we observed tendencies among

catchments where failure was common––namely, they tended to be drier, flatter and have more severe

droughts [see also Saft et al., 2015]––and these systematic tendencies support the case for research to bet-

ter simulate flow generation mechanisms in such catchments, as opposed to assuming that all remaining

deficiencies are the result of data errors [Brigode et al., 2013].

4.5. Minimizing False Negatives

This paper has demonstrated that DSST results may provide a false negative impression of the capabilities

of a model. Geometrically, this is associated with Pareto Fronts that had an ‘‘inverted L’’ shape, intersecting

regions of robust performance (e.g., shaded regions of Figure 10), but with endpoint(s) distant from these

regions (e.g. IHACRES in Figure 10). Shapes less prone to false negatives included Pareto curves that formed

quasi-linear diagonal lines in the objective space (e.g., GR4J in Figure 10) and the ideal case (in the sense of

parameter stationarity) where the Pareto curve is so compact as to appear as a dot in the objective space

(e.g., GR4JMOD in 410057, supporting information Figure S1).

It is difficult to generalize about the relation between model complexity (number of parameters) and the

tendency to produce false negatives. In a separate analysis (not shown) we examined the shape of the
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Pareto curves on a model-by-model basis, which demonstrated that the parsimonious model GR4J tended

to produce Pareto Fronts of the ‘‘quasi linear diagonal’’ type, and thus have a lower tendency to generate

false negative impressions of model capabilities. However, higher model complexity did not necessarily

lead to more false negatives, as shown by a comparison of IHACRES (8 parameters, 37 false negatives for

Standard 1) and SACRAMENTO (13 free parameters, 32 false negatives for Standard 1).

It is also possible that careful selection of objective functions may minimize false negatives. In the ideal case

listed above (Pareto curve collapsed to a dot in the Objective Space), the parameter set identified as optimal

in one set of climatic conditions is optimal or near-optimal in other climatic conditions––a desirable attrib-

ute for an objective function and/or model structure. In the present context, the tendency to produce this

ideal case could be evaluated for a given objective function either by (a) assessing only the endpoints of

the Pareto curves (one-at-a-time single objective optimization [cf. Coron et al., 2012, 2014]); or (b) via full

Pareto analysis as shown in this paper. Future research could conduct this analysis individually for a number

of objective functions from the literature in turn, and then compare the results. It is likely that a more

nuanced objective function such as a meta-function incorporating responses over multiple time scales

[Hartmann and B�ardossy, 2005; Shamir et al., 2005] may have more success than commonly used functions

that consider only the daily time step. Such analysis would be relevant to the discussion of the value (or

lack of value) of single objective optimization in hydrology [e.g., Gupta et al., 2008].

4.6. Climate Change: Beyond the Scope of Historical Observations?

While climate change may be outside of the range of current observations in many regions of the world, in

South East Australia the changes in streamflow projected in some climate change studies are of a similar

order to the historic streamflow declines during the Millennium Drought. For example, Chiew et al. [2009]

projected future runoff across South East Australia using the outputs of 15 Global Climate Models (GCMs).

Although there was a high degree of uncertainty, in most locations and for all GCMs the percentage change

in long-term average annual flows was generally less than 55% (ibid. Figure 9), which was the median

observed reduction during the Millennium Drought for the catchments in this study (section 2.6, cf. Figure

5). However, Chiew et al. [2009] used GCM runs based on a 0.98C increase in temperature, and scenarios

with greater temperature increases would result in greater reductions in streamflow that may be beyond

the range of observations. Nonetheless, we suggest that it is reasonable to assume that the observed

behaviour of catchments during historic dry periods like the Millennium Drought can be used to inform our

understanding of possible future behaviour of these catchments under climate change.

4.7. Research Challenges

In this section, we summarize the research challenges to improve rainfall runoff modeling under a changing

climate. These are not original ideas; rather, we aim to relate the present study to existing ideas and trends

in the literature. We broadly group the challenges under two headings:

1. Making better use of information content of measured data: Figure 13 [see also e.g., Oudin et al., 2006;

Gupta et al., 2009; Berthet et al., 2010; Andreassian et al., 2012] demonstrated that the use of global per-

formance measures can mask significant deficiencies in simulations. Hydrologists should therefore favour

measures that consider a breadth of characteristics about the historic data. The multitimescale objective

functions mentioned above (section 4.5) are an example of this. We also note developments in using

hydrologic signatures to inform calibration [Wagener and Montanari, 2011; Vrugt and Sadegh, 2013].

While signatures do not inherently take data errors into account, some signatures are less sensitive to

data errors than others [Westerberg and McMillan, 2015], so that signature sets can be chosen with the

intent of reducing the confounding effect of data errors [Vrugt and Sadegh, 2013] while maximizing the

information content gained from observed data. This paper has demonstrated that some existing model

structures were capable of simulations that provided robust performance before and after a change in

climate. The challenge is to develop calibration methods that can identify these parameter sets using

only ‘‘prechange’’ data. The Pareto method used here does not do this, and furthermore is not viable if

the changed climate has not yet been observed.

2. Improving process understanding in catchments under change: Following the same logic as above, it may

be that even with considerable advances in parameter estimation methods, it is still not possible to iden-

tify robust parameter sets using only ‘‘prechange’’ data. Further research is needed to investigate the

physical reasons why runoff is more sensitive to changes in rainfall than current rainfall runoff models
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would suggest. Such research would be consistent with the current research focus on change in hydrol-

ogy and society (IAHS Panta Rhei decade 2013–2022––Montanari et al. [2013]). This knowledge could

inform new rainfall runoff model(s) that, when calibrated to ‘‘prechange’’ data, would ideally provide

more certainty about the trajectory of runoff after a change in rainfall, and be closer to ‘‘adequate’’ in

both a physical science and engineering sense. However, it is noted that even if a model does have the

correct structure to simulate flows under contrasting conditions, the relevant parameters may remain

poorly identified during calibration [Reichert and Omlin, 1997], depending on the input data and method

of calibration.

5. Conclusions and Recommendations

In this paper, five conceptual rainfall-runoff model structures were tested in 86 catchments, initially using a

Differential Split Sample Test (DSST) that was intended to replicate common practice. When optimized to

match the Kling-Gupta efficiency over the nondry period, the models generally had poor performance dur-

ing the dry period, and vice versa. These results were consistent with existing literature [e.g., Vaze et al,

2010; Coron et al., 2012, 2014; Thirel et al., 2015b]. Therefore, the model structures largely failed the DSST,

although this was catchment dependent. The model structures were then further tested using a Pareto

approach via the AMALGAM algorithm. The AMALGAM results demonstrated that many of the cases of

apparent failure under the DSST were false negatives. Of the 282 cases of apparent model failure under the

DSST using the lower modeling standard (KGE> 0.7), 155 were false negatives. The higher standard

(KGE> 0.8) resulted in 347 cases of apparent model failure, with 120 false negatives. Thus, regardless of the

standard used, the DSST often missed potentially promising parameter sets within a given model structure.

These results can be used to answer the research question and hypothesis stated at the beginning of the

paper. Responding to the recorded deficiencies of rainfall runoff model performance in the literature, the

research question was: Are current conceptual rainfall runoff model structures deficient in their ability to simu-

late streamflow responses to long term changes in climate? The hypothesis to be tested was that the observed

poor performance is due to poor or insufficient model calibration and evaluation techniques rather than defi-

cient model structures. The results indicate that this hypothesis was true in around 55% of the cases (155 out

of 282) or around 35% of the cases (123 out of 349) of poor performance in the DSST, depending on the

modeling standard adopted. Thus, the answer to the research question is that some rainfall runoff model

structures are deficient in some catchments, with the corollary that the deficiency is significantly less com-

mon than the Differential Split Sample Test might suggest. It was discussed that the definitions of ‘‘defi-

cient’’ and ‘‘adequate’’ are themselves dependent on philosophical perspective [Gupta et al., 2012].

As noted throughout the paper, we are not proposing that the multiobjective approach trialed here is a via-

ble alternative approach to the DSST. The logic expounded by Kleme�s [1986] is valid and we affirm the need

to withhold a portion of historic data for independent testing and evaluation. The multiobjective approach

here does not do this, so the findings of this paper are based solely on calibration results, with no independ-

ent evaluation period. The Pareto approach trialed here is only useful insofar as it has demonstrated that

commonly used model calibration and evaluation methods can give a false negative impression of the abil-

ity of a model structure to match observed streamflow.

Based on our results and discussion, we recommend:

1. Caution when interpreting split sample results. Split sample testing remains an essential test of models

that will be used operationally (in the sense of Kleme�s [1986]) and a useful ‘‘first test’’ of a model struc-

ture’s capabilities. However, this paper has demonstrated that split sample test results can give a false

negative impression of the ability of a model to match observed streamflow, and are thus a poor basis to

reject a model hypothesis.

2. Further work toward identifying parameter sets that are robust to changes in climate. This paper has dem-

onstrated that commonly used calibration and evaluation methods often fail to identify parameter sets

that can simulate flows robustly when climatic conditions change, even when such parameter sets do

exist within a model structure. New methods are needed that can more reliably identify such parameter

sets.
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3. Further research aimed at understanding the physical processes occurring in catchments when climatic con-

ditions change, in line with the IAHS Panta Rhei Decade’s focus on change in hydrology and society

[Montanari et al., 2013].

References

Aghakouchak, A., D. Feldman, M. J. Stewardson, J. D. Saphores, S. Grant, and B. Sanders (2014), Australia’s Drought: Lessons for California,

Science, 343, 1430–1431.

Andr�eassian, V., C. Perrin, L. Berthet, N. Le Moine, J. Lerat, C. Loumagne, L. Oudin, T. Mathevet, M.-H. Ramons, and A. Val�ery (2009), Crash

tests for a standardized evaluation of hydrological models, Hydrol. Earth Syst. Sci., 13, 1757–1764.

Andreassian, V., N. Le Moine, C. Perrin, M. H. Ramos, L. Oudin, T. Mathevet, J. Lerat, and L. Berthet (2012), All that glitters is not gold: The

case of calibrating hydrological models, Hydrol. Processes, 26, 2206–2210.

Andrews, F. (2013), R code repository for HYDROMAD. [Available at http://hydromad.catchment.org/, last accessed 30 Mar. 2015.]

Arsenault, R., A. Poulin, P. Côt�e, and F. Brissette (2013), Comparison of stochastic optimization algorithms in hydrological model calibration,

J. Hydrol. Eng., 19(7), 1374–1384.

B�ardossy, A. (2007), Calibration of hydrological model parameters for ungauged catchments, Hydrol. Earth Syst. Sci., 11(2), 703–710.

B�ardossy, A., and S. K. Singh (2008), Robust estimation of hydrological model parameters, Hydrol. Earth Syst. Sci., 12, 1273–1283.

Bekele, E. G., and J. W. Nicklow (2007), Multi-objective automatic calibration of SWAT using NSGA-II, J. Hydrol., 341(3), 165–176.

Berthet, L., V. Andr�eassian, C. Perrin, and C. Loumagne (2010), How significant are quadratic criteria? Part 2. On the relative contribution of

large flood events to the value of a quadratic criterion, Hydrol. Sci. J., 55(6), 1063–1073.

Beven, K., and A. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Processes, 6(3),

279–298.

Booij, M. J., and M. S. Krol (2010), Balance between calibration objectives in a conceptual hydrological model, Hydrol. Sci. J., 55(6),

1017–1032.

Brigode, P., Oudin, L., and Perrin, C. (2013), Hydrological model parameter instability: A source of additional uncertainty in estimating the

hydrological impacts of climate change?, J. Hydrol., 476, 410–425.

Budyko, M. (1971), Climate and Life, Academic, New York.

Burnash, R. J. C., R. L. Ferral, and R. A. McGuire (1973), A Generalized Streamflow Simulation System––Conceptual Modelling for Digital Com-

puters, 204 pp. Joint Fed.-State River Forecast Cent., Sacramento.

Chiew, F. H. S., and T. A. McMahon (1994), Application of the daily rainfall-runoff model MODHYDROLOG to 28 Australian catchments, J.

Hydrol., 153(1), 383–416.

Chiew, F. H. S., M. C. Peel, and A. W. Western (2002), Application and testing of the simple rainfall-runoff model SIMHYD, inMathematical Mod-

els of Small Watershed Hydrology and Applications, edited by V. P. Singh and D. K. Frevert, pp. 335–367, Water Resour. Publ., Littleton, Colo.

Chiew, F. H. S., J. Teng, J. Vaze, D. A. Post, J. M. Perraud, D. G. C. Kirono, and N. R. Viney (2009), Estimating climate change impact on runoff

across southeast Australia: Method, results, and implications of the modeling method, Water Resour. Res., 45, W10414, doi:10.1029/

2008WR007338.

Chiew, F. H. S., N. J.Potter, J. Vaze, C. Petheram, L. Zhang, J. Teng, and D. A. Post (2014), Observed hydrologic non-stationarity in far south-

eastern Australia: Implications for modelling and prediction, Stochastic Environ. Res. Risk Assess., 28(1), 3–15.

Choi, H. T., and K. Beven (2007), Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of

TOPMODEL within the GLUE framework, J. Hydrol., 332(3), 316–336.

Cieniawski, S. E., J. W. Eheart, and S. Ranjithan (1995), Using genetic algorithms to solve a multiobjective groundwater monitoring problem,

Water Resour. Res., 31(2), 399–409.

Coron, L., V. Andreassian, C. Perrin, J. Lerat, J. Vaze, M. Bourqui, and F. Hendrickx (2012), Crash testing hydrological models in contrasted cli-

mate conditions: An experiment on 216 Australian catchments, Water Resour. Res., 48, W05552, doi:10.1029/2011WR011721

Coron, L., V. Andr�eassian, C. Perrin, M. Bourqui, and F. Hendrickx (2014), On the lack of robustness of hydrologic models regarding water

balance simulation: A diagnostic approach applied to three models of increasing complexity on 20 mountainous catchments, Hydrol.

Earth Syst. Sci., 18(2), 727–746.

Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor (2003), An overview of results from

the Coupled Model Intercomparison Project, Global Planet. Change, 37(1), 103–133.

Deb, K., A. Pratap, S. Agarwal, and T. A. M. T. Meyarivan (2002), A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol.

Comput., 6(2), 182–197.

Department of Environment, Land, Water and Planning (2015a), Farm Dam Boundaries, Victorian Government, Melbourne, Australia. [Avail-

able at https://www.data.vic.gov.au/data/dataset/farm-dam-boundaries, last accessed 26 May 2015.]

Department of Environment, Land, Water and Planning (2015b), Farm Dam Points, Victorian Government, Melbourne, Australia. [Available

at https://www.data.vic.gov.au/data/dataset/farm-dam-points, last accessed 26 May 2015.]

Donohue, R. J., T. R. McVicar, and M. L. Roderick (2010), Assessing the ability of potential evaporation formulations to capture the dynamics

in evaporative demand within a changing climate, J. Hydrol., 386(1), 186–197.

Duan, Q., S. Sorooshian, and V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour.

Res., 28(4), 1015–1031.

Duan, Q., S. Sorooshian, and V. Gupta (1994), Optimal use of the SCE-UA global optimization method for calibrating watershed models,

J. Hydrol., 158(3), 265–284.

Efstratiadis, A., and Koutsoyiannis, D. (2010), One decade of multi-objective calibration approaches in hydrological modelling: A review,

Hydrol. Sci. J., 55(1), 58–78.

Forster, P., et al. (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis.

Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited S. Solomon et

al., Cambridge Univ. Press, Cambridge, U. K.

Freer, J., K. Beven, and B. Ambroise (1996), Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of

the GLUE approach, Water Resour. Res., 32(7), 2161–2173.

Gallant, J. C., T. I. Dowling, A. M. Read, N. Wilson, P. Tickle, and C. Inskeep (2011), 1 second SRTM derived digital elevation models user

guide, Geoscience Australia report, Geoscience Australia, Canberra, Australia. [Available at www.ga.gov.au/topographic-mapping/digi-

tal-elevation-data.html.]

Acknowledgments

The authors gratefully acknowledge

the support of the Australian

Government in carrying out this work.

Specifically, Keirnan Fowler’s work was

supported by an Australian

Postgraduate Award and Murray Peel

is the recipient of an Australian

Research Council Future Fellowship

(FT120100130). Streamflow data used

in this project were from the Australian

Bureau of Meteorology’s (BOM)

Hydrologic Reference Station project

website [Turner, 2012], www.bom.gov.

au/hrs. Rainfall data were from the

Australian Water Availability Project

(AWAP) project [Jones et al., 2009],

www.bom.gov.au/jsp/awap/. Potential

evapotranspiration data were from the

SILO project [Jeffrey et al., 2011],

https://www.longpaddock.qld.gov.au/

silo/. The authors appreciate the work

of the three anonymous reviewers and

one Associate Editor whose feedback

greatly improved the quality of the

article.

Water Resources Research 10.1002/2015WR018068

FOWLER ET AL. SIMULATING RUNOFF UNDER A CHANGING CLIMATE 1843

http://www.bom.gov.au/hrs
http://dx.doi.org/10.1029/2008WR007338
http://dx.doi.org/10.1029/2008WR007338
http://dx.doi.org/10.1029/2011WR011721
http://https://www.data.vic.gov.au/data/dataset/farm-dam-boundaries
http://https://www.data.vic.gov.au/data/dataset/farm-dam-points
http://www.ga.gov.au/topographic-mapping/digital-elevation-data.html
http://www.ga.gov.au/topographic-mapping/digital-elevation-data.html
http://www.bom.gov.au/hrs
http://www.bom.gov.au/hrs
http://www.bom.gov.au/jsp/awap/
https://www.longpaddock.qld.gov.au/silo/
https://www.longpaddock.qld.gov.au/silo/


Gharari, S., M. Hrachowitz, F. Fenicia, and H. H. G. Savenije (2013), An approach to identify time consistent model parameters: Sub-period

calibration, Hydrol. Earth Syst. Sci., 17(1), 149–161.

Gupta, H. V., S. Sorooshian, and P. O. Yapo (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable

measures of information, Water Resour. Res., 34(4), 751–763.

Gupta, H. V., T. Wagener, and Y. Liu (2008), Reconciling theory with observations: Elements of a diagnostic approach to model evaluation,

Hydrol. Process., 22(18), 3802–3813.

Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez (2009), Decomposition of the mean squared error and NSE performance criteria: Impli-

cations for improving hydrological modelling, J. Hydrol., 377(1), 80–91.

Gupta, H. V., M. P. Clark, J. A. Vrugt, G. Abramowitz, and M. Ye (2012), Towards a comprehensive assessment of model structural adequacy,

Water Resour. Res., 48, W08301, doi:10.1029/2011WR011044.

Gupta, H. V., C. Perrin, G. Bloschl, A. Montanari, R. Kumar, M. Clark, and V. Andr�eassian (2014), Large-sample hydrology: A need to balance

depth with breadth, Hydrol. Earth Syst. Sci., 18(2) 463–477.

Haario, H., E. Saksman, and J. Tamminen (2001), An adaptive Metropolis algorithm, Bernoulli, 7, 223–242.

Hansen, N., S. M€uller, and P. Koumoutsakos (2003), Reducing the time complexity of the derandomized evolution strategy with covariance

matrix adaptation (CMA-ES), Evol. Comput., 11(1), 1–18.

Hartmann, G., and A. B�ardossy (2005), Investigation of the transferability of hydrological models and a method to improve model calibra-

tion, Adv. Geosci., 5(5), 83–87.

Hughes, J., R. Silberstein, and A. Grigg (2013), Extending rainfall-runoff models for use in environments with long–term catchment storage

and forest cover changes, in MODSIM2013, 20th International Congress on Modelling and Simulation, edited by J. Piantadosi, R. S. Ander-

ssen, and J. Boland, pp. 2471–2477, Modelling and Simulation Society of Australia and New Zealand, Canberra, Australia.

Hughes, J. D., K. C. Petrone, and R. P. Silberstein (2012), Drought, groundwater storage and stream flow decline in southwestern Australia,

Geophys. Res. Lett., 39, L03408, doi:10.1029/2011GL050797.

Hurst, H. E. (1951), Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng., 116, 770–808.

Jakeman, A. J., and G. M. Hornberger (1993), How much complexity is warranted in a rainfall runoff model?, Water Resour. Res., 29(8), 2637–

2649.

Jakeman, A. J., I. G. Littlewood, and P. G. Whitehead (1990), Computation of the instantaneous unit hydrograph and identifiable compo-

nent flows with application to two small upland catchments, J. Hydrol., 117(1), 275–300.

Jeffrey, S. J., J. O. Carter, K. B. Moodie, and A. R. Beswick (2001), Using spatial interpolation to construct a comprehensive archive of

Australian climate data, Environ. Modell. Software, 16(4), 309–330.

Jones, D. A., W. Wang, and R. Fawcett (2009), High-quality spatial climate data-sets for Australia, Aust. Meteorol. Oceanogr. J., 58(4),

233–248.

Kavetski, D., G. Kuczera, and S. W. Franks (2006a), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour.

Res., 42, W03407, doi:10.1029/2005WR004368.

Kavetski, D., G. Kuczera, and S. W. Franks (2006b), Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water

Resour. Res., 42, W03408, doi:10.1029/2005WR004376.

Kennedy, J., R. C. Eberhart, and Y. Shi (2001), Swarm Intelligence, 512 p., Morgan Kaufmann, San Francisco, Calif.

Kim, H. S., and S. Lee (2014), Assessment of a seasonal calibration technique using multiple objectives in rainfall–runoff analysis, Hydrol.

Processes, 28(4), 2159–2173.

Kirchner, J. W. (2006), Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science

of hydrology, Water Resour. Res., 42, W03S04, doi:10.1029/2005WR004362.

Kleme�s, V. (1986), Operational testing of hydrological simulation models, Hydrol. Sci. J., 31(1), 13–24.

Kollat, J. B., P. M. Reed, and T. Wagener (2012), When are multiobjective calibration trade-offs in hydrologic models meaningful?, Water

Resour. Res., 48, W03520, doi:10.1029/2011WR011534.

Li, C. Z., L. Zhang, H. Wang, Y. Q. Zhang, F. L. Yu, and D. H. Yan (2012), The transferability of hydrological models under nonstationary cli-

matic conditions, Hydrol. Earth Syst. Sci., 16(4), 1239–1254.

Lymburner, L., P. Tan, N. Mueller, R. Thackway, A. Lewis, M. Thankappan, L. Randall, A. Islam, and U. Senarath (2011), The National Dynamic

Land Cover Dataset, Record 2011/31, Geosci. Aust. and the Bur. of Agric. and Resour. Econ. and Sci., Symonston, Canberra.

Madsen, H. (2003), Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objec-

tives, Adv. Water Resour., 26(2), 205–216.

Mann, H. B., and D. R. Whitney (1947), On a test of whether one of two random variables is stochastically larger than the other, Ann. Math.

Stat., 18 (1), 50–60.

McMillan, H., J. Freer, F. Pappenberger, T. Krueger, and M. Clark (2010), Impacts of uncertain river flow data on rainfall-runoff model calibra-

tion and discharge predictions, Hydrol. Processes, 24(10), 1270–1284.

McVicar, T. R., M. L. Roderick, R. J. Donohue, and T. G. Van Niel (2012), Less bluster ahead? Ecohydrological implications of global trends of

terrestrial near-surface wind speeds, Ecohydrology, 5(4), 381–388.

Meehl, G. A., et al. (2007), Global climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to

the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., pp. 747–845, Cambridge

Univ. Press, Cambridge, U. K.

Merz, R., J. Parajka, and G. Bloschl (2011), Time stability of catchment model parameters: Implications for climate impact analyses, Water

Resour. Res., 47, W02531, doi:10.1029/2010WR009505.

Mishra, A. K. and V. P. Singh (2010), A review of drought concepts, J. Hydrol., 391(1–2), 202–216.

Mishra, A. K., and V. P. Singh (2011), Drought modeling––A review, J. Hydrol., 403(1–2), 157–175.

Montanari, A., et al. (2013), ‘‘Panta Rhei—Everything Flows’’: Change in hydrology and society—The IAHS Scientific Decade 2013–2022,

Hydrol. Sci. J., 58:6, 1256–1275.

Morton, F. I. (1983), Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology, J.

Hydrol., 66(1), 1–76.

Muleta, M. K., and J. Nicklow (2005), Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed

model, J. Hydrol., 306(1), 127–145.

Nash, J., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I—A discussion of principles, J. Hydrol., 10(3), 282–290.

Nathan, R., and L. Lowe (2012), The hydrologic impacts of farm dams, Aust. J. Water Resour., 16(1), 1–10.

Ne�spor, V., and B. Sevruk (1999), Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation, J. Atmos.

Oceanic Technol., 16(4), 450–464.

Water Resources Research 10.1002/2015WR018068

FOWLER ET AL. SIMULATING RUNOFF UNDER A CHANGING CLIMATE 1844

http://dx.doi.org/10.1029/2011WR011044
http://dx.doi.org/10.1029/2011GL050797
http://dx.doi.org/10.1029/2005WR004368
http://dx.doi.org/10.1029/2005WR004376
http://dx.doi.org/10.1029/2005WR004362
http://dx.doi.org/10.1029/2011WR011534
http://dx.doi.org/10.1029/2010WR009505


Oreskes, N., K. Shrader-Frechette, and K. Belitz (1994), Verification, validation, and confirmation of numerical models in the earth sciences,

Science, 263(5147), 641–646.

Oudin, L., V. Andre�assian, T. Mathevet, C. Perrin, and C. Michel (2006), Dynamic averaging of rainfall-runoff model simulations from comple-

mentary model parameterizations, Water Resour. Res., 42, W07410, doi:10.1029/2005WR004636.

Pareto, V. (1927), Manual of Political Economy, translated from the French by A. S. Schwier, and A. N. Page, Augustus M. Kelley, N. Y.

Peel, M., B. Finlayson, and T. McMahon (2007), Updated world map of the K€oppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11,

1633–1644.

Peel, M. C., T. A. McMahon, B. L. Finlayson, and F. G. Watson (2001), Identification and explanation of continental differences in the variabili-

ty of annual runoff, J. Hydrol., 250(1), 224–240.

Perrin, C., C. Michel, and V. Andr�eassian (2001), Does a large number of parameters enhance model performance? Comparative assessment

of common catchment model structures on 429 catchments, J. Hydrol., 242(3), 275–301.

Perrin, C., C. Michel, and V. Andr�eassian (2003), Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279(1), 275–289.

Peterson, T. J., and A. W. Western (2014), Nonlinear time-series modeling of unconfined groundwater head, Water Resour. Res., 50, 8330–

8355, doi:10.1002/2013WR014800.

Petrone, K. C., J. D. Hughes, T. G. Van Niel, and R. P. Silberstein (2010), Streamflow decline in southwestern Australia, 1950–2008, Geophys.

Res. Lett., 37, L11401, doi:10.1029/2010GL043102.

Porter, J. W., and T. A. McMahon (1975), Application of a catchment model in southeastern Australia, J. Hydrol., 24(1), 121–134.

Potter, N. J., and F. H. S. Chiew (2011), An investigation into changes in climate characteristics causing the recent very low runoff in the

southern Murray-Darling Basin using rainfall-runoff models, Water Resour. Res., 47, W00G10, doi:10.1029/2010WR010333.

Potter, N. J., F. H. S. Chiew, and A. J. Frost (2010), An assessment of the severity of recent reductions in rainfall and runoff in the Murray–

Darling Basin, J. Hydrol., 381(1), 52–64.

Potter, N. J., L. Zhang, C. Petheram, and F. H. Chiew (2013), Hydrological non-stationarity in southeastern Australia, in Proceedings of H01,

1062 IAHS-IAPSO-IASPEI Assembly, edited by E. Boegh, pp. 358–363, IAHS Publ. 359, International Association of Hydrological Sciences,

Gothenburg, Sweden.

Ramchurn, A. (2012), Improved modelling of low flows and drought impacts in Australian catchments using new rainfall-runoff model

SpringSIM, in Proceedings of the Australian Hydrology and Water Resources Symposium, 2012, edited by S. Westra S. et al., pp. 429–440,

Engineers Australia, Canberra, Australia.

Refsgaard, J. C., and J. Knudsen (1996), Operational validation and intercomparison of different types of hydrological models, Water Resour.

Res., 32(7), 2189–2202.

Refsgaard, J. C., et al. (2014), A framework for testing the ability of models to project climate change and its impacts, Clim. Change, 122,

271–282.

Reichert, P., and M. Omlin (1997), On the usefulness of overparameterized ecological models, Ecol. Modell., 95(2), 289–299.

Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S. W. Franks (2010), Understanding predictive uncertainty in hydrologic modeling: The

challenge of identifying input and structural errors, Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328.

Renard, B., D. Kavetski, E. Leblois, M. Thyer, G. Kuczera, and S. W. Franks (2011), Toward a reliable decomposition of predictive uncertainty

in hydrological modeling: Characterizing rainfall errors using conditional simulation, Water Resour. Res., 47, W11516, doi:10.1029/

2011WR010643.

Ritzel, B., J. Eheart, and S. Ranjithan (1994), Using genetic algorithms to solve a multiple objective groundwater pollution containment

problem, Water Resour. Res., 30(5), 1589–1603.

Saft, M., A. W. Western, L. Zhang, M. C. Peel, and N. J. Potter (2015), The influence of multiyear drought on the annual rainfall-runoff rela-

tionship: An Australian perspective, Water Resour. Res., 51, 2444–2463, doi:10.1002/2014WR015348.

Savenije, H. H. (2004), The importance of interception and why we should delete the term evapotranspiration from our vocabulary, Hydrol.

Processes, 18(8), 1507–1511.

Schoups, G., and J. A. Vrugt (2010), A formal likelihood function for parameter and predictive inference of hydrologic models with corre-

lated, heteroscedastic, and non-Gaussian errors, Water Resour. Res., 46, W10531, doi:10.1029/2009WR008933.

Seibert, J. (2000), Multi-criteria calibration of a conceptual runoff model using a genetic algorithm, Hydrol. Earth Syst. Sci., 4(2), 215–224.

Seibert, J., and J. J. McDonnell (2002), On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for

multicriteria model calibration, Water Resour. Res., 38(11), 1241, doi:10.1029/2001WR000978.

Shamir, E., B. Imam, H. V. Gupta, and S. Sorooshian (2005), Application of temporal streamflow descriptors in hydrologic model parameter

estimation, Water Resour. Res., 41, W06021, doi:10.1029/2004WR003409.

Singh, R., T. Wagener, K. V. Werkhoven, K. V. Mann, and R. Crane (2011), A trading-space-for-time approach to probabilistic continuous

streamflow predictions in a changing climate–accounting for changing watershed behavior, Hydrol. Earth Syst. Sci., 15(11), 3591–3603.

Storn, R., and K. Price (1997), Differential evolution––A simple and efficient heuristic for global optimization over continuous spaces, J.

Global Optim., 11(4), 341–359.

Thirel, G., et al. (2015a), Hydrology under change: An evaluation protocol to investigate how hydrological models deal with changing

catchments, Hydrol. Sci. J., 60(7-8), 1184–1199.

Thirel, G.; V. Andr�eassian and C. Perrin (2015b), On the need to test hydrological models under changing conditions, Hydrol. Sci. J., 60(7-8)

1165–1173

Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, and S. Srikanthan (2009), Critical evaluation of parameter consistency and predic-

tive uncertainty in hydrological modeling: A case study using Bayesian total error analysis, Water Resour. Res., 45, W00B14, doi:10.1029/

2008WR006825.

Tozer, C. R., A. S. Kiem, and D. C. Verdon-Kidd (2012), On the uncertainties associated with using gridded rainfall data as a proxy for

observed, Hydrol. Earth Syst. Sci., 16(5), 1481–1499.

Turner, M. (2012), Hydrologic reference stations selection guidelines, version 1, report, Bureau of Meteorology, Melbourne, Australia.

Vaze, J., D. A. Post, F. H. S. Chiew, J. M. Perraud, N. R. Viney, and J. Teng (2010), Climate non-stationarity–validity of calibrated rainfall–runoff

models for use in climate change studies, J. Hydrol., 394(3), 447–457.

Vogel, R. M., and A. Sankarasubramanian (2003), Validation of a watershed model without calibration, Water Resour. Res., 39(10), 1292, doi:

10.1029/2002WR001940.

Vrugt, J. A., and B. A. Robinson (2007), Improved evolutionary optimization from genetically adaptive multimethod search, Proc. Natl. Acad.

Sci. U. S. A., 104(3), 708–711.

Vrugt, J. A., and M. Sadegh (2013), Toward diagnostic model calibration and evaluation: Approximate Bayesian computation, Water Resour.

Res., 49, 4335–4345, doi:10.1002/wrcr.20354.

Water Resources Research 10.1002/2015WR018068

FOWLER ET AL. SIMULATING RUNOFF UNDER A CHANGING CLIMATE 1845

http://dx.doi.org/10.1029/2005WR004636
http://dx.doi.org/10.1002/2013WR014800
http://dx.doi.org/10.1029/2010GL043102
http://dx.doi.org/10.1029/2010WR010333
http://dx.doi.org/10.1029/2009WR008328
http://dx.doi.org/10.1029/2011WR010643
http://dx.doi.org/10.1029/2011WR010643
http://dx.doi.org/10.1002/2014WR015348
http://dx.doi.org/10.1029/2009WR008933
http://dx.doi.org/10.1029/2001WR000978
http://dx.doi.org/10.1029/2004WR003409
http://dx.doi.org/10.1029/2008WR006825
http://dx.doi.org/10.1029/2008WR006825
http://dx.doi.org/10.1029/2002WR001940
http://dx.doi.org/10.1002/wrcr.20354


Vrugt, J. A., H. V. Gupta, L. A. Bastidas, W. Bouten, and S. Sorooshian (2003), Effective and efficient algorithm for multiobjective optimization

of hydrologic models, Water Resour. Res., 39(8), 1214, doi:10.1029/2002WR001746.

Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008), Treatment of input uncertainty in hydrologic modeling:

Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720.

Wagener, T., and A. Montanari (2011), Convergence of approaches toward reducing uncertainty in predictions in ungauged basins, Water

Resour. Res., 47, W06301, doi:10.1029/2010WR009469.

Westerberg, I. K., and McMillan, H. K. (2015), Uncertainty in hydrological signatures, Hydrol. Earth Syst. Sci., 19, 3951–3968

Wilcoxon, F. (1945), Individual comparisons by ranking methods, Biom. Bull., 1(6), 80–83.

Wilks, D. (2011), Statistical Methods in the Atmospheric Sciences, Int. Geophys. Ser., vol. 100, 3rd ed., Academic, Oxford, U. K.

Winsemius, H. C., B. Schaefli, A. Montanari, and H. H. G. Savenije (2009), On the calibration of hydrological models in ungauged basins: A

framework for integrating hard and soft hydrological information, Water Resour. Res., 45, W12422, doi:10.1029/2009WR007706.

W€ohling, T., L. Samaniego, and R. Kumar (2013), Evaluating multiple performance criteria to calibrate the distributed hydrological model of

the upper Neckar catchment, Environ. Earth Sci., 69(2), 453–468.

Yadav, M., T. Wagener, and H. Gupta (2007), Regionalization of constraints on expected watershed response behavior for improved predic-

tions in ungauged basins, Adv. Water Resour., 30(8), 1756–1774.

Yapo, P. O., H. V. Gupta, and S. Sorooshian (1998), Multi-objective global optimization for hydrologic models, J. Hydrol., 204(1), 83–97.

Ye, W., B. C. Bates, N. R. Viney, M. Sivapalan, and A. J. Jakeman (1997), Performance of conceptual rainfall-runoff models in low-yielding

ephemeral catchments, Water Resour. Res., 33(1), 153–166.

Zhang, L., Dawes, W. R., and G. R. Walker (2001), Response of mean annual evapotranspiration to vegetation changes at catchment scale,

Water Resour. Res., 37(3), 701–708.

Water Resources Research 10.1002/2015WR018068

FOWLER ET AL. SIMULATING RUNOFF UNDER A CHANGING CLIMATE 1846

http://dx.doi.org/10.1029/2002WR001746
http://dx.doi.org/10.1029/2007WR006720
http://dx.doi.org/10.1029/2010WR009469
http://dx.doi.org/10.1029/2009WR007706

	l

