
Simulating SMEPP Middleware
Javier Barbarán, Carlos Bonilla, Jose Ángel Dianes, Manuel Díaz, Ana Reyna

Dpt. Lenguajes y Ciencias de la Computación
University of Málaga

Campus de Teatinos, 29017 Málaga. SPAIN
Tel: +34 95 2131394

Email: (barbaran, cba, jdianes, mdr, reyna@lcc.uma.es)

ABSTRACT

Embedded Peer-to-Peer Systems (EP2P) represent a new

challenge in the development of software for distributed systems.

The main objective of the SMEPP (Secure Middleware for

Embedded Peer-to-Peer Systems) project is to develop a new

middleware, based on a new network centric abstract model,

specially designed for the above described systems, and trying to

overcome the main problems of the currently existing domain

specific middleware proposals. This paper presents a SMEPP

Middleware component-based simulation tool. The main objective

of developing this simulator is to provide a tool to enable the

testing of the service model proposed for the middleware and to

provide a framework to test different middleware design choices.

Simulations will help us to make future decisions. Simulating

SMEPP applications, that is, applications running on the SMEPP

middleware and based on the API that it offers, help us to make

decisions about the most requirement-satisfactory way of

constructing the middleware. The simulated middleware API

component represents a first approach to middleware design, and

introduces some of the architectural issues that must to be solved

in the near future.

Categories and Subject Descriptors

EP2P systems, service oriented middleware, component based

simulators, routing protocols.

General Terms

Algorithms, Measurement, Performance, Design, Languages,

Theory.

Keywords

Middleware, EP2P, Simulation

1. INTRODUCTION
Embedded Peer-to-Peer Systems (EP2P) represent a new

challenge in the development of software for distributed systems.

These systems have brought about an important revolution in

distributed computing paradigms, now that the roles of client and

server, which are the basis of the most widely used distributed

computation models, are disappearing. The new scenario consists

of systems in which all the elements of the network are

symmetrical and, in most cases, the mechanisms of

communication are not based on pre-existing infrastructures, but

rather on dynamic ad-hoc networks among peers. At the same

time, the recent technological advances in short distance wireless

communications have opened up new areas of application which

represent an important technological challenge. One of the key

factors in the success of these systems is the possibility of

abstracting all these problems by means of appropriate

middleware. The main objective of the SMEPP (Secure

Middleware for Embedded Peer-to-Peer Systems) project is to

develop a new middleware, based on a new network centric

abstract model, specially designed for the above described

scenario, and trying to overcome the main problems of the

currently existing domain specific middleware proposals. The

SMEPP1 Middleware platform will have to comply with the

following general EP2P objectives: adaptability, scalability, high

availability, and ubiquity, as the model will be based on the

possibility of incorporating and removing resources in a dynamic

and adaptive way, and users can access those resources offered by

the network anytime, anywhere.

One of the key factors in the success of the definition of the

SMEPP abstract model is to provide suitable support tools that

can help in the design and testing of the application from the first

steps of the development process.

As we said before, the development of EP2P applications is a

complex task and simulation and validation activities at the initial

stages of the development process can help to minimize possible

design errors that would be difficult to discover during the

deployment phase. In this sense, the SMEPP simulation tool can

be very useful to test the early designs of applications, in a single

node, with different configurations for the different nodes of the

network and with a high-level description of the network

behavior. In the case of application developers and in order to

simplify the development of the application prototypes, the

behavior of the peers can be described as a multithreaded program

in C# or as a SMoL program [1,3].

2. SMEPP MIDDLEWARE OVERVIEW

2.1 SMEPP Features
From our point of view, the main characteristic of Peer-to-Peer

networks is that the elements of these networks communicate in a

bidirectional and symmetric way with each other. If this type of

connection is not provided directly by the underlying network, a

virtual network will be set up on top on the existing overlay

network. In this sense, the term P2P can also be applied in a more

generic context to name the set of communication models that

provides this type of end-to-end communication, independently of

the application and the network protocols used to construct this

end-to-end communication on top of the overlay network.

SMEPP will support infrastructure and infrastructure less

networks (ad-hoc networks) by re-using state of the art protocols

1 This work is supported by the SMEPP Project (Secure

Middleware for Embedded Peer-to-Peer systems). Information

Society Technologies (IST) Programe. (FP6-IST-033563)

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.SIMUTOOLS 2008, March 03-07, Marseille, FranceCopyright © 2008 ICST 978-963-9799-20-2DOI 10.4108/ICST.SIMUTOOLS2008.3016

and implementations in order to allow the SMEPP peers to

communicate and reach each-other. In terms of physical media,

again SMEPP is agnostic, wired and wireless communications are

relevant for SMEPP applications. It is true that sensor networks

are recently being developed using wireless communication

technologies such as Zigbee or even WiFi, therefore the SMEPP

applications will be most probably using this type of

implementation when relevant. It is especially important to

highlight the differences between Ad-Hoc Networks and P2P file

sharing platforms. In both cases we are dealing with self

organizing networks, where P2P communications exist, but the

objective and the technologies used to build the virtual P2P

communication channels (mainly the routing algorithms) are very

different.

The SMEPP Middleware platform will have to comply with the

following general EP2P objectives: adaptability, scalability, high

availability, and ubiquity, as the model will be based on the

possibility of incorporating and removing resources in a dynamic

and adaptive way, and users can access those resources offered by

the network anytime, anywhere. SMEPP applications will be

covering and spanning over a very heterogeneous terminal,

gateway, sensor and device ecosystem (applications may run on

different devices, from PCs, laptops, mobile phones and PDAs to

sensor network nodes, with quite different network bandwidths,

memory capacities and computing power). The networking and

routing protocols used will have to support the important

dynamicity of the network topology (the elements come into the

system and go out in an independent way, involving frequent

reorganization of the systems). The latter objectives represent

important technological challenges to tackle in the project such as

networking decentralization, network paths with transitory

communications (connections and disconnections happen in an

unpredictable and frequent manner) and a constantly changing

topology.

The SMEPP middleware -and in particular its API- is service-

oriented. Services are first-class citizens in SMEPP, and are

described by contracts. Contracts will be used for matching

(which will be in turn used within discovery) and also for

verification and analysis.

A file containing the description of the service is called “Service

Contract” or briefly “Contract”. A contract must contain all the

information that any client (human or software) of the service may

need to discover, to instantiate, and to interact with the service. A

contract is no other than metadata describing the signature and

behavior of a SMEPP Service.

The service oriented model is defined by an API including the

following services:

- newPeer

- createGroup

- getGroups

- joinGroup

- leaveGroup

- publish

- unPublish

- getPeerID

- getGroupIDs

- getServiceContract

- invoke

- receiveMessage

- receiveEvent

- reply

- smepp_event

- subscribe

- unSubscribe

For a detailed syntax and description of these services see the

SMEPP Service Model Description [3].

2.2 SMEPP workflow and workgroup
Together with the middleware infrastructure, a customizable

component framework will be developed. This framework will

provide the tools necessary to adapt the middleware infrastructure

to different embedded devices and networks.

Two validation applications will be developed: one in the field of

environmental monitoring of industrial plants and in mobile

telephony and the other in context aware computing. These

applications will be used to obtain the main requisites of the

middleware and will help to demonstrate the suitability of the new

middleware for the development of applications for these types

type of environments. The application domains are different

enough to study the flexibility and adaptability of the middleware

and its associated tools.

The SMEPP consortium is composed of a mixture of research

institutions and industries that bring together the complementary

skills and the expertise necessary for the project, with experience

in middleware development, security and different aspects of

software development for embedded systems, including

Telefonica I+D, Tecnatom S.A., Universidad de Málaga,

Technische Universitaet Graz, Siemens Aktiengesellschaft,

Valtion Teknillien Tutkimuskeskus of Oulu in Finland, Universita

de Pisa and the Institute for Infocomm Research at Singapore.

3. SIMULATION TOOL

3.1 Objectives
The main objective is to provide a tool to enable the testing of the

service model proposed for the SMEPP Middleware and to

provide a framework to test different middleware design choices.

Why simulate a middleware?

Simulations help us to make future decisions. Simulate SMEPP

applications, that is, applications running on the SMEPP

middleware and based on the API that it offers, help us to make

decisions about the most requirement-satisfactory way of

constructing the middleware. Specifically, we believe that these

decisions may affect different development areas and for different

reasons.

First of all, the simulator development, that can be seen as a first

approach to the final middleware development with the proper

design and implementation process of the simulated API that

simulated applications have to use, has generated some questions

about the architecture of this API, about its structure in different

functional units and abstraction levels. The particular SMEPP

features, a middleware ideated to support multiple hardware

platforms and operative systems, with different programming

paradigms, has produced a very rich API, but a very complex and

heterogeneous one, which needs some kind of structure in order to

be easily understandable and usable. These and other conclusions,

mainly related with the middleware architecture, will be described

in the following sections.

Related to the different interaction and service models, using the

simulation tool, with its different options of executing programs

and interacting with them by the users, allows them to decide

upon the suitability of these models to specific problems and

applications.

Finally, always when working with P2P distributed systems,

routing protocols have to be taken into account. Discussing about

them is a very important advantage that a simulation tool can

offer, testing the best options and algorithms and defining the

most appropriate interface with the rest of the middleware. The

SMEPP Simulator tool allows users to configure and interchange

different routing algorithms for the same set of simulated

applications, allowing them to reach important conclusions. Also

security issues may be introduced as a part of the simulation tool

and experimented in the execution of programs. For this purpose,

the simulation environment will offer mechanisms for the

definition of specific security policies for SMEPP groups.

3.2 Functionality
SMEPP Simulation Tool accepts as input different SMEPP

programs, a network definition and some SMEPP Peers definition,

in order to execute over the simulated middleware rather than

distributed in real nodes.

The SMEPP Simulation Tool is a ‘black-box simulator’. The

simulated application is an executable, generated from a SMEPP

application program together with different components described

below in section 3.3. Simulation interaction is performed in two

ways:

- Output events, generated by the simulator components, like

SMEPP primitive call events, network events, etc. These events

can be displayed in the simulator GUI.

- Input user events, defined by users and generated by the

simulator component. These mainly include network dynamics

events. Real world conditions also may be defined using

interaction mechanisms like events or variable value assignment.

The main functionalities to be achieved by the simulator are:

Monitoring the simulation (Monitoring the SMEPP middleware),

Control of the simulation (Start simulation., Stop simulation.),

Configuration of the simulation (Definition of nodes and

connections (network topology), Definition of peers, its behavior

and its services, Definition of events, Configuration of the routing

protocol.)

As mentioned, there are different kinds of input files for the

simulator tool, specifically five. These files contain the

information that the simulator needs to configure a specific

application environment (to generate the simulator configuration

file). The simulator tool does not exclusively simulate the

execution of a single SMEPP program but it must be able to

simulate the whole application environment. This means, that the

nodes that take place in the simulation must be defined, this is, all

the devices that are running the SMEPP middleware have to be

configured. Additionally, the peers that are running at each

device, the services provided by each peer, and, finally, the

SMEPP programs associated with each peer and service, must be

configured by the user. To ease the configuration, the simulator

tool is based on these input files, and support tools to create and

modify this input files, are provided.

Figure 1 Functionality

3.2.1 SMEPP Program File
A SMEPP program describes the behavior of a peer or a service;

this is achieved through invocation to the SMEPP API primitives.

The SMEPP Simulator needs a modified version of the version

provided by the SMEPP application developer; because this

SMEPP program must interact with the developed simulation tool,

which simulates the middleware, but the execution in the

simulator is guided by the user. This is the main difference with

respect to the execution of the program in the real world. The

modifications of the original SMEPP files are minor changes, they

do not burden the developer, and nevertheless the modified

version needed can be automatically generated by a parser tool.

3.2.2 Network Definition File
This input file must provide the description of the topology of the

overlay network, over which the SMEPP programs are going to be

simulated. This means that all the devices (network nodes) taking

part in the simulation must be specified, with its properties (such

as bandwidth capabilities, maximum running peers…) and its

connected neighbors. Additionally the routing protocol must be

specified.

3.2.3 Peers Definition File
As important as the definition of the network, is the definition of

the peers. Peers are processes that run over the devices (network

nodes) and their behavior is modeled through a SMEPP program.

A single device can execute more than one peer (process), but a

peer runs only in a single node at each time, but not necessarily

the same node during the whole simulation in order to model

mobility.

This file must provide the relationship between the nodes defined,

and the SMEPP programs provided. Associating a peer with a

specific network node means that the peer will be initially running

in that node. In addition, for each peer, the services that it

provides must also be specified with the reference to the SMEPP

program which defines the service behavior.

3.2.4 Network Events Files
Users can specify predefined network events such as location

changes or node failures. Events could also be defined using a

probability or be randomly generated by the simulator. This is

useful to test the middleware and the application in special

scenarios.

3.2.5 Routing
Finally the user has to provide the routing protocol component.

Different components can implement different routing behaviors,

creating different simulation scenarios.

3.3 Architecture
Using a component based Architecture makes applications very

flexible because of their component "plug and play" nature. This

is really useful in the case of the simulation tool because it will

enable us to test the same applications under different middleware

implementations, routing protocols or network overlays.

The simulator architecture is divided into four components that

interact: Simulation Framework Component, SMEPP Middleware

Component, Network Overlay Component and Routing

Component. Their relationship is shown in the following figure:

Figure 2 Simulator Component Based Architechture

3.3.1 Simulator Framework Component
This component is responsible for the configuration of the whole

simulation and its monitoring. Interactions between the user and

the simulations are also carried out here, using definitions of the

configuration file and using run-time interactions through the

Graphic User Interface of the simulation tool. This GUI is

composed of different tab panels. Figure 3 shows the appearance

of the simulator graphics.

Tab panels include Configured Peers, Configured Network,

SMEPP API Primitives, Middleware Groups, Middleware Peers,

Middleware Services and Routing. All will be described later.

3.3.2 SMEPP Middleware Component
This is one of the key components; it provides a preliminary

implementation of the SMEPP middleware, providing the same

API that the SMEPP middleware will provide. Changing this

component to new versions of the middleware will be useful to

test and compare different approaches during the development. In

addition, this fist implementation is useful to evaluate the service

model proposed.

Many architectural issues have been approached during the

development of this component. Data structures for storage and

management of SMEPP entities, like peers, groups, services and

events, are included here. Interaction mechanisms between all

these entities are also implemented into this component, including

raising and listening of events, synchronization of service invoke-

response sequences and data integrity when being accessed

concurrently.

Doing so, we have approached a solution to some of the problems

of the real middleware development.

3.3.3 Network Overlay Component
The NetOverlay component abstracts the operating system

network interface underlying the middleware. For this version of

the simulator, we have chosen a simple unidirectional point-to-

point channel-based API. This API includes the following

operations:

NetChannel createChannel(int nodeId);

void destroyChannel(NetChannel channel);

NetChannel connectChannel(int nodeId, int source);

NetChannel getInputChannel(int nodeId);

NetChannel[] getOutputChannels(int nodeId);

void send(int nodeId, NetChannel channel, Object[]

data);

Object[] receive(int nodeId, NetChannel channel);

Network entities include channels and nodes, the first represented

by NetChannel instances, the second by an int id.

Routing is performed each time data is sent or received, and not

when creating or connecting channels. We do this in order to

emulate an ad-hoc network.

3.3.4 Routing Component
The SMEPP Simulator tool has been designed to enable the

implementation of different routing protocols. This is achieved

through the definition of the routing component. This component

interacts with the SMEPP API to enable peers to find services or

others peers connected within the overlay network. This enables

the simulator to test different protocols over different networks

easily.

Distributed Hash Tables (DHT) are the most common approach to

routing P2P networks, and they have had a revolutionary effect in

the decentralization of this kind of networks. We have selected an

implementation of this type of protocol in order to study the

requirements of the routing component interface in the context of

the simulator. Our final objective is to be able to change this

component with the different security routing protocols which will

be defined in the context of the other SMEPP workpackages in

order to test their suitability to SMEPP objectives.

A DHT basically has the functionalities of a hash table and its

purpose is to distribute the storage and search of the hash table

between several distributed nodes. Thanks to the structured

topology, data lookup becomes a routing process with low routing

table size and maximum path length. DHT also offers high data

location guarantees.

In this first implementation, we have implemented an

approximation of Chord [7], a distributed lookup protocol based

on Distributed Hash Tables.

3.4 User interface
The Graphical User Interface of the simulation tool (figure 3) is

composed by two panels, the first one, on the left side, is a simple

control panel, and the other one contains seven tab panels with

different information:

Figure 3 Simulation Tool GUI

- Configured Peers: contains information of each defined

peer, the node where is deployed, the program that is

executing and the services that will provide.

- Configured network: shows as a table and as a graph,

the topology of the network (interconnection of nodes,

independently of the peers that contains).

- SMEPP API Primitives: a log with a trace of the

different SMEPP API primitives that are being used by

the simulated application. Normally, the trace contains

information about the invoker of the primitive and other

arguments.

- Middleware Groups: information about the created

SMEPP groups, including members and services of

these groups.

- Middleware Peers: the difference with respect the firs

tab panel is that that one contains the information

predefined by the user, and this one contains the current

state of the middleware. For example, if a peer fails to

create, still will appears in the ‘Configured Peers’ panel,

but do not appear in the ‘Middleware Peers’ panel.

- Middleware Services: lists all the published services,

including information about the publishers (peers and

groups) and the service contracts.

- Routing: it shows traces of routing each time that a node

sends information to another.

3.5 Some implementation details
The SMEPP Simulation Tool has been developed in C# using

Visual Studio 2005 to run over Windows. Concretely, all testing

has been made over Windows XP. So, applications that are going

to be simulated have to be written in C# too.

The GUI has been made using Component One framework for the

development of visual components. The simulation kernel uses

different events to alert the GUI of the different changes.

4. SAMPLE APPLICATION
A large number of scenarios can be simulated using this tool. Due

to the combination of embedded and peer-to-peer characteristics

for Wireless Sensor Networks (WSNs), this kind of application

seems to be the most interesting one that can be simulated using

the SMEPP Simulator Tool. For this reason in this paper we

propose an application for monitoring environmental conditions in

buildings using WSNs. This application must perform different

activities, such as: Indoor environmental monitoring (heating,

ventilation and air conditioning). On the other hand it is also

necessary to respond to extreme events such as fire.

Each aforementioned goal involves only a specific part of the

system. In WSNs keeping the processing close to where the data

is sensed has been long recognized as an effective approach to

save energy, achieve more efficient implementations and support

real-time requirements.

In Figure 4 is shown the application schema that is going to be

simulated. A building will have several sensors deployed,

measuring different conditions, such as humidity, temperature and

smoke. But there will also be other devices that are able to react in

response to sensor measurements, such as air conditioners,

sprinklers and fire alarms. Additionally, the application could

send as well some information to external devices (for example,

firefighter PDAs).

Figure 4. Sample application schema

Specifically, we have considered a room in a building that is

equipped, as shown in Figure 5, with an air conditioner, water

sprinklers and a fire control alarm, but is equipped also with a set

of sensors measuring temperature, humidity and smoke

conditions.

Following the operational setting described above we have

designed a SMEPP application, using the C# programming

language, which provides a solution to for the proposed scenario.

Conceptually, the application is composed of the following peers:

Sprinkler, Air Conditioner, Fire Control and sensors measuring

different conditions.

SMEPP abstractions provide an elegant way to solve complex

applications where different peers work together in order to find a

global objective. The following groups have been created for the

sample application: Temperature, Humidity, Smoke, Fire Control

groups. In temperature are involved temperature sensors, but also

air conditioner and water sprinkler peers. In the humidity group an

air conditioner and a humidity sensor are needed. The smoke

group is composed of smoke sensors and sprinklers. Finally, in the

fire control group, a sprinkler and a fire alarm control peer are

involved.

Figure 5 Sample Application

Peers publish their services in their groups, this way other peers

can invoke them. For example, temperature sensors publish a

service that is composed of a high temperature event and a

periodic event that gives a temperature value each 5 seconds. On

the other hand sprinkler peers subscribe to temperature room

services in order to receive temperature values and high

temperature events.

This kind of system due to it distributed characteristic are no

predictable, for this reason the use of SMEPP simulator helps to

the application developer to check that the code is free of

deadlocks, but also free of abnormal behaviors. In the sample

application, two different versions where simulated in order to

check the suitability of the simulator: one with a deadlock and the

other one without deadlocks. The sample application sketched

before is designed to send continuously events from sensors to

actors. The behavior of the simulator in the first case with the

deadlock it is an abnormal stopped in the flow of primitives

without any reason, then the user is announced that a possible

deadlock is reached. In Figure 6 the execution of the application

without deadlock is shown. The execution after the services are

published and the peers are joined to the right groups, is

composed by events received and sent that will not stop until the

user stops the simulation.

Figure 6 Flow primitives on free-deadlock execution

5. CONCLUSIONS
From the application programmer point of view it is clear that the

tool will help to accomplish the objectives discussed in the

introduction. During its development we have found some details

in the definition of the API that can be improved. We think that

the simulator can really help in the design of even simple

application such as the one shown in the previous section.

Middleware developers have therefore taken some advantages

from the simulator development so. The simulated middleware

API component represents a first approach to middleware design,

and introduces some of the architectural issues that must to be

solved in the next future. These issues include concurrency

models, suitable network abstractions, architectural design on its

own, data structures and their management for entities storage

(like peers, groups, services etc), service model lapses, etc.

Taking these objectives into account, we think that starting to

develop our own simulation environment instead of using a

general purpose simulation tool, was the best way to proceed.

The component-based approach of this simulator has many

advantages. The most important is the possibility of representing

different scenarios for the same application program. This will be

done using different interchangeable components, like the routing

component for testing different P2P routing algorithms, the

network overlay component for testing different operating system

network APIs, or even the own SMEPP API Component for

testing different architectural design or concurrency models.

Finally, in the future, when de SMEPP middleware has been

completely developed, the simulator will represent the first step in

real application development. These kinds of massive distributed

applications are very difficult to test and validate in real world

conditions, so a simulator is a very useful tool, saving a lot of time

and effort (and money) to application developers.

6. REFERENCES
[1] Antonio Brogi, Razvan Popescu, Francisco Gutiérrez, Pablo

López, Ernesto Pimentel. A Service-Oriented Model for

Embedded Peer-to-Peer Systems. In proceedings of the 6th

International Workshop on the Foundations of Coordination

Languages and Software Architectures, Lisbon, Portugal,

September 8, 2007.

[2] M.Albano, A.Brogi, R.Popescu, M.Diaz, J.A.Dianes.

Towards Secure Middleware for Embedded Peer-to-Peer

Systems: Objectives & Requirements. Second Workshop on

Requirements and Solutions for Pervasive Software

Infrastructures, Innsbruck, Austria, September 16, 2007.

[3] SMEPP Consortium D.2.1 SMEPP Service Model

Description.

[4] SMEPP Consortium D.2.2 Tool Support for the service

Model

[5] Sameh El-Ansary. Designs and Analyses in Structured Peer-

to-Peer Systems. June 2005

[6] Rüdiger Schollmeier, Ingo Gruber and Michael Finkenzeller.

Routing in Mobile Ad Hoc and Peer-to-Peer Networks. A

Comparision.

[7] Implementation of Chord.

http://www.seas.upenn.edu/~cis505/spring2004/project2/chor

d505-0.3.tar.gz

