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The use of graphics processing units (GPUs) in scienti¯c computing has gathered considerable

momentum in the past ¯ve years. While GPUs in general promise high performance and
excellent performance per Watt ratios, not every class of problems is equally well suitable for

exploiting the massively parallel architecture they provide. Lattice spin models appear to be

prototypic examples of problems suitable for this architecture, at least as long as local update
algorithms are employed. In this review, I summarize our recent experience with the simulation

of a wide range of spin models on GPU employing an equally wide range of update algorithms,

ranging from Metropolis and heat bath updates, over cluster algorithms to generalized ensemble

simulations.

Keywords: Spin models; Monte Carlo simulations; GPU computing; cluster algorithms; gener-

alized-ensemble simulations.
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1. Introduction

The use of Monte Carlo simulations in statistical physics has been an impressive

success story.1 While, in the early days, computer simulations of simple systems such

as spin models could hardly compete with the elaborate perturbative techniques such

as the � expansion and high-temperature series,2 the vast increase in available

computer power together with a series of ingenious improvements of simulation

technology has turned the simulational techniques into the method of choice, and

often even the only feasible approach, for a wide range of problems ranging from

critical phenomena, over studies of surfaces and restricted geometries, to nucleation

and a wealth of nonequilibrium processes.

This success notwithstanding, there is still a range of problems whose insatiable

appetite for more computer power generates a strong demand for the design and
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construction of ever more e±cient computers. Such problems include systems with

quenched disorder3�5 whose rugged free-energy landscapes lead to slow dynamics

with exploding autocorrelation times and, on top of that, require averages over large

numbers of disorder con¯gurations to cope with the lack of self-averaging of im-

portant quantities. Similarly, biopolymers as well as structural glasses su®er from a

many-valleyed energy landscape. For the simulation of such systems, in particular,

special purpose computers are being built6 and new computational architectures are

being tried.

A rather successful advance in this direction in recent years has been the use of

graphics processing units (GPUs) for general-purpose scienti¯c computing.7,8 Having

been designed for real-time rendering of realistic 3D graphics scenes in computer

games, they are characterized by a massively parallel architecture consisting of many

relatively simple compute units. As they lack the sophisticated control logic and

excessive on-die caches commonly found in todays CPUs, most of the die space is

devoted to arithmetic logic units (ALUs) used for doing actual computations. If an

application manages to constantly feed the ALUs with data, therefore, a GPU can

deliver a total °oating point performance vastly exceeding that of a current CPU.

This observation is the basis of using GPUs for general purpose computations.

Programming GPUs for such purposes has become feasible with the advent of

appropriate language extensions such as NVIDIA CUDA and OpenCL. Good per-

formance, however, can only be expected if the special control °ow and organization

of GPU devices is taken into account on developing the code.

In the following, I discuss how e±cient GPU implementations can be achieved for

simulations of spin models, and how these codes perform compared to implementa-

tions on current CPUs. In Sec. 2, I give some background on the architecture of the

NVIDIA GPUs used in the present work. Section 3 is devoted to the discussion of

simulations using local updates such as Metropolis and heatbath applied to discrete

and continuous ferromagnetic spin models as well as the Ising spin glass. In Sec. 4,

I discuss GPU implementations of cluster algorithms for spin-model simulations,

while Sec. 5 is devoted to multicanonical (MUCA) and Wang�Landau (WL)

simulations. Finally, Sec. 6 contains my conclusions.

2. The NVIDIA Architecture

General-purpose computing on GPUs relies on high-performance GPU devices as

currently provided by NVIDIA or ATI. Di®erent programming environments are

available, the most prominent ones being NVIDIA CUDA and, more recently,

OpenCL. As the implementations discussed here reach back to times before the

advent of OpenCL, all codes make use of NVIDIA CUDA and, consequently, are

restricted to run on NVIDIA GPUs. While the terminology of describing GPUs is,

therefore, speci¯c to NVIDIA, the general GPU layout is quite generic and, with

some modi¯cations, also applies to ATI boards. Figure 1 shows a schematic repre-

sentation of the general architecture of a current GPU. The chip contains a number
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of multiprocessors each composed of a number of parallel processing units. The

systems based on the GT200 architecture used in this study feature 30 multi-

processors of eight processors each, while the boards of the more recent Fermi gen-

eration currently feature 14�16 multiprocessors at 32 cores. The systems come with

a hierarchy of memory layers with di®erent characteristics:

. Registers: each multiprocessor is equipped with several thousand registers with

local, zero-latency access;

. Shared memory: processors of a multiprocessor have access to a small amount

(16KB for Tesla, 48KB for Fermi) of on chip, small latency shared memory;

. L1 and L2 caches: 16/48 kB L1 cache and 768 kB L2 cache;

. Global memory: large amount (currently up to 6GB) of memory on separate

DRAM chips with access from every thread on each multiprocessor with a latency

of several hundred clock cycles;

. Constant and texture memory: read-only memories of the same speed as global

memory, but cached;

. Host memory: cannot be accessed from inside GPU functions, relatively slow

transfers.

Since the processing units of each multiprocessor are designed to perform identical

calculations on di®erent parts of a dataset, °ow control for this single instruction

multiple data (SIMD) type of parallel computations is rather simple. It is clear that

this type of architecture is near ideal for the type of calculations typical for computer

Fig. 1. (Color online) Schematic representation of the architecture of current GPUs.
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graphics, namely rendering a large number of triangles in a 3D scene or the large

number of pixels in a 2D projection in parallel.

The organization of processing units and memory outlined in Fig. 1 translates into

a combination of two types of parallelism: the processing units inside of each mul-

tiprocessor work synchronously on the same data set (vectorization), whereas dif-

ferent multiprocessors work truly independent of each other (parallelization). The

corresponding programming model implemented in the CUDA framework9 is out-

lined schematically in Fig. 2: computations on GPU are encapsulated in functions

(called \kernels") which are compiled to the GPU instruction set and downloaded to

the device. They are executed in a two-level hierarchic set of parallel instances

(\execution con¯guration") called a \grid" of thread \blocks." Each block can be

thought of as being executed on a single multiprocessor unit. Its threads (up to 512

for the GT200 architecture and 1024 for Fermi cards) access the same segment of

shared memory concurrently. Ideally, each thread should execute exactly the same

instructions, that is, branching points in the code should be reduced to a minimum.

The blocks of a grid (up to 65 536� 65 536) are scheduled independently of each

other and can only communicate via global memory accesses. The threads within a

block can make use of cheap synchronization barriers and communicate via the use of

shared (or global) memory, avoiding race conditions via atomic operations imple-

mented directly in hardware. On the contrary, the independent blocks of a grid

Fig. 2. (Color online) Parallel execution of a GPU program (\kernel") in a grid of thread blocks. Threads

within a block work synchronously on the same dataset. Di®erent blocks are scheduled for execution

independent of each other.
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cannot e®ectively communicate within a single kernel call. If synchronization be-

tween blocks is required, consecutive calls of the same kernel are required, since

termination of a kernel call enforces all block computations and pending memory

writes to complete.

The massively parallel architecture with its hierarchy of memories found on GPUs

leads to a speci¯c set of design goals for an algorithm to perform e±ciently. In

particular, programmers should strive to reach10

(1) a large degree of locality of the calculations, reducing the need for communica-

tion between threads,

(2) a large coherence of calculations with a minimum occurrence of divergence of the

execution paths of di®erent threads,

(3) a total number of threads signi¯cantly exceeding the number of available pro-

cessing units,

(4) and a large overhead of arithmetic operations and shared memory accesses over

global memory accesses.

The large number of individual threads is of particular importance as this allows the

GPU scheduler to hide latencies: if a thread block issues an access, e.g. to global

memory, the GPU's scheduler will suspend it for the number of cycles it takes to

complete the memory accesses and, instead, execute another block of threads which

has already ¯nished reading or writing its data.

3. Simulations with Local Updates

As a rather general class of spin models, I considered the classical O(n) symmetric

Hamiltonian

H ¼ �
X

hiji
Jijsi � sj; ð1Þ

where n ¼ 1 corresponds to the discrete Ising model and n ¼ 2 and n ¼ 3 describe

the continuous XY and Heisenberg models, respectively. The spins are located on

square (d ¼ 2) or simple cubic (d ¼ 3) lattices and interact with nearest neighbors

only. We ¯rst considered simulations using only single spin-°ip moves accepted

according to the Metropolis criterion,11

paccðsi 7! s 0
iÞ ¼ min½1; e���E�: ð2Þ

In order to achieve an e±cient implementation on GPU, one needs to allow for the

parallel update of a large number of spins. This is most straightforwardly accom-

plished for the case of nearest-neighbor interactions by making use of a checkerboard

decomposition of the lattice.12 To make e±cient use of shared memory that can be

accessed concurrently with very low latencies from all threads on a multiprocessor,

I use a two-level hierarchical decomposition, cf. Fig. 3 (see also Refs. 10 and 13). All

spins of one of the big tiles plus some boundary layer are collaboratively loaded into
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shared memory and subsequently updated by the individual threads of a thread

block.8 Inside of each tile, the checkerboard arrangement allows for all spins of one

sub-lattice to be updated concurrently before a synchronization barrier occurs and

the second sub-lattice is treated analogously. To amortize the e®ort of loading tiles

into shared memory, a number k of updates of all spins of all big tiles of one color is

performed before updating the second sub-lattice. Depending on the size of the tiles,

this slows down the decorrelation of spin con¯gurations. This e®ect, however, is more

than counter-balanced by the performance increase, even close to criticality.13 For

good performance, a number of additional tricks are employed, including a pre-

tabulation of the Boltzmann factors in Eq. (2) while storing this table as a texture,8

and generation of random numbers even if they are not required to reduce thread

divergence. The simulation code can be downloaded at the authors' web site.14 For

the comparisons discussed here, an array of simple 32-bit linear congruential pseudo-

random number generators (one per thread) is used. Although these are known to

have rather poor properties, for the purpose at hand they appear to be su±cient even

Fig. 3. (Color online) Double checkerboard decomposition of a square lattice of edge length L ¼ 32 for

performing a single spin-°ip Metropolis simulation of spin models on GPU.
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for high-precision results. The implementation of more generally appropriate gen-

erators is discussed in Ref. 10.

For the benchmarks, I compared the performance of the outlined GPU imple-

mentation on a Tesla C1060 as well as a more recent GTX 480 of the Fermi archi-

tecture series with the results of an optimized, single-threaded CPU code running on

an Intel Core 2 Quad Q9650 at 3.0GHz. For the Ising ferromagnet, n ¼ 1 and Jij ¼ 1

in Eq. (1), a tile size of 16� 16 spins is found to be optimal for su±ciently large

systems.13 The maximum performance reached on the GTX 480 is around 0.03 ns per

spin °ip (using k ¼ 100), which is 235 times faster than the CPU implementation, cf.

the data collected in Table 1 and in Fig. 4. The Tesla C1060, on the other hand,

roughly performs at half of this speed. This speedup, however, is only reached for

su±ciently large system sizes that allow to fully load the 240 and 480 cores of the

C1060 and the GTX 480, respectively. Very similar relative performance is observed

for the Ising model in three dimensions. For models with continuous spins, exem-

pli¯ed by the 2D Heisenberg model with n ¼ 3 and Jij ¼ 1 in Eq. (1), issues of

°oating-point performance and precision become important. It is found that a mixed-

precision calculation, where the spins are represented in single precision and only

aggregate quantities such as the total energy are calculated in double precision (see

\Metropolis single" in Table 1) yield high performance without problems with pre-

cision. If the hardware optimized implementations of the special functions (trigo-

nometric, exponential, logarithmic etc.) provided in the CUDA framework are

employed, total speedups beyond 1000 can be achieved as compared to CPU codes

(see \Metropolis fast math" in Table 1).

Simulations of systems with quenched disorder allow for trivial parallelization

over disorder realizations on top of the domain decomposition outlined above. For

the Edwards-Anderson Ising spin glass with couplings Jij 2 f�J ; Jg drawn from a

Table 1. Spin-°ip times for simulations of various lattice spin models with di®erent algorithms on an

Intel Q9650, a Tesla C1060 and a GTX 480, respectively. Apart from the cluster, MUCA and WL
simulations, multi-hit updates with k ¼ 100 have been employed.

CPU C1060 GTX 480
System Algorithm L ns/°ip ns/°ip ns/°ip Speedup

2D Ising Metropolis 32 8.3 2.58 1.60 3/5

2D Ising Metropolis 16 384 8.0 0.077 0.034 103/235

3D Ising Metropolis 512 14.0 0.13 0.067 107/209
2D Heisenberg Metro. double 4096 183.7 4.66 1.94 39/95

2D Heisenberg Metro. single 4096 183.2 0.74 0.50 248/366

2D Heisenberg Metro. fast math 4096 183.2 0.30 0.18 611/1018

2D spin glass Metropolis 32 14.6 0.15 0.070 97/209

2D spin glass Metro. multi-spin 32 0.18 0.0075 0.0023 24/78

2D Ising Swendsen�Wang 10 240 77.4 ��� 2.97 �/26

2D Ising MUCA 64 42.1 ��� 0.33 �/128

2D Ising WL 64 43.6 ��� 0.94 �/46
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bimodal distribution, we again ¯nd speedups of around 100 and 200 for the Tesla

C1060 and the GTX 480, respectively. Further improvements can be achieved on

using 64-bit multi-spin coding which allows for spin-°ip times down to 2 pico-seconds

on the GTX 480, cf. Table 1. Additional algorithmic components commonly used for

the simulation of disordered systems, in particular the parallel tempering method,

are also easily and e±ciently implemented on GPU. For details see Ref. 10.

4. Cluster-Update Simulations

While single spin-°ip simulations on a ¯xed lattice appear to be near optimal pro-

blems for the parallel compute model of GPUs, highly nonlocal updates such as the

cluster algorithms used to beat critical slowing down in ferromagnetic models close to

a continuous phase transition are signi¯cantly harder to e±ciently implement in

parallel. To test this, I considered di®erent implementations of the Swendsen�Wang

cluster algorithm15 for the Ising model. An update consists of the following steps:

(1) Activate bonds between like spins with probability p ¼ 1� e�2�J .

(2) Construct (Swendsen–Wang) spin clusters from domains connected by active

bonds.

(3) Flip-independent clusters with probability 1=2.

While Steps 1 and 3 are completely local and hence can be easily performed in a

highly parallel fashion using a single thread for updating a few bonds or sites, the

Fig. 4. (Color online) Time per spin-°ip in the 2D Ising model on CPU and on GPU with di®erent choices

of k. GPU data are for the Tesla C1060 device apart from the lowest curve which is for a GTX 480 card.
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cluster identi¯cation step is intrinsically nonlocal, in particular close to the critical

point where the Swendsen�Wang clusters undergo a percolation transition. A

number of di®erent possibilities for performing the cluster identi¯cation on tiles and

consolidating cluster labels consecutively have been analyzed in detail in Ref. 16. It is

found that a procedure dubbed self-labeling, which is rather ine±cient in terms of

serial computation times but very easily parallelized, is optimal for labeling inside of

tiles, cf. the left panel of Fig. 5. In a second step, cluster labels need to be consolidated

between tiles. For large overall system sizes and simulations of spin models close to

criticality, a hierarchical sewing scheme working on a forest of union-and-¯nd trees

has been developed for this purpose.16 An illustration of this approach is depicted in

the right panel of Fig. 5. The overall parallel performance of this combination of

algorithmic components is signi¯cantly lower than that found for the local-update

algorithms. Nevertheless, speedups close to 30 can be observed as compared to

optimized serial code running on a single high-end CPU core, cf. the data collected in

Table 1. More details can be found in Ref. 16.

5. Generalized Ensembles

Another class of algorithms which is local in terms of the update rule but, as it

turns out, requires constant information about the status of a global quantity, are

generalized-ensemble simulations such as MUCA17 or WL18 methods. Considering

(a) (b)

Fig. 5. (Color online) (a) Cluster identi¯cation on a 64� 64 tile using the self-labeling algorithm with one
thread per 2� 2 spins. In every pass, each site examines its northward and eastward neighbors and, if they

are connected by an active bonds, for each pair sets both labels to the minimum of the two current labels.

(b) Hierarchical sewing of 64 tiles for label consolidation. On level 1, 2� 2 tiles are sewn together to form

16 larger tiles. In levels 2 and 3, the tile numbers are reduced to 4 and 1, respectively.
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the internal energy E as reaction coordinate, the canonical distribution p�ðEÞ ¼
Z�1

� �ðEÞexpð��EÞ is generalized to read p�ðEÞ ¼ Z�1
� �ðEÞ=WðEÞ. A °at histo-

gram is reached if the weights WðEÞ equal the density of states �ðEÞ or, equiva-

lently, !ðEÞ � lnWðEÞ ¼ SðEÞ, where SðEÞ is the microcanonical entropy. While

MUCA uses a series of ¯xed-ensemble, equilibrium simulations to estimate WðEÞ ¼
SðEÞ, an analogous estimate is calculated online in a nonequilibrium simulation in

the WL approach. These algorithms are di±cult to parallelize since they require

knowledge of the current value of a global reaction coordinate (such as energy or

magnetization) prior to each update. This e®ectively serializes all updates performed

on a single instance of the system. To still bene¯t from the parallel GPU architecture,

one can use \windowing," i.e. the idea of applying algorithms separately in small,

¯xed energy windows18 and gluing together the resulting estimates to reconstruct

the overall SðEÞ. Another option is trivial parallelization to improve statistics and

estimate statistical errors.19

For the 2D Ising model, it is found that \windowing" does not cause systematic

deviations from the exact result for SðEÞ20 as long as enough statistics is collected in

each window. For the WL algorithm this means imposing a strict criterion as to when

the energy histogram is considered °at; for the MUCA algorithm a su±cient number

of tunneling events should be demanded. This allows, for instance, to construct SðEÞ
for a 64� 64 system from windows as small as �E ¼ 16. The speedups of the GPU

implementations using a su±ciently large number of windows and independent runs

to fully load the GPU are summarized in Table 1. For MUCA, we arrive at a speedup

of 128, similar to the results found for the local algorithms, whereas the WL ap-

proach, in its current implementation, allows a 46 times performance increase only.

This di®erence results from the dynamical nature of the WL algorithm, where run

times are random variables, which leads to thread divergence and idle cores on the

GPU. A more sophisticated implementation using some load balancing scheme is,

however, easily possible and is expected to results in an overall performance of the

WL approach comparable to that of the MUCA simulations.

6. Conclusions

In this paper, I summarized results regarding the performance potential for the

simulation of spin models on GPUs. Discussing a wide range of algorithms, ranging

from single spin-°ip Metropolis updates, over cluster algorithms to generalized-

ensemble simulations, two main questions have been addressed: (a) Are spin models

with short-range interactions suitable for simulations in the massively parallel

environment provided by current GPUs? and (b) Are such GPUs versatile enough

for the e±cient implementation of the broad range of di®erent algorithms used for

the simulation of spin models in di®erent situations? As the rather substantial

speedups summarized in Table 1 illustrate, the considered class of models is almost

ideally suited for exploiting the inherent parallelism of GPUs. While local updates

can be parallelized rather straightforwardly, the nonlocal operations encountered in
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cluster-update or generalized-ensemble simulations are considerably harder to adapt

to a massively parallel environment. Although the gains compared to serial CPU

code are somewhat smaller for these codes, they remain signi¯cant��� also in terms of

performance per Dollar and performance per Watt ��� even for the most di±cult case

of the connected component identi¯cation. While the implementations discussed

here are based on the NVIDIA CUDA framework, very similar conclusions hold for

the more general OpenCL API, or for calculations performed on ATI GPUs. It thus

appears that general purpose GPU computing, although less versatile than tradi-

tional CPU computing, is su±ciently general to warrant the construction and use of

dedicated GPU clusters for the purposes considered here.
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