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ABSTRACT

Summary: SysGenSIM is a software package to simulate Systems
Genetics (SG) experiments in model organisms, for the purpose of
evaluating and comparing statistical and computational methods
and their implementations for analyses of SG data [e.g. methods
for expression quantitative trait loci (eQTL) mapping and network
inference]. SysGenSIM allows the user to select a variety of network
topologies, genetic and kinetic parameters to simulate SG data
( genotyping, gene expression and phenotyping) with large gene
networks with thousands of nodes. The software is encoded in
MATLAB, and a user-friendly graphical user interface is provided.
Availability: The open-source software code and user manual can
be downloaded at: http://sysgensim.sourceforge.net/
Contact: alf@crs4.it
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1 INTRODUCTION
The central goal of systems biology is to gain a predictive, system-
level understanding of biological networks. This entails inferring
causal networks from observations on a perturbed biological system.
An ideal experimental design for causal inference is randomized,
multifactorial perturbation (Fisher, 1926). The recognition that
the genetic variation in a segregating population represents
randomized, multifactorial perturbation (Jansen, 2003; Jansen and
Nap, 2001) gave rise to ‘Genetical Genomics’ and ‘Systems
Genetics’ (SG), where a segregating or genetically randomized
population is genotyped at (many) DNA variants, and is profiled
for (disease) phenotypes of interest, genome-wide gene expression
and potentially other omics variables (epigenomics, microRNA
expression, proteomics, metabolomics, etc.). SG experiments and
studies enable us to elucidate the genetic control of gene expression
(and other omics variables) (Brem et al., 2002; Keurentjes et al.,
2006; Schadt et al., 2003), to annotate DNA polymorphisms
implicated in previous genome-wide association studies (GWAS)
for particular diseases and to infer key control genes and pathways
causally underlying a disease or biomedical trait of interest
(Rockman, 2008; Schadt, 2009).

Many statistical and computational methods are being developed
for the analysis of SG data. An important component of any
SG analysis is the quantitative trait locus (QTL) mapping of all
expression traits (etraits) and other omics traits if available. It is well
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known that the etraits of groups of genes share common regulators
(DNA variants), which are more easily identified when associated
with a group of etraits rather than with individual etraits. Several
approaches to associating DNA variants with groups of etraits have
recently been proposed (e.g. Chun and Keles, 2009; Lee et al., 2009,
2006; Parkhomenko et al., 2007; Waaijenborg et al., 2008; Zhang
et al., 2010).

A major goal of SG studies is to reconstruct a causal network
whose nodes are the phenotypes, the etraits (and potentially other
omics variables) and the DNA variants. Methods proposed to
achieve this goal include Bayesian networks [BN; (Zhu et al.,
2004)], differential equation models (Bansal et al., 2007; de la
Fuente et al., 2002), structural equation modeling [SEM; (Li et al.,
2006, 2008)] and undirected dependency graph or co-expression
network with edge orientation using DNA variants as causal anchors
(Aten et al., 2008; Chaibub Neto et al., 2008).

While multiple methods for QTL mapping of etraits (omics
variables) and for causal network inference are available, at the
present time not much is known about the strengths and weaknesses
of all of these proposed methods and whether or when some methods
perform better than others. However, researchers increasingly realize
that thorough verification of algorithms in bioinformatics and
(genetical) systems biology is required. In fact, several international
competitions are organized on an annual basis to compare
computational methods for systems biology and genetic analysis.
These include the Dialogue for Reverse Engineering Assessments
and Methods (DREAM) project with its Reverse-Engineering
Challenges (Stolovitzky et al., 2007, 2009; http://www.the-dream-
project.org/), for which SysGenSIM has been used to produce
the SG challenges in 2010, and the Genetic Analysis Workshops
(Cupples et al., 2009; http://www.gaworkshop.org), which compare
analysis tools relevant for current analytical problems in genetic
epidemiology, statistical genetics and genetical systems biology.
The availability of realistically simulated (artificial) datasets, which
are generated under a set of assumptions most relevant to real SG
data, is of utmost importance for the verification of algorithms for
SG data analysis. Several SG papers use simulations which are
typically simplistic and not general (e.g. Liu et al., 2008; Zhang
et al., 2010; Zhu et al., 2004). Other more general software packages
have been developed for simulating gene expression data with
network models for gene network inference algorithm evaluation
[e.g. ABIOCHEM (Mendes et al., 2003), GeneNetWeaver (Marbach
et al., 2009; Schaffter et al., 2011) and Ingeneue (Meir et al.,
2002)], but experimental designs are restricted to time-series and
steady-state measurement after environmental or kinetic parameter
perturbations, and single-gene perturbation experiments. These and
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other existing packages do not permit the simulation of SG data,
in particular the integration of DNA variation, transcriptomics,
epigenomics, etc. This is the reason why we have developed and
continue to develop SysGenSIM to simulate SG data.

2 GENE EXPRESSION DYNAMICS
Steady-state gene expression traits are simulated for a population of
individuals, based on a gene network topology and the individuals’
genotypes at a set of genome-wide DNA variants, using non-
linear ordinary differential equations (ODEs). The rate law used
in SysGenSIM for transcription is not based on any explicit
biochemical mechanism, but it displays two main features of
biochemical kinetics: saturation and cooperativity (Mendes et al.,
2003). We assume that mRNA decay is a first-order process. The
ODE for gene g is:

dGg

dt
=vtranscriptionGg

−vdegradationGg
=

Zc
g ·Vg ·θsyn

g ·
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⎛
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⎞
⎠−λg ·θdeg

g ·Gg

(1)

where Gg is the mRNA concentration of gene g, Vg is its basal
transcription rate and λg is the degradation rate constant. The
Gk are the mRNA concentrations of genes which have directed
edges into node Gg. Kkg is a Michaelis constant (representing
the concentrations of input gene k at which its effect on the
transcription rate of gene g is half of its maximum effect), hkg is a
cooperativity coefficient and Akg is an element of matrix A encoding
the signed network structure (Akg =−1 for inhibitor, Akg =1 for

activator, Akg =0 for no effect). The parameters θ
syn
g and θ

deg
g

represent non-genetic internal biological noise in the transcription
and degradation rates, respectively; their values are sampled from
normal distributions with mean 1 and user-specified SDs prior to
the calculation of each steady state. Zc

g and Zt
k are parameters which

incorporate effects of DNA variants (see Section 6 for details). After
generating a network topology (Section 3), the non-linear equations
are formulated according to this topology, encoded in matrix A.
Kinetic parameters Vg, Kkg, hkg and λg are initialized by sampling
values from certain distributions [Uniform, (truncated) Gaussian or
Gamma with default or user-specified parameter values] to generate
a set of base parameter values, i.e. the ‘genetic background’ of the
organism. The gene expression variability among individuals in the
population results from different genotypes (values of the Zc

g and

Zt
k parameters) and additional biological fluctuations (represented

by the noise parameters θ
syn
g and θ

deg
g ).

After setting the values of all parameters Zc
g and Zt

k according
to the genotypes of an individual in the population, a value for

the biological noise terms θ
syn
g and θ

deg
g is sampled, and the

steady-state mRNA concentrations are calculated. This process is
repeated for all individuals in the population. Finally, normally
distributed multiplicative experimental noise is added to each mRNA
concentration at a user-specified level, resulting in a set of expression
values for all genes in the system and all individuals. The values

for parameters θ
syn
g and θ

deg
g , and the experimental noise level can

be chosen such that the distribution of estimated ‘heritabilities’
of the etraits [steady-state variances simulated without biological

(θsyn
g and θ

deg
g ) and experimental noise divided by the steady-state

variances simulated with these noise terms] is close to those found
in real data. For example, in our previous work (Liu et al., 2008),
the simulated expression traits had an average heritability of 56%,
close to what was observed in a yeast SG experiment (Brem and
Kruglyak, 2005).

Due to a highly efficient implementation to solve for steady
states, SysGenSIM is able to efficiently generate data with networks
of 10 000 nodes with the non-linear dynamical model (∼2 min
per steady state using a single core of an AMD Opteron X2380
QuadCore, 2.5 GHz). This approach will be described in detail
elsewhere, but essentially we solve for steady-state values of genes
that are not involved in any cycle very quickly and analytically, while
we only deal with the cyclic components of the network numerically
by using the function ode45 in MATLAB. The decomposition
of the network in acyclic and cyclic components increases the
computational efficiency substantially, because cyclic components
usually make up a relatively small part of biological networks
(Ma’ayan et al., 2008; Ma and Zeng, 2003).

3 NETWORK TOPOLOGY
The precise topological structure of genotype–gene–phenotype
networks is largely unknown. Multiple studies (protein interaction,
metabolomic, transcriptomic, etc.) provide evidence for topologies
that are scale free, hierarchical and modular (e.g. Barabasi and
Oltvai, 2004; Hartwell et al., 1999). Many algorithms to generate
(or ‘grow’) networks in silico have been proposed, each reproducing
particular characteristics observed in biomolecular networks (such
as clustering, degree distributions, motif occurrences, etc.), but
none can generate networks displaying all observed topological
properties simultaneously. SysGenSIM is able to generate data under
the current, standard topology models [Erdös-Renyi random graph
(Erdös and Renyi, 1959) and scale-free network (Barabasi and
Albert, 1999)]. Furthermore, SysGenSIM is capable of generating
random modular networks and, most importantly, modular networks
with exponential in-degree and power law out-degree distributions,
as observed in real gene networks (Guelzim et al., 2002).
SysGenSIM also allows the user to input the network structure as
inferred from an actual dataset in the form of a (signed) edge list.
The signs of edges, representing activation versus inhibition, can be
assigned randomly node wise or edge wise (see the user manual for
more information).

4 GENETIC DATA
In terms of the type of the segregating population of individuals for
which the SG data are generated, SysGenSIM is currently limited
to an inbred line cross commonly employed in real SG experiments
in model organisms (e.g. mouse) and plants: Recombinant Inbred
Lines (RIL) created by selfing or brother–sister matings from two
inbred parental lines. In an RIL population, each DNA variant
has two genotypes. SysGenSIM simulates genotype data at all
functional (gene) and measured (marker) DNA variants according
to a randomly generated genetic map based on user-specified
parameter values (e.g. chromosome number, number of genetic
markers per chromosome with constant or normally distributed
pair-wise distance among DNA variant locations in centi Morgan)
or based on a (real) map provided by the user (see the user
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manual for more information). The user can choose between
Haldane’s or Kosambi’s mapping function to convert map distance to
recombination rate in the generation of genotypes at linked loci. The
user can choose between placing one marker in perfect linkage with
each functional polymorphism (in this case the number of markers
is equal to the number of genes, i.e. the network size) or generating
a (sparser) marker map first and then placing functional variants
randomly throughout the genome (at minimum distance of 100 kb;
see Section 6 below).

5 PHENOTYPE DATA
The user can select one or more continuous macroscopic phenotypes
which will be added as nodes to the gene network. As genes can be
causal or reactive to the phenotype(s) (Schadt et al., 2005), the user
can select the number of genes which directly affect a phenotype
and the number of genes which are directly affected by a phenotype.
Inputs and outputs of the phenotype node are randomly selected from
the gene network. Currently, a phenotype is modeled with Equation
(1) where it non-linearly depends on its input genes and additional
biological variability.

6 GENOTYPE EFFECTS ON EXPRESSION
DYNAMICS

We currently assume that each gene in the network has a single
functional DNA variant. The variant is located either in the gene’s
promoter region affecting its own transcription rate (cis-variant
with, for example, Zc

g =1 for one genotype and Zc
g =0.75 for the

other; reduced Zc
g reflects a less efficient transcription process), or

in the coding region of a regulatory gene altering the strength of its
regulatory effect (trans-variant for which a reduced Zk

t reflects a less
potent inhibitor/activator). Promoter variants modify the kinetics
of recruitment of the transcriptional machinery to the promoter
sequence, which affects the efficiency of transcription, so a change
in Zc

g results in a change of the basal transcription rate of Gg. A trans-
effect occurs through changes in the kinetic properties of the product
of the gene containing the polymorphism in its coding region.
Because we do not explicitly include proteins in our networks, we
model these kinetic changes by their effect on the transcription rates
of the target genes, by altering their Michaelis constant. The protein
products of allelic variants of Gk may have reduced or increased
strength through adjustment of Zt

k . The probabilities of a locus acting
in cis or in trans can be set by the user, as well as the allelic values
of Zc

g and Zt
k .

7 FUTURE DEVELOPMENT
SysGenSIM is a work in progress with many possible future
developments. Of highest priority are improvements to the
simulation of the continuous phenotype nodes (e.g. realistic
heritabilities, numbers and sizes of QTLs, numbers of causal and
reactive modules), the inclusion of discrete (disease) phenotype
data, and extensions of the simulation of genotype and steady-state
data to other types of inbred line crosses and to human cohorts
and case–control designs. To keep pace with recent and future
real SG experiments and studies, we plan to extend the simulation
of genotype data from bi-allelic DNA variants (single nucleotide
polymorphisms) to copy number variation and to incorporate

epigenomics data (e.g. DNA methylation sites) and microRNAs into
the gene networks. Given the general SG simulation methodology
described in this article and the existence of simulators for
genome-wide association studies [HapSample (Wright et al., 2007);
genomeSIMLA (Dudek et al., 2006)], these extensions are actually
quite straightforward. Furthermore, to ensure that the simulated data
display known characteristics of real SG data, such as distributions
of means, variances and heritabilities of etraits and correlations
among etraits, we will continue to estimate the values of such
parameters from real SG data and utilize the results from similar
studies in the literature. Finally, we continue to implement additional
topology models for the generation of gene networks (with emphasis
on hierarchical modularity and scale-free out-degree and exponential
in-degree distributions).
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