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Abstract

In this work, the Cloud Feedback Model Intercomparison (CFMIP) Observation Simula-

tion Package (COSP) is expanded to include scattering and emission effects of clouds

and precipitation at passive microwave frequencies. This represents an advancement

over the official version of COSP (version 1.4.0) in which only clear-sky brightness5

temperatures are simulated. To highlight the potential utility of this new microwave

simulator, COSP results generated using the climate model EC-Earth’s version 3 at-

mosphere as input are compared with Microwave Humidity Sounder (MHS) channel

(190.311GHz) observations. Specifically, simulated seasonal brightness temperatures

(TB) are contrasted with MHS observations for the period December 2005 to Novem-10

ber 2006 to identify possible biases in EC-Earth’s cloud and atmosphere fields.

The EC-Earth’s atmosphere closely reproduces the microwave signature of many

of the major large-scale and regional scale features of the atmosphere and surface.

Moreover, greater than 60 % of the simulated TB are within 3K of the NOAA-18 obser-

vations. However, COSP is unable to simulate sufficiently low TB in areas of frequent15

deep convection. Within the Tropics, the model’s atmosphere can yield an underes-

timation of TB by nearly 30K for cloudy areas in the ITCZ. Possible reasons for this

discrepancy include both incorrect amount of cloud ice water in the model simulations

and incorrect ice particle scattering assumptions used in the COSP microwave forward

model. These multiple sources of error highlight the non-unique nature of the simulated20

satellite measurements, a problem exacerbated by the fact that EC-Earth lacks detailed

micro-physical parameters necessary for accurate forward model calculations. Such is-

sues limit the robustness of our evaluation and suggest a general note of caution when

making COSP-satellite observation evaluations.
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1 Introduction

Clouds are an important factor in the planet’s climate system because they interact with

the incoming shortwave and outgoing longwave radiation. Their precise impact on the

Earth’s radiative budget depends upon both their micro-physical properties (e.g. cloud

particle phase, size and shape) and macro-physical properties (e.g. geographical and5

temporal distributions). Furthermore, clouds and precipitation provide heating to the at-

mosphere through diabatic processes such as latent heat release. These cloud effects,

in turn, interact with dynamics, convection, and water vapour in feedbacks that impact

both weather and climate scale processes (see, for example Twomey, 1991; Wielicki

et al., 1995; Stephens, 2005, and references therein).10

Despite decades of climate modelling, simulated clouds have remained a persistent

source of uncertainty in climate projections, as documented in International Panel on

Climate Change (IPCC) Assessment Reports (2007 and 2013). Improved evaluation

techniques for cloud representation are critical for reducing these model uncertainties

(Randall et al., 2007). Simulated clouds are generally a function of both the large-scale15

and the convection schemes of climate and Numerical Weather Prediction (NWP) mod-

els. These two schemes are often strongly interlinked, which makes it difficult to pin-

point sources of error arising from model parameterizations and assumptions. Similarly,

the constraint of model cloud and precipitation fields with satellite-derived observations

is problematic, due to differences in how quantities are defined and due to large uncer-20

tainties associated with operational products.

The COSP (Cloud Feedback Model Intercomparison Project (CFMIP) Observation

Simulation Package) was developed to help facilitate model-to-observation compar-

isons. By creating a simulated cloud product that is based on a model’s atmosphere

but using a forward model similar to the one used to generate the observational prod-25

uct, COSP allows a meaningful and consistent evaluation approach. Furthermore, the

COSP explicitly accounts for spatial discrepancies associated with the footprints of

satellite observations and model cloud field (Bodas-Salcedo et al., 2009, 2011).
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The application of satellite simulators has proved useful in studies of cloud repre-

sentation in models. For example, Nam and Quaas (2012) and Nam et al. (2012) used

aspects of the simulator package to evaluate low and boundary layer clouds. Klein

et al. (2013) examined several models for improvements in cloud representation with

the aid of the International Satellite Cloud Climatology Project simulator. They found5

improvement in some models with regards to cloud reflectivity, which they concluded

lead to a reduction in compensating errors and improvement in the time-mean radia-

tive balance, but other errors still remained. These earlier studies generally employed

only 1 or 2 simulators of the 5 available in the COSP package. Given that the satellite

sensors considered in COSP have sensitivities to markedly different cloud and pre-10

cipitation properties, it would be of great value to expand these studies and the COSP

package. In fact, IPCC fifth Assessment Report (AR5) Working Group 1 (WG1) 2013, in

Chapters 9–11 (http://www.climatechange2013.org), stresses the need for more tools

to investigate cloud issues.

This study concerns the extension and improvement of COSP through inclusion of15

the effects of clouds and precipitation on emission and scattering in the microwave re-

gion at 190.311GHz. Our choice of this channel is motivated by the veritable dearth

of studies that examine simulated clouds and precipitation scattering at this particu-

lar frequency. This frequency is covered by one of several sounding channels close

to the 183GHz water vapour absorption line as measured by the Microwave Humid-20

ity Sounder (MHS) (Bonsignori, 2007). The smooth and linear response of MHS to

clouds and precipitation makes it suitable for evaluating such aspects of the model’s

atmosphere (for example Geer et al., 2014; Bauer et al., 2010). However, the official

version of COSP (version 1.4.0) simulates only clear-sky brightness temperatures (TB).

Our work, therefore, involves an upgrade of COSP. Note also that this work could be25

extended to other microwave frequencies through selection of appropriate scattering

properties in the microwave simulator forward model.

Microwave measurements of atmospheric humidity in all-sky conditions are regularly

used in order to improve numerical weather prediction (for example, Geer et al., 2010).
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This study, however, represents the first all-sky, modelled, atmospheric microwave

emission comparison with MHS (190.311GHz). The microwave signal is not only sen-

sitive to mid to upper-tropospheric humidity, but also to both water and ice forms of

cloud and precipitation. While ice crystals mainly scatter radiation out of the sensor’s

line of sight (Holl et al., 2010), liquid water acts primarily as an emitter of radiation.5

Scattering is therefore most dominant and important in clouds with intense precipita-

tion and/or large ice particles aloft (Geer and Baordo, 2014). The precise amount of

scattering will depend not only on total ice water path but also on the ice particle shape

and size distributions.

This study compares simulated microwave radiances generated in COSP using EC-10

Earth cloud and precipitation profiles with MHS observations at the global scale. We ex-

plore the use of observed seasonal differences to provide insights into possible sources

of bias in model profiles of cloud and precipitation properties. Section 2 briefly de-

scribes the data sources while Sect. 3 details how the data is processed in this study.

Results are presented in Sect. 4 and the paper concludes with a discussion and con-15

clusion given in Sect. 5.

2 Data

In the following section, the data sources employed in this study are presented and

briefly described.

2.1 EC-Earth20

A general overview of the climate model EC-Earth is presented in Hazeleger et al.

(2012). Only the atmospheric component is run using prescribed boundary condi-

tions from the Era-Interim climatology (Dee et al., 2011). Version 3 of the model

consists of the Cycle 36r4 of the Integrated Forecast System (IFS), which is de-

veloped and maintained at the European Centre for Medium-Range Weather Fore-25
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casting (ECMWF). The model resolution is set to T255 spectral resolution, or about

0.7
◦×0.7

◦
on a reduced Gaussian grid with 91 staggered levels. The time step is 2700 s.

Aerosol information in EC-Earth is accounted for using climatologies but is not passed

to COSP. Further technical details about IFS can be found at the ECWMF website

(https://software.ecmwf.int/wiki/display/IFS/Official+IFS+Documentation).5

EC-Earth provides temperature, winds, cloud ice and water, precipitation, effective

cloud fraction, surface information, for example, to COSP. The model contains four

types of hydrometeors: cloud ice and cloud water and precipitating ice (snow) and

rain. Cloud ice and water are treated prognostically: time derivative variables where,

at each time step, calculation of the new value is based on the value at the previous10

time step in the model. Precipitation, on the other hand, is treated diagnostically, that

is, at each time step the amount is calculated from the updated prognostic variables.

Cloud ice and water are expressed as mass mixing ratios (kgkg
−1

) and precipitation

is expressed as fluxes (kgm
−1

s
−1

). Before passing the hydrometeors to COSP, the

precipitation fluxes are first converted to mixing ratios (by dividing with the atmospheric15

density and assuming a constant fall speed of 1 ms
−1

) and then merged with the large

scale precipitation.

2.2 COSP-RTTOV

COSP employs the radiative transfer model, RTTOV version 11.2 (https://nwpsaf.eu/

deliverables/rtm/rtm_rttov11.html) to simulate passive microwave sensors (Saunders20

et al., 1999). Radiative Transfer for TOVS (RTTOV) computes the top of atmosphere

radiances (brightness temperatures) for passive satellite sensors, including many mi-

crowave sensors. The RTTOV project is part of the Numerical Weather Prediction

Satellite Application Facility, which is funded by the European Organisation for the Ex-

ploitation of Meteorological Satellites. RTTOV is a third party extension of COSP and25

extends the suite of observation simulators beyond the standard five. COSP version

1.4.0 only activates RTTOV’s clear-sky simulations. However, RTTOV also contains

a scattering function for passive microwave emission which uses look-up tables for
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scattering information. Activating this interface requires information regarding clouds

and atmospheric hydrometeors to be passed from the model, thus the COSP interface

is expanded to simulate passive microwave sensors in all-sky conditions.

The information passed from EC-Earth to RTTOV includes the profiles of tempera-

ture, land–sea mask, effective cloud fraction, cloud liquid water and ice, sea ice fraction,5

atmospheric pressure, precipitating water and ice, and specific humidity. Surface emis-

sivity is provided by the fast microwave emissivity model version 5 (FASTEM-5 Bor-

mann et al., 2012) over ocean and TELSEM (Tool to Estimate Land Surface Emissivi-

ties at Microwave frequencies) (Aires et al., 2011) over land. The land surface emissiv-

ity is derived from monthly-mean climatology of emissivities generated from microwave10

observations operating at frequencies below 100 GHz. These values are then interpo-

lated for single channel emissivities at 190.311 GHz. Over water, FASTEM-5 emissivity

calculations are based on surface winds, salinity, and sea surface temperature. The

sea-ice parameters used with FASTEM in this study are the default set given in English

and Hewison (1998, Table 1).15

In order to simulate the microwave scattering and absorption effects of atmospheric

hydrometers, RTTOV employs the delta-Eddington approximation (Bauer et al., 2006)

technique. This technique allows high speed and accurate calculations of monochro-

matic fluxes through the atmosphere (Joseph et al., 1976). Moreover, RTTOV uses

a cloud overlap assumption, which is described in Geer et al. (2009).20

All-sky brightness temperatures are calculated in two steps: first, the clear-sky TB

profiles are calculated followed by another set of calculations that include scattering

effects from atmospheric constituents. The clear-sky and scattering brightness temper-

atures are then linearly combined using Eq. (1) to give a total brightness temperature

T
Total
B :25

T Total
B

= (1−C)TClear
B

+CT
Hydrometeor

B
, (1)
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where C is the effective cloud fraction profile, and T
Clear
B and T

Hydrometeor

B
are brightness

temperatures for clear-sky and in the presence of hydrometeor scatterers respectively.

Henceforth TB is used to mean T
Total
B .

RTTOV uses Mie scattering tables for the bulk micro-physical properties for cloud

water, cloud ice, and precipitating rain. The microwave scattering routine calculates5

the scattering properties by integrating across a size distribution, which in this study is

not provided by the model. As a result RTTOV assumes a gamma size distribution for

both cloud ice and water and a Marshall and Palmer (1948) size distribution for precip-

itation. In both the precipitating and non-precipitating ice and water cases RTTOV also

assumes a constant density. The optical properties for snow particles are calculated10

using a discrete dipole approximation: a method used for calculating the extinction of

microwave radiation by particles whose geometry and composition are non-specific

(Yurkin et al., 2007). Further details and assumptions about the microwave scattering

routine in RTTOV are given in Geer and Baordo (2014).

2.3 Microwave Humidity Sounder15

This study uses data from the Microwave Humidity Sounder (MHS) on-board NOAA-

18, obtained from the NOAA The Comprehensive Large Array-data Stewardship Sys-

tem (CLASS) archive. NOAA-18 is a sun-synchronous satellite with a nominal lo-

cal time ascending node of 13:30. First flown on the NOAA-18 satellite, the MHS

sensor is the first instalment of its type, and succeeds the Advanced Microwave20

Sounding Unit B (AMSU-B) sensor (Saunders et al., 1995). MHS observes the at-

mosphere using 5 channels in the range 89–190 GHz with across-track scanner con-

sisting of 90 views in an angular range of ±49.5
◦
. At nadir the footprint diameter

of MHS is about 17km. Channels 3 to 5 are centred near the strong water vapour

absorption line at 183.311GHz. Channels 3 and 4 are dual sideband channels at25

183.311±1 and ±3GHz, respectively, whereas channel 5 is located at 190.311GHz

(http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/html/c3/sec3-9.htm).
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For a standard tropical atmosphere, the Channel 3 weighting function normally peaks

in the upper troposphere, as it is closest to the centre of the water vapour absorption

line. Channel 5, being furthest from the absorption line, has a weighting function peak-

ing in the mid-troposphere. In drier atmospheres, such as are common in cold climates

or at high elevations, the weighting functions for both channels move down, and Chan-5

nel 5 is likely to receive surface contamination. The combination of channels 3–5 has

been used to retrieve quantitative information about atmospheric water vapour (see, for

example, John et al., 2012; Buehler et al., 2005) or ice cloud and precipitation proper-

ties (Holl et al., 2014).

3 Method10

All data used in this study are post-processed to a 1
◦

rectilinear grid. Satellite derived

data are provided by the National Oceanic and Atmospheric Administration (NOAA)

MHS sensor on-board the NOAA 18 satellite (NOAA-18). Only the atmospheric com-

ponent of the climate model EC-Earth is used in this study. We examine the mean

brightness temperature, TB, for the year December 2005 to November 2006 divided15

into the four seasons defined by 3 month averages: DJF, MAM, JJA, SON.

3.1 Observation processing

To calibrate and read MHS measurements from the NOAA CLASS archive, we used the

ATOVS and AVHRR Pre-processing Package (AAPP), version 7. AAPP reads level 1-b

data files and applies calibration and geolocation information, after which the calibrated20

TB are generated.

We calculated the arithmetic mean for NOAA-18 MHS TB for each 1
◦ ×1

◦
equirect-

angular grid cell and month (i.e. similar to a level-3 product, but generated directly from

level-1 calibrated radiances). Since MHS is a cross-track scanner, the weighting func-

tion rises and radiances become colder as the satellite scan angle increases. Merging25
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together nadir and off-nadir measurements therefore results in average radiances that

are difficult to interpret. To prevent this, but still get sufficient measurements per grid

cell and month, we consider MHS radiances at scan angles of at most ±5
◦

off-nadir.

Secondly, we collected all incidents where the criterion in Eq. (2) is fulfilled. Here, we

applied the same nadir angle criterion as when calculating the gridded mean TB.5

In the Tropics large areas of clouds and intense precipitation are often associated

with deep convective activity. To establish this fact, we identify areas of deep convection

using a method developed by Hong et al. (2005). This method employs a combination

of the differences between channels 3, 4 and 5 to create an inequality test given in

Eq. (2). The inequality is satisfied only in areas of deep convection where the cloud top10

TB represents a local minimum,

∆T35 ≥∆T34 ≥∆T45 > 0, (2)

where ∆Txy is difference in TB between channels x and y .

3.2 COSP-RTTOV data quality filtering

Microwave radiative transfer calculations may be complicated by surface emissivity15

issues associated with certain surface types. For example, sea ice and snow covered

surfaces may have great variability in surface emission under different conditions which

in turn may translate to large uncertainties in the simulated TB. These uncertainties

can be reduced using seasonal averages, although substantial biases may still remain.

Well-known problem areas are filtered out from the simulation according to Geer et al.20

(2014, Table 3), thus enabling a fairer comparison with the NOAA-18 observations. The

filtering criteria that have been adapted for this study are listed in Table 1. The simulated

data were filtered at each time step before being compiled into monthly averages.

11762

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD

8, 11753–11777, 2015

Effects of mid- to

upper-tropospheric

water on microwave

emission

M. S. Johnston et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

4 Results

This work primarily focuses on the effects of cloud and precipitation condensates in

the Tropics on passive microwave emission at 190.311GHz. However, we also briefly

present the results poleward of ±30
◦

where the effects of atmospheric water becomes

harder to disentangle from surface contamination. Figure 1 depicts the seasonal mean5

TB calculated from RTTOV using the EC-Earth atmosphere (left column) and observed

by NOAA-18 (right column) for December 2005 to November 2006. The time period is

divided into four seasons: DJF (a, b), MAM (c, d), JJA (e, f), and SON (g, h).

The NOAA-18 observations show top of the atmosphere 190.311GHz microwave TB

associated with the Earth’s large scale general circulation features. The values range10

from near 280K in the Tropics to 250K over the poles. The ITCZ is clearly seen in-

side the Tropics as characterised by a band of reduced TB with values typically near

260 to 270K. Finer scale features such as snow-covered Greenland and Antarctica and

the Arctic, with its transition from ice to open water, are easily discerned in NOAA-18

seasonal data.15

RTTOV generated TB using EC-Earth atmosphere as input agree well to the first

order with NOAA-18 observations. The overall range of TB are similar, however, the

model tends to be a bit warmer than NOAA-18 as evidenced by the broad areas with

TB around unit 280 K in the Tropics. The model develops a well-defined ITCZ, although

it tends to be narrower in area and warmer than the NOAA-18 observations. Features20

poleward of ±30
◦

are also captured by the model to the first order. For example, the

Arctic shows significant warming in the JJA season, which is consistent with melting

of the sea ice during the Boreal summer months. Finally, areas of high elevation such

as the Andes, northern Rockies, Tibetan Plateau, and Himalayas tend to show similar

results for both EC-Earth and NOAA-18. However, perfect agreement is not expected.25

Large uncertainties in assumed surface emissivity for these high-latitude and high-

elevation areas will result in correspondingly large uncertainties in the simulated TB.
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The NOAA-18 results suggest the presence of broad areas of lower TB (. 268 K)

for all seasons within the ITCZ. These areas of low TB are non-contiguous, patchy

and occur over both land and ocean. Such disparities are not seen over regions of

subsidence, i.e. generally cloud-free areas.

In order to investigate the aforementioned patches of lower TB within the ITCZ in5

an objective manner, we applied Eq. (2) to the NOAA-18 radiances prior to building

the seasonal means. In order to match the instantaneous results from the inequality to

statistical means, we assume no deep convection occurs poleward of 60
◦
, which left

3080 possible cases of deep convection for the month of July 2005. We later choose

a region (−20 to 30
◦

latitude and 60 to 180
◦
E longitude) and a TB of 268K, which10

closely matches the edge of the ITCZ. Of the possible 1001 cases of deep convective

events, 747 or (≈ 75 %) fall within region selected (not shown). The results strongly

suggests that the patchy areas of lower TB are largely collocated with the areas of

deep convection.

Figure 2 quantifies T
EC-EARTH
B − T

NOAA-18
B = ∆TB. We limit the colour range of the fig-15

ure to about twice the standard deviation (∼ 5 K) of ∆TB within the Tropics for better

resolution at small values. Unfiltered and filtered model data are presented in the left

and right panels, respectively. As above, unfiltered ∆TB (∆T
UF
B ) includes areas where

there are large uncertainties in the simulated results due to assumed surface emis-

sivity, e.g. snow or sea ice conditions. The filtered ∆TB (∆T
F
B ) data, by removing low20

confidence values according to Table 1, allows us to better focus on the impact of

clouds and precipitation.

The results show that the spread in ∆T
UF
B can reach ∼ ±10K, and locally up to ∼

±40K (not shown) for all seasons. The ITCZ consistently contains regions of positive

∆TB, suggesting a systematic bias in the model’s atmosphere when calculating TB in25

areas of convective clouds. Despite the clear bias in the ITCZ, the figures show many

regions with a ∆TB within ≈ ±3 K.

Table 2 provides a statistical description of Fig. 2. The table presents the mean and

standard deviation of ∆TB as well as the percentage of grid boxes where |∆TB| ≤ 3 K.
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Filtering has a greater effect for places where ∆TB < 0. This can be seen in the global

standard deviation, which is reduced by half. However, over Europe during the DJF

season the filtering seems to reverse the bias, which is likely a function of snow-covered

surfaces occurring sometime during the DJF season. In cloudy regions, the differences

for both ∆T
UF
B and ∆T

F
B are consistently positive with a mean on the order of ∼ 2K,5

which locally can be as large as ∼ 30K. This bias is consistently observed in the ITCZ.

This could result from too little IWC in EC-Earth in these areas of deep convection or

from the scattering assumptions made about the cloud and hydrometeor micro-physical

properties used in the COSP simulation. This is supported by Geer et al. (2014) who

stated that in RTTOV, scattering is reduced (thereby increasing TB) in the Tropics in10

order to compensate for an over-estimation at higher latitudes. In summary, it seems

that the model’s atmosphere produces lower TB when there are few or no clouds and

too high TB when there are clouds. Despite this fact, the percentage of grid boxes where

∆TB is within 3K is ∼ 59 to 73 % throughout the period.

Figure 3 is a plot of the zonally averaged mean brightness temperature for both15

NOAA-18 and model simulated observations along with the resulting ∆TB. Figure 4

quantifies the probability density function (PDF) of ∆TB both within and outside the

Tropics. Both figures show a consistently positive zonal bias within the Tropics of ≈ 3–

5 K for the simulated model observations, with the largest biases occurring in the cloudy

areas of the ITCZ. Polewards of ±60
◦

the zonal mean of ∆T
UF
B can become quite large20

both positively and negatively. However, for the ∆T
F
B, the zonal mean (solid black) tends

to remain positive and seems to result in a poorer agreement with NOAA-18 for all but

the SON season. Furthermore, the modelled atmosphere mostly displays a positive

bias in the zonal T
UF
B and ∆T

F
B . Further quantification of ∆T

UF
B is given in Fig. 4, which

shows, for all seasons, there is a bias of ≈ 3 K for a majority of the data.25
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5 Discussion and conclusions

In this study, the satellite simulator COSP is upgraded to include clouds and precipita-

tion in its calculations of microwave radiances. This represents an advancement over

the official version of COSP (version 1.4.0) in which only clear-sky brightness tem-

peratures are simulated. The calculations associated with hydrometeor scattering and5

emission are accomplished modifying of the RTTOV forward model interface used for

the clear-sky conditions in the COSP simulator.

Microwave radiances generated from COSP, assuming an EC-Earth atmosphere,

were compared with MHS (190.311GHz) observations for the year 2006 at the global

scale. By focusing on seasonal time scales, we minimise any bias in our analyses10

caused by spatio-temporal errors in the modelled clouds and precipitation fields. Clear-

sky calculations are omitted from the study.

The results (Figs. 1–4) show good agreement between microwave brightness tem-

peratures as simulated using the EC-Earth atmosphere and those observed from

NOAA-18 for some key atmospheric features, e.g. ITCZ and areas of large-scale15

subsidence. However, there are regions with clear large biases whose signs (posi-

tive/negative) are seasonally dependent (for example western North America). These

regions of large biases are known problematic issues when conducting TB calculations

above certain surface types. These regions of the simulated TB were filtered according

to Table 1, and affected mostly the high latitudes of the Northern Hemisphere. For sub-20

sidence areas with generally low cloud frequency, the model atmosphere shows a lower

TB than NOAA-18, possibly indicating too little surface or water vapour emission in the

simulated radiances.

In most cases where clouds are present, the model tends to overestimate the TB.

For deep convective regions within the ITCZ with significant ice cloud and precipitation25

aloft, observed zonal MHS TB are 3K greater than corresponding COSP simulated

values. Locally, this difference can be much higher (∼ 30K). This discrepancy could

occur if EC-Earth has either too little ice aloft or if the assumed cloud and hydrometeor
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properties in the radiative transfer simulations resulting in too little scattering per given

ice water path. Nevertheless, over 60 % of the simulated TB fall within 3K of NOAA-18.

Although the analyses in this work demonstrate seasonal biases between model and

observations, it is difficult to confidently identify the source(s). The models may produce

the incorrect amount of cloud (ice or water) or distribute it poorly in the vertical (Eliasson5

et al., 2011). Likewise, the distribution of water vapour may not well represent real world

conditions. Of course, errors in all these model fields, among others, could conspire to

produce a microwave signature close to MHS observations. It is possible that the use of

other sensors available in COSP, or other microwave frequencies, may provide insight

into these biases, as each of these measurements have different sensitivities to the10

vertical profile of cloud and precipitation properties.

Another possible source of bias in this study involves the forward model assump-

tions used to translate between model physical fields and microwave TB. For example,

as noted above, the RTTOV forward model calculates the snow micro-physical proper-

ties using the discrete dipole approximation, while for other particle types it assumes15

particles are spherical and uses Mie theory to calculate particle scattering properties.

As described in Geer and Baordo (2014) determining realistic assumptions for scatter-

ing particle properties is extremely challenging. This is expected therefore to contribute

to the warm biases seen in the simulations of the convective ice profiles.

Our results are largely consistent with those of Geer and Baordo (2014) whose work20

involved the assimilation of microwave frequencies into the IFS numerical weather pre-

diction model that makes up the atmospheric core of EC-Earth. This work also noted

the possible under-representation of scattering in deep convective areas at high mi-

crowave frequencies. The use of scattering properties based upon the Discrete Dipole

Approximation (DDA) for non-spherical ice particles leads to a reduction in observed25

errors relative to the assumption of Mie theory and ice spheres. The use of a “one size

fits all” cloud micro-physics resulted in a compromise where RTTOV’s choice of DDA

snow habit underestimates scattering in the Tropics in order to reduce an overestima-

tion elsewhere (Geer and Baordo, 2014). Given that our study found that > 60 % of
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the time the simulated TB is within 3K of NOAA-18, perhaps this is currently the best

that can be provided. This margin of agreement is similar to Geer and Baordo (2014,

Fig. 8b) ±4K for first guess departures for DDA for snow at 52.8GHz. A possible im-

provement for future studies could involve a departure from a global micro-physics to

one that is more regional.5

Our results highlight the inherent non-uniqueness of the COSP simulated microwave

observation, meaning that multiple different combinations of cloud and precipitation

properties can yield the same TB. This issue is further complicated by the fact that EC-

Earth does not provide detailed micro-physical information (few, if any, models do) on

critical properties such as ice particle habit or size distribution needed in the radiative10

transfer calculations. Such limitations suggest caution when comparing COSP simu-

lator results with real-world observations in attempt to evaluate model physical fields,

e.g. vertical profiles of cloud, precipitation, and water vapour.

Acknowledgements. The research presented in this paper is a contribution to the strategic
research area Modelling the Regional and Global Earth System, MERGE. The RTTOV software15

is developed with funding from EUMETSAT via the Satellite Applications Facility for Numerical
Weather Prediction (NWP SAF). Our work have achieved its high level of quality thanks in large
part to the help provided by Alan Geer from the European Centre for Medium-Range Weather
Forecasts, Reading, England; Mathias Milz at Luleå University of Technology; Klaus Wyser and
Martin Evaldsson from the Swedish Meteorological and Hydrological Institute in Norrköping,20

Sweden; and Hamish Struthers from the National Supercomputer Centre in Linköping, Sweden.

References

Aires, F., Prigent, C., Bernardo, F., Jiménez, C., Saunders, R., and Brunel, P.: A Tool to Estimate
Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather
prediction, Q. J. R. Meteorol. Soc., 137, 690–699, doi:10.1002/qj.803, 2011. 1175925

Bauer, P., Moreau, E., Chevallier, F., and O’Keeffe, U.: Multiple-scattering microwave radia-
tive transfer for data assimilation applications, Q. J. R. Meteorol. Soc., 132, 1259–1281,
doi:10.1256/qj.05.153, 2006. 11759

11768

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1002/qj.803
http://dx.doi.org/10.1256/qj.05.153


AMTD

8, 11753–11777, 2015

Effects of mid- to

upper-tropospheric

water on microwave

emission

M. S. Johnston et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Bauer, P., Geer, A. J., Lopez, P., and Salmond, D.: Direct 4D-Var assimilation of all-sky radi-
ances. Part I: Implementation, Q. J. R. Meteorol. Soc., 136, 1868–1885, 2010. 11756

Bodas-Salcedo, A., Webb, M. J., Brooks, M. E., Ringer, M. A., Williams, K. D., Milton,
S. F., and Wilson, D. R.: Evaluating cloud systems in the met office global forecast
model using simulated CloudSat radar reflectivities, J. Geophys. Res.: Atmos., 114, 1–18,5

doi:10.1029/2007JD009620, 2009. 11755
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J. L., Klein, S. A.,

Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: Satel-
lite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043,
doi:10.1175/2011BAMS2856.1, 2011. 1175510

Bonsignori, R.: The microwave humidity sounder MHS in-orbit performance assessment – art.
no. 67440A, in: Sensors, Systems, and Next-Generation Satellites XI, edited by: Meynart, R.,
Neeck, S. P., Shimoda, H., and Habib, S., vol. 6744 of Proceedings of the Society of Photo-
Optical Instrumentation Engineers (SPIE), p. A7440, SPIE-INT SOC OPTICAL ENGINEER-
ING, 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA, Conference on Sen-15

sors, Systems, and Next-Generation Satellites XI, Florence, Italy, 17–20 September 2007.
11756

Bormann, N., Geer, A., and English, S.: Evaluation of the Microwave Ocean Surface Emmisivity
Model FASTEM-5 in the IFS, Technical Memorandum 667, European Centre for Medium-
Range Weather Forecasts, Reading, England, 2012. 1175920

Buehler, S., Eriksson, P., Kuhn, T., von Engeln, A., and Verdes, C.: ARTS, the
atmospheric radiative transfer simulator, J. Quant. Spectrosc. Ra., 91, 65–93,
doi:10.1016/j.jqsrt.2004.05.051, 2005. 11761

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg,25

L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger,
L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi,
M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay,
P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553–597,30

doi:10.1002/qj.828, 2011. 11757

11769

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2007JD009620
http://dx.doi.org/10.1175/2011BAMS2856.1
http://dx.doi.org/10.1016/j.jqsrt.2004.05.051
http://dx.doi.org/10.1002/qj.828


AMTD

8, 11753–11777, 2015

Effects of mid- to

upper-tropospheric

water on microwave

emission

M. S. Johnston et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Eliasson, S., Buehler, S. A., Milz, M., Eriksson, P., and John, V. O.: Assessing observed and
modelled spatial distributions of ice water path using satellite data, Atmos. Chem. Phys., 11,
375–391, doi:10.5194/acp-11-375-2011, 2011. 11767

English, S. J. and Hewison, T. J.: Fast generic millimeter-wave emissivity model, Proc. SPIE,
3503, 288–300, doi:10.1117/12.319490, 1998. 117595

Geer, A., Baordo, F., Bormann, N., and English, S.: All-sky assimilation of microwave hu-
midity sounders, Technical Technical Memorandum 741, European Centre for Medium-
Range Weather Forecasts (ECMWF), Reading, England, http://www.ecmwf.int/en/research/
publications (last access: 8 November 2015), 2014. 11756, 11762, 11765, 11772

Geer, A. J. and Baordo, F.: Improved scattering radiative transfer for frozen hydrometeors at10

microwave frequencies, Atmos. Meas. Tech., 7, 1839–1860, doi:10.5194/amt-7-1839-2014,
2014. 11757, 11760, 11767, 11768

Geer, A. J., Bauer, P., and O’Dell, C. W.: A revised cloud overlap scheme for fast microwave
radiative transfer in rain and cloud, J. Appl. Meteor. Climatol., 48, 2257–2270, 2009. 11759

Geer, A. J., Bauer, P., and Lopez, P.: Direct 4D-Var assimilation of all-sky radiances. Part II:15

Assessment, Q. J. R. Meteorol. Soc., 136, 1886–1905, 2010. 11756
Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja, R., Sterl, A., Wyser, K., Semm-

ler, T., Yang, S., and den Hurk, B.: EC-Earth V2.2: description and validation of a new seam-
less earth system prediction model, Clim. Dynam., 39, 2611–2629, 2012. 11757

Holl, G., Buehler, S. A., Rydberg, B., and Jiménez, C.: Collocating satellite-based radar and20

radiometer measurements – methodology and usage examples, Atmos. Meas. Tech., 3, 693–
708, doi:10.5194/amt-3-693-2010, 2010. 11757

Holl, G., Eliasson, S., Mendrok, J., and Buehler, S.: SPARE-ICE: synergistic ice water path from
passive operational sensors, J. Geophys. Res.: Atmos., 119, 1504–1523, 2014. 11761

Hong, G., Heygster, G., Miao, J., and Kunzi, K.: Detection of tropical deep convective clouds25

from AMSU-B water vapor channels measurements, J. Geophys. Res. D: Atmos., 110, 1–15,
doi:10.1029/2004JD004949, 2005. 11762

John, V. O., Holl, G., Buehler, S. A., Candy, B., Saunders, R. W., and Parker, D. E.: Un-
derstanding intersatellite biases of microwave humidity sounders using global simultane-
ous nadir overpasses, J. Geophys. Res.-Atmos., 117, D02305, doi:10.1029/2011JD016349,30

2012. 11761

11770

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-11-375-2011
http://dx.doi.org/10.1117/12.319490
http://www.ecmwf.int/en/research/publications
http://www.ecmwf.int/en/research/publications
http://www.ecmwf.int/en/research/publications
http://dx.doi.org/10.5194/amt-7-1839-2014
http://dx.doi.org/10.5194/amt-3-693-2010
http://dx.doi.org/10.1029/2004JD004949
http://dx.doi.org/10.1029/2011JD016349


AMTD

8, 11753–11777, 2015

Effects of mid- to

upper-tropospheric

water on microwave

emission

M. S. Johnston et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Joseph, J. H., Wiscombe, W. J., and Weinman, J. A.: The Delta-Eddington Approxi-
mation for Radiative Flux Transfer, J. Atmos. Sci., 33, 2452–2459, doi:10.1175/1520-
0469(1976)033<2452:TDEAFR>2.0.CO;2, 1976. 11759

Klein, S. A., Zhang, Y., Zelinka, M. D., Pincus, R., Boyle, J., and Gleckler, P. J.: Are climate
model simulations of clouds improving? An evaluation using the ISCCP simulator, J. Geo-5

phys. Res.: Atmos., 118, 1329–1342, doi:10.1002/jgrd.50141, 2013. 11756
Marshall, J. S. and Palmer, W. M. K.: The distribution of raindrops with size, J. Meteor., 5,

165–166, 1948. 11760
Nam, C., Bony, S., Dufresne, J. L., and Chepfer, H.: The too few, too bright tropical low-cloud

problem in CMIP5 models, Geophys. Res. Lett., 39, 1–7, doi:10.1029/2012GL053421, 2012.10

11756
Nam, C. C. W. and Quaas, J.: Evaluation of clouds and precipitation in the ECHAM5 gen-

eral circulation model using CALIPSO and cloudsat satellite data, J. Clim., 25, 4975–4992,
doi:10.1175/JCLI-D-11-00347.1, 2012. 11756

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman,15

A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi, A., and Taylor, K. E.: Climate models
and their evaluation, in: Climate Change 2007: The physical science basis. Contribution of
Working Group I to the Fourth Assessment Report of the IPCC (FAR), University Press,
Cambridge, United Kingdom and New York, NY, USA, 589–662, 2007. 11755

Saunders, R., Hewison, T., Stringer, S., and Atkinson, N.: The radiometric characterization of20

AMSU-B, IEEE T. Microw. Theory, 43, 760–771, 1995. 11760
Saunders, R., Matricardi, M., and Brunel, P.: An improved fast radiative transfer model for as-

similation of satellite radiance observations, Q. J. R. Meteorolog. Soc., 125, 1407–1425,
1999. 11758

Stephens, G. L.: Cloud feedbacks in the climate system: a critical review, J. Clim., 18, 237–273,25

2005. 11755
Twomey, S.: Aerosols, clouds and radiation, Atmos. Environ. A, 25, 2435–2442,

doi:10.1016/0960-1686(91)90159-5, 1991. 11755
Wielicki, B., Cess, R., King, M., Randall, D., and Harrison, E.: Mission to planet Earth – Role of

clouds and radiation in climate, B. Am. Meteorol. Soc., 76, 2125–2153, 1995. 1175530

Yurkin, M. A., Maltsev, V. P., and Hoekstra, A. G.: The discrete dipole approximation for simu-
lation of light scattering by particles much larger than the wavelength, J. Quant. Spectrosc.
Radiat. Transfer, 106, 546–557, doi:10.1016/j.jqsrt.2007.01.033, 2007. 11760

11771

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-print.pdf
http://www.atmos-meas-tech-discuss.net/8/11753/2015/amtd-8-11753-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
http://dx.doi.org/10.1002/jgrd.50141
http://dx.doi.org/10.1029/2012GL053421
http://dx.doi.org/10.1175/JCLI-D-11-00347.1
http://dx.doi.org/10.1016/0960-1686(91)90159-5
http://dx.doi.org/10.1016/j.jqsrt.2007.01.033


AMTD

8, 11753–11777, 2015

Effects of mid- to

upper-tropospheric

water on microwave

emission

M. S. Johnston et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
is

c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|
D

is
c
u

s
s
io

n
P

a
p

e
r

|

Table 1. List of the data quality criteria used to filter the COSP simulation. (Adapted from Geer
et al., 2014, Table 3).

Latitude poleward of ±60
◦

Orography greater than 800m
Fractional land–sea mask (0.2−0.8)
A sea-ice fraction greater than 0
Over ocean, surface temperatures< 274 K
Snow-covered land areas
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Table 2. Table of the average, standard deviation, and the percentage of grid boxes where the

difference T
EC-EARTH
B − T

NOAA-18
B is greater is within a reasonable uncertainty assumption of 3K.

Statistics taken over the globally and the Tropics for the unfiltered and filtered data. The filtered
data are given in parentheses.

Mean SD |∆TB| ≤ 3

Season Global [K] Tropics [K] Global [K] Tropics [K] Global [%] Tropics [%]

DJF 1.7 (1.9) 2.0 (1.9) 5.2 (3.2) 3.1 (3.0) 62.2 (70.8) 67.1 (68.7)
MAM 2.4 (2.0) 2.2 (2.1) 5.1 (2.7) 3.0 (2.9) 59.4 (69.4) 73.2 (65.1)
JJA 1.9 (1.8) 2.1 (2.1) 4.6 (2.6) 3.1 (3.0) 68.3 (73.7) 66.5 (68.2)
SON 1.5 (1.9) 2.4 (2.3) 4.3 (2.7) 3.0 (2.9) 63.6 (72.3) 63.6 (66.0)
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Figure 1. Seasonal (December 2005 to November 2006) satellite-derived mean TB, expressed
in Kelvin, at 190.311GHz, simulated using COSP (left column: a, c, e, and g) and NOAA18
MHS sensor (right column: b, d, f, and h). The seasons are displayed as follows: DJF: (a, b),
MAM: (c, d), JJA: (e, f), and SON: (g, h).
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Figure 2. 2006 difference (T
EC-EARTH
B − T

NOAA-18
B = ∆TB) in seasonal satellite-derived mean TB,

expressed in Kelvin, at 190.311GHz, simulated using COSP-RTTOV MHS simulator. The col-
umn on the left depicts the differences without filtering, while the right column shows the differ-
ences filtered according to Table 1. The seasons are in each row as: DJF: (a, b), MAM: (c, d),
JJA: (e, f), and SON: (g, h). The filtered areas are depicted as gray.
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Figure 3. Seasonal zonal mean TB for channel 5 (190.311GHz) of the NOAA-18 MHS sensor

(red) and EC-Earth-COSP simulated (blue). The black line shows the zonal mean of ∆T
UF
B . The

data for the filtered case are depicted by solid lines. DJF represented by (a) MAM by (b), JJA
by (c), and SON by (d).
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Figure 4. Probability density function of ∆T
UF
B for channel 5 (190.311GHz). Plot (a) depicts

the differences poleward of ±30 latitude and plot (b) between ±30 latitude. Note: plots shows
a shortened X-axis in order to increase focus on the centre the plot.
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