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Abstract. In this paper, we propose a bio-inspired and developmental
neural model allowing a robot, after learning its own dynamics during a
babbling phase, to gain imitative and shape recognition abilities leading
to early attempts for physical and social interactions. We use a mo-
tor controller based on oscillators. During the babbling step, the robot
learn to associate its motor primitives (oscillators) to the visual opti-
cal flow induced by its own arm. It also statically learn to recognize its
arm by selecting moving local view (feature points) in the visual field.
We demonstrate in real indoor experiments that, using this same model,
early physical (reaching objects) and social (immediate imitation) inter-
actions can emerge through visual ambiguities induced by the external
visual stimuli.

Keywords: visuomotor learning, developmental learning, neural net-
works, human robot interaction

1 Introduction

For future interactive robots, expected to cohabit with us in social environments,
the ability to perceive, recognize and learn human actions remain a difficult
but crucial question. These new artificial agents must be capable of detecting
and predicting human movements to adapt their behaviors in social contexts.
Consequently, it seems important to understand the human development process
leading to early physical and social cognition in order to build bio-inspired robots
permitting safe and intuitive human robot interactions.

A first rising question is how to perceive biological motion which is an im-
portant primitive of communication, learning and imitation in human-human
interactions. The human ability to perceive biological motion (movements of
living beings) is remarkably robust. We can consider that the widespread recog-
nition of biological movements is based on specific characteristics but the exact
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nature of these features remains not clearly defined, scientists being divided be-
tween shape (ventral pathway in the brain) and kinematics (dorsal pathway in
the brain) [1]. The roles of each pathway stay confused. A fairly complete neu-
ral model summarizing a possible integration of the two pathways for biological
motion detection can be found in [2].

Additionally, this remarkable capacity to perceive biological motion seems to
appear at early stages of infant development. In fact, psychological studies point
out the neonates capacities to imitate simple facial expressions as demonstrated
by the studies conducted by Meltzoff and Moore [3]. Considering the very basic
visual perception abilities of the newborns we may question the reason of this
early emergence (or presence) in human development, of a particular sensibility
or competence for human motion perception. In [4], Meltzoff suggested in his
”Like Me” theory that humans tends to recognize cross-modal equivalence be-
tween perceived actions and a self representation of their own movements. The
author argued that this way of recognizing self in others can be a prime step
for social cognition as it can be used to analyze, imitate and learn biological
movements (others actions). Consequently, biological motion detection can be
defined as a "resonance measurement ” system that compares proprioception
(perception of our own motor dynamics) and exteroception (perception of oth-
ers movements). The evidence of the motor controllers influence on learning and
perceiving motion was described by numerous other psychological studies.In [5],
Viviani and Stucchi showed the coupling between motor and perceptual processes
while perceiving doted points moving with trajectories respecting the two third
power low. Recent studies point out a strong link between perceiving and exe-
cuting movements [6] .This resonance between producing actions and perceiving
others movements was also highlighted by the importance of synchrony during
human social interactions. Developmental studies acknowledged synchrony as a
prime requirement for interaction between a mother and her infant. An infant
stops interacting with her mother when she stops synchronizing her movements
[7]. These observations also imply the importance of a dynamical loop of treat-
ment between motor production (proprioception) and visual perception.

Keeping in view the importance of motor resonance in social interaction, it
has also been widely studied and used to improve human robot communica-
tions in particular through the notion of learning by imitation [8][9]. Numerous
different works used motor babbling as a starting point to obtain imitative be-
haviors [10][11]. A possible bio-inspired approach is to rely on mirroring systems
which constitute one of the main way to explain imitation behavior [12]. How-
ever, many of these works are based on internal models dedicated to specific
behaviors. Furthermore, assessing whether there is imitation or not (goal di-
rected Imitation vs simple immediate movement imitation), and consequently
guessing what should be the underlying mechanism still a challenging question
for developmental studies. Our approach will tend to examine very early mech-
anisms leading to imitation and reaching behaviors without any use of a specific
pre-defined internal model. We will demonstrate that these capacities can possi-
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bly emerge through visual ambiguities as proposed in [13] or [14]. Additionally,
we will question a possible use of a set of oscillators as motor primitives.
Inspired by the above state of the art, we will investigate in this paper the
two main following questions : i) How can a robot gain, from a developmental
learning, a cross-modal knowledge linking motor production and visual percep-
tion ? ii) How the robot can use this self-expertise to acquire an early social
cognition : emergence of imitative capacities and interaction possibilities with
the surrounding physical word (humans, objects etc.) ? The precise theoretical
and experimental context of the presented work is defined in the next section.

2 Theoretical and Experimental Context

To answer the above theoretical questions, we wish to explore the recognition
and the imitation of actions or gestures as a filter that could be built during early
interaction (learning to recognize the motor dynamics of self in the perception
of the others movements) and not as a pre-defined cascade of ad-hoc filters,
leading to the building of the notion of self and others through actions. We
defend the idea that intuitive interactions can be seen as an emergent function
of sensori-motor dynamics.

To confirm our assumptions, we propose here to simulate, on a robotic plat-
form, the behavior of infants aged approximatively from 0 to 3 months in the
specific context of early simple gestures imitation and reaching trials triggered
by a visual stimulus. Infants competences regarding the pre-cited context can
be coarsely summarized by the following development schedule extracted from
[15]:

— Pre-Natal: Grasp reflex on tactile feedback, Proprioceptive-motor mapping
(Arm babbling)

— 1 month: Learning of saccade mapping (Moving Eyes and head to targets),
Initial mapping of movements and vision (directed but unsuccessful hand
movements), Initial goal directed reaching triggered by a visual stimulus
without using visual feedbacks to mid-reach movement correction

— 3 months: Reach and miss (with contacts) triggered by visual stimulation,
Initial learning of eye-hand mappings, Reaches are visually elicited but with-
out continuous feedback (the gaze still focused on the target and not the
hand)

— 4 months: Primitive hand-eye mapping : Successful visual goal directed
reaching appears around 3-4 months after birth

We invite the reader to refer to [15] for a complete detailed and referenced de-
velopment calendar.

We use a minimal setup including a Katana arm, a pan tilt camera, different
objects (for reaching trials) and a human partner. Our objective here is to sim-
ulate the above behavioral development process by giving the robot the ability
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— to obtain a cross-modal visuomotor knowledge from a babbling step using a
very coarse motor controller (oscillators) and low level visual features (optical
flow)

— to imitate the human partner on the basis of visuomotor resonance

— to learn its arm shape and to focus its visual attention on it through statis-
tical integrations of visual saccades during the babbling

— and finally to initiate an emerging reaching trial directed by an external
visual stimuli (attractive objects) through visual ambiguities

We will experimentally show that all these early capabilities can possibly emerge
from very low level visuomotor learning. The developed neural model will be
detailed bellow after presenting, in the next section, the considered motor and
visual primitives.

3 Motor and visual primitives

3.1 The motor controller

Recent studies suggested that the motor cortex responses during reaching con-
tain a brief but strong oscillatory component, even if the movement itself is not
oscillatory [16]. Inspired by these recent neurobiological findings, we will inves-
tigate in this study the notion of rhythmic patterns and motor control using
oscillators. The other underlying reason behind this choice is to avoid the use of
complex motor controllers implying a substantial refined proprioceptive knowl-
edge which is not expected to be found during the early stages of development.

Our motor controller is illustrated in figure 1. Each articulation of the Katana
arm is fed by a set of oscillators. Each oscillator is based on a simple model made
of two neurons N1 and N2 [17]. The frequency of the oscillator depends on the
three parameters al, a2 and (3 :

Ni(n+1) = Ni(n) — BN2(n) + al and Na(n+1) = Ni(n) + SN2(n) + a2 (1)

The control signal feeding each articulation is then obtained by a weighted
sum of the different oscillators :

0,(t) = 3 wl0i(0). @

O;(t) is the output signal of the oscillator ¢ and wf is a weight representing the
contribution of the oscillator i to the control signal 6,;(t) of the articulation j.

3.2 Motion direction-selective neurons for low level visual features
extraction

Neurobiological records of cells from V1 and MT brain areas showed that the V1
neurons and most of the MT neurons are sensitive to preferred motion directions,
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these neurons were called component direction-selective neurons by Movshon
[18]. A smaller part (20%) of the MT neurons respond best to patterns directions,
they are called pattern direction-selective neurons.

To simulate these motion selective neurons, we first estimate, for each pixel
of the image, the velocity vectors induced by movements in the robot visual field.
We used a hierarchical implementation of the classical Horn & Shunk optical flow
algorithm [19] based on the works of Amiaz et al [20] . Using the extracted optical
flow, we will now define the component direction-selective neurons. The firing of
each of these neurons (A;) is proportional to the angular distance between the
visual stimulus (optical flow) and its preferred direction weighted by the motion

(B=8)? v2

intensity as : A; =exp = 71 ) (11— expi(g)).

[ is the direction of the computed optical flow,3; is the preferred direction of
the direction-selective neuron ¢, V' is the motion intensity, 7 and 75 are the
coeflicients regulating the dynamic of the neuron activation respectively for the
motion direction and the motion intensity. 71 and 7 are experimentally set to a
value of 20 to optimize the neurons dynamic reacting to the observed range of
motion intensities.

Further studies on selective-directional neurons showed that the reactivity
range (around the preferred direction) of these neurons is about 40 to 60 degrees
[21]. Consequently, we defined 6 different classes of selective neurons reacting
for the given preferred motion direction : 0°,60°, 120°,180°,240° and 300°. As
we are using image coordinates, the Y axis is directed to the south (90°). For
high motion intensities, this type of neuron will respond with a value of 1 if
the optical flow direction is equal to its preferred one, its firing will decrease
gradually for lower motion intensities and optical flow directions far from the
preferred one. Each velocity vector computed (for each pixel of the image) by the
optical flow algorithm is then coded by 6 neurons sensitive to different motion
directions . As a result, for an image of 640x480 pixels we will obtain 6x640x480
direction-selective neurons.

Pattern direction-selective neurons are then introduced to integrate the re-
sponses of the direction-selective neurons. For simplicity and to insure a real time
interaction, we define only 6 pattern direction-selective neurons corresponding
to the above preferred motion directions (see Figure 1). To obtain the response
of a pattern direction-selective neuron sensitive to a motion direction ¢ we inte-
grate the activations of all the direction-selective neurons sensitive to the same
motion direction i. A video illustrating the direction selective neurons responses
to different movements can be found on our website !.

4 Visuomotor Learning and low level imitation

In previous studies, we have proposed that low-level imitation (imitation of
meaningless gestures) can be an emergent property of a simple perception-action
homeostat based on perception ambiguity [13]. Based on this assumption, we

http://www.etis.ensea.fr/~neurocyber/Videos/lowLevel _Reaching/video_directionSelectiveNeurons.avi
P Y g
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present in this section a neural network model (see figure 1 A) permitting to the
robot, to learn perceiving its own motion and to imitate a human partner owing
to visual ambiguities .
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Fig. 1. Global Architecture, Part A : Neural model for motion learning and immediate
imitation, Part B : Neural model for object and arm learning and recognition

Here, the motor controller is composed by 9 oscillators with 3 different fre-
quencies and 3 different phase shifts. The control signal for each robot joint j is
obtained by summing the different oscillators output modulated by the weights
w! (see equation 2). As a first trial, the weights w! are randomly chosen, the
robot starts to move according to this set of parameters. Unfortunately, even
with this small number of oscillators, most of the obtained actions were diffi-
cult to analyze and not really biologically plausible (in particular because of the
mechanical characteristics of the Katana arm). For simplicity sake, in this ex-
periment we decided to settle the weights w! to obtain only 3 different rhythmic
actions : an horizontal motion (A1) and two diagonal ones (A2 and A3).

The model illustrated figure 1-A works in two phases :

— First, during a very simple babbling step the robot learn its own dynamics.
The the robot starts moving by altering randomly the three actions A1,A2
and A3. A Selective Adaptive Winner (SAW) which is an ART-based neural
networks, is fed by a time integration of the 6 pattern direction-selective neu-
rons responses which react differently to the perceived robot’s arm actions.
Depending on the vigilance parameter of the SAW, if the new inputs are too
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different from the neurons encoding the previous ones, new encoding neurons
are recruited. A Winner Takes All (WTA) is then used to select the relevant
SAW neurons encoding at best the inputs from the pattern-directional neu-
rons. These selected neurons represent the unconditional inputs of an LMS
(Least Mean Square) network which learn to associate the so encoded visual
stimuli (optical flow) with the motor actions represented by the sets of w;
parameters.

— After the learning phase, when a human starts moving in the visual field
of the robot, the selective-direction neurons are activated accordingly to
the different motion directions present in the visual stimuli. The integration
made by the 6 pattern selective-direction neurons are then representative of
the human motion visual pattern. As stated before, we suppose that the arm
controller is an homeostatic system trying to maintain a coherence between
the produced and the perceived actions, whether those perceived actions are
performed by the robot itself or by a human. If the visual pattern induced by
the human movements is close to one of the previously learnt movements, the
LMS triggers the corresponding oscillators parameters w;. Thus, the robot
will start lunching the corresponding action and consequently imitate the
human movement. A video of this experiment can be found on our website?.

5 learning the arm shape during the babbling phases

As detailed section 2, we are aiming to simulate the emergence of a visual goal
directed reaching (section 6). We will start, in this section, by explaining how to
obtain an initial learning of eye-hand mappings using eye saccades. Our objective
is to make the robot recognize its arm shape and to focus its visual attention on
it. For doing that, we will use and define a neural model for object recognition
inspired by the works in [22] and [23]. The general principal of this model is to
learn local views of the objects in the basis of point of interest detection (focus
points simulating eye saccades). As illustrated Fig. 1-B, the spatial gradient
information is first extracted from the grayscale images. The resulted image
gradient is then convolved by a DOG (Difference Of Gaussian) filter. The output
of this process is a saliency map which highlight regions in the image having a
local structure shaped as corners. Local maxima are then selected from this
saliency map.

Local views collecting the pixel around each detected interest points (here on
a radius of 20 pixels) are then extracted and filtered by a log polar transform in
order to be robust to scale changing and rotational variations. The filtered local
views feed the Selective Adaptive Winner (SAW), if the new inputs (local views)
are too different from the previous ones, new encoding neurons are recruited. A
Winer Take All (WTA) is then used to select the winning local views.

The model presented in (Fig. 1 B) can after be divided into two parts. The
recognition of what is the object, and the localization of ”where” is the object. A

http://www.etis.ensea.fr/~neurocyber/Videos/lowLevel _Reaching/video_lowLevelImitation.avi
P Y g
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first LMS (Least Mean Square) algorithm is used for the ”what” pathway to learn
the local views associated to each object. The number of neurons in the LMS
is then corresponding to the number of possible objects to learn. In the where
pathway, two LMS are used to associate the object center position respectively
on the x and y axis relative to the local views belonging to it. As presented figure
2, after the learning phase, each selected local view (point of interest) has its
own prediction of the object center. If most of them predict the same position,
the object is well recognized. In the opposite case, several positions of the object
center will be predicted without a majority vote permitting to identify a winner
(see figure 2). If an object is learned at a given position and detected in another
one, the output of the LMS shift the learn position relative to the actual position
allowing to predict the object position.

The previous model is then used to learn the robot its own arm shape without
any added a priori knowledge. To do so, during the babbling phase, the robot
will also start to detect feature points in the visual field using the general model
for object recognition previously described. Additionally, the saliency maps re-
sulting from the DOG filtering is modulated by the motion intensities (optical
flow). Thus, if we assume that the robot will be able to perceive its moving
arm during the whole babbling step, statistically, the detected feature points (or
focus points) will mostly belong to the arm of the robot. The robot will conse-
quently ”statistically” learn the shape of its arm rather than other objects from
the background.

Fig. 2. Schematic example of object position estimations

d

6 Visual ambiguities and emergence of a visual directed
reaching

After the learning phases (babbling), our robot is able to recognize its arm and
to locate its visual focus of attention on it. Lets now consider, besides the robot
arm, the presence of an added visual stimulus attracting the robot’s visual at-
tention. To simulate that, we will first simply and similarly use the previous
shape learning neural model to make the robot learn a new object. The consid-
ered object is then ”shacked” in front of the robot while its arm is not moving,
consequently the learned local views will statistically belong to this new added
object. As explained in the previous section, the model we used for object recog-
nition can locate objects positions relative to the center of the image. Thus, if
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an object (or the robots arm) is located in the images, we can use its predicted
position to shift the pan-tilt camera to center the recognized object in the image
using a neural field. If two recognized objects are seen (shared visual attention)
by the robot, its pan-tilt camera move alternatively from an object to another,
this process simulate human eye saccades.

As a consequence, if the robot can perceive its arm and focuses its visual at-
tention on it, and if simultaneously a human shows a learned object somewhere
in the visual field, the camera start moving alternatively from the arm to the
object. An optical flow is then generated because of this shared visual attention.
By using the neural model for imitating actions (see section VI and figure 1),
this induced optical flow will be coded by the directional and pattern selective
neurons leading the LMS to trigger the corresponding motor primitive which
produces an oscillatory arm movement in the direction of the located object.
An experimental example is illustrated in figure 3. After the learning steps, the
robot can perform and imitate 3 different movements as described section VI.
It also learned to perceive and focus its attention on its arm and another ex-
ternal object (here, an Aibo robot). 3-A represent three snap shots from the
experiment; 3-B illustrate the activities of the LMS neurons dedicated to object
recognition (green for the arm and red for Aibo), the threshold deciding if an
object is recognized or not is represented by the doted straight line; 3-C and D
shows the X and Y neural fields activities (blue line) and the Pan and Tilt camera
movements (doted green line); 3-E highlights the 6 pattern selective directional
neurons firing; 3-F illustrate the activities of the LMS neurons dedicated to the
3 actions recognition (doted green, red and blue lines), the plain green, red and
blue lines represent the lunched actions triggered when the LMS activity is over
the threshold (straight black doted line); finally on 3-G and H we can see the
evolution of the arm pliers real cartesian x and y positions deduced from the
Katana physical model.

Lets now consider the whole scenario. First the robot perceive only its arm. The
arm is recognized and located in the center of the image. The learned object
(Aibo) is then presented by a human interactant on the left upper side of the
image. Consequently, the arm and the object are simultaneously recognized and
located (brown area of the figure 3 B). Because of this shared visual attention,
the pan-tilt camera (controlled by the Neural Fields) start moving toward the
recognized object (figure 3 C and D) inducing an optical flow in the visual field.
This optical flow in then encoded by the directional and pattern directional se-
lective neurons (figure 3 E). As the camera is moving from the right to the left
upper side (toward Aibo), it generates an inverted optical flow directed to the
right and down side (O° and 60° because of the inversion of the Y axis). The
directional neurons trigger the corresponding learned oscillatory arm movement
(action 2 on figure 3 F'). Consequently, as proved in figure 3 G and H, the robots
arm start moving toward the detected learnt object (Aibo) : left direction on the
x axis and upward on the y axis.

This behavior simulate an emerging visual goal directed reaching trial induced
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by visual ambiguities. A video of this final experiment can be find on our web
site?

Snap Shots images from the experiment
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Fig. 3. Experimental results

7 Conclusion

We presented here a developmental approach for investigating the emergence of
early physical and social interaction from a learning stage of visuomotor cross-
modal knowledge by using a neural network model. We simulate here, on a
robotic platform, the developmental behavior of infants aged approximatively
from 0 to 3 months in the specific context of initial simple gestures imitation
and early reaching trials triggered by an external visual stimulus. First, during
a babbling step, the robot learn to associate its motor primitives to the optical
flow induced by its own arm. in parallel, the robot statistically learn its arm
shape by modulating, using motion intensities (optical flow), the feature points

http://wwv.etis.ensea.fr/~neurocyber/Videos/lowLevel Reaching/video_LowLevelReaching.avi
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detection and the local views learning . Similarly, if the arm stops moving, the
robot can learn new shacked external objects in the visual field. After the learn-
ing phase, if a human start to move in the visual field, his movements induce
visual ambiguities which make the robot start imitating the human as it will try
maintaining the balance between the visual stimuli and the motor controller as
learned during the babbling step. If the robot locate its arm and another learned
object in the visual field, its camera start moving to center alternatively the arm
and the detected object simulating ocular saccades. As for immediate imitation,
the camera oscillations induce ambiguous optical flow making the robot initiat-
ing arm movements toward the located object. The efficiency of the proposed
neural architecture was demonstrated by experiments in a real indoor and non
constrained environment using a Katana arm and pan-tilt camera.

Despite the interesting obtained results, numerous outstanding questions re-
mains. For example, how to the fill, from a developmental approach, the gap
between this early coarse oscillatory motor control to a more refined one lead-
ing to more precise interactions and imitation games (object grasping) ? How
to gain a better knowledge about spatial information and peripersonal space
leading to social cognition? These harsh problematics among others related to
physical and social development remain, obviously, opening questions. Never-
theless, our experimental approach demonstrates that early simple physical and
social interactions can possibly be mediated by visual ambiguities through vi-
suomotor learning rather than complex representations of ”self” versus ” Other”
especially at an early stage of development.

Our short-term future works are aiming to use this model on an hydraulic
robot in order to obtain a realistic force controlled arm leading to more ”"natural”
movements. In order to maintain the interaction and to give the robot capabilities
to learn new and more complex movements, we are also planing to introduce the
notion of synchrony detection between the oscillators controlling the arm and the
visual stimuli as proposed in our previous work on simple oscillatory movements
[24]. Thus, a refined interaction can be obtained during immediate and differed
imitation games. More precisely, the weights modulating the influence of each
oscillator on the arm joints (set to a fixed value in this article) must be learnt
during bidirectional imitation games.
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