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[1] The mixing state of soot particles in the atmosphere is of crucial importance for
assessing their climatic impact, since it governs their chemical reactivity, cloud
condensation nuclei activity, and radiative properties. To improve the mixing state
representation in models, we present a new approach, the stochastic particle-resolved
model PartMC-MOSAIC, which explicitly resolves the composition of individual particles
in a given population of different types of aerosol particles. This approach tracks the
evolution of the mixing state of particles due to emission, dilution, condensation, and
coagulation. To make this direct stochastic particle-based method practical, we
implemented a new multiscale stochastic coagulation method. With this method we
achieved high computational efficiency for situations when the coagulation kernel is
highly nonuniform, as is the case for many realistic applications. PartMC-MOSAIC
was applied to an idealized urban plume case representative of a large urban area
to simulate the evolution of carbonaceous aerosols of different types due to coagulation
and condensation. For this urban plume scenario we quantified the individual processes
that contributed to the aging of the aerosol distribution, illustrating the capabilities
of our modeling approach. The results showed for the first time the multidimensional
structure of particle composition, which is usually lost in sectional or modal aerosol
models.
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1. Introduction

[2] Soot particles are an important constituent of the
atmospheric aerosol, since they participate in tropospheric
chemistry [Saathoff et al., 2001] and affect human pulmo-
nary health [Pope and Dockery, 1996]. Because of its ability
to absorb light [Horvath and Trier, 1993], soot is also
recognized as an important player in the aerosol radiative
forcing of climate at global, regional, and local scales
[Menon et al., 2002; Chung and Seinfeld, 2005; Roeckner
et al., 2006]. The source of soot particles is the incomplete
combustion of carbon containing material, which means that
except for natural biomass burning, all sources of soot are of
anthropogenic origin [Penner, 1995]. The dominant remov-
al process is wet deposition [Ducret and Cachier, 1992].
Soot particles can be transported over long distances reach-
ing remote regions such as the Arctic [Clarke and Noone,
1985; Hansen and Nazarenko, 2004].

1.1. Observed Properties of Vehicle Particle Emissions

[3] In this paper we investigated an idealized urban
plume scenario in which the primary sources of soot were
emissions from gasoline and diesel vehicles. Fresh emis-
sions from diesel and gasoline engines consist of a complex
particle mixture with respect to composition and mixing
state. The main constituents are elemental carbon and
organic carbon [Medalia and Rivin, 1982; Andreae and
Gelencsér, 2006], but the precise mixture depends on the
individual source and operating conditions. Volatility meas-
urements by Kittelson et al. [2006a] showed that diesel
exhaust particles from heavy-duty diesel truck engines
consisted of more volatile and less volatile particles.
Smaller particles (in the nuclei mode) tended to be more
volatile and consisted mainly of heavy hydrocarbons, prob-
ably from lubricating oil, whereas carbonaceous, solid
agglomerates (‘‘soot’’ particles) formed a majority of the
larger particles (in the accumulation mode). The number
concentration in the nuclei mode moreover depended on the
amount of sulfur in the fuel, and the size distribution and
composition typically also depended on the engine load
[Kittelson et al., 2006a; Burtscher et al., 1998]. Burtscher et
al. [1998] found that at high load, i.e., richer combustion
conditions, much less volatile material was present in the
diesel exhaust compared to low load. Gasoline emissions
generally showed a lower elemental carbon content com-
pared to diesel emissions [Kleeman et al., 2000]. Kittelson
et al. [2006b] reported a mass fraction of 64% elemental
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carbon for cold-cold cycles, and 34% elemental carbon for
hot cycles. Apart from elemental and organic carbon, trace
concentrations of ionic and metallic species were also found
in diesel and gasoline exhaust particles [Kleeman et al.,
2000; Weingartner et al., 1997]. While the mass fraction of
these species are small, the ionic species influence the initial
hygroscopic nature of the particles released to the atmo-
sphere. Metallic species present are of interest as they can
catalyze heterogeneous chemical reactions within fog drop-
lets [Erel et al., 1993] and may cause adverse health effects
[Dreher et al., 1997].
[4] Results from single particle analysis with an ultrafine

aerosol time-of-flight mass spectrometer have recently be-
come available [Toner et al., 2006; Shields et al., 2007].
These studies identified seven different particle classes in
the exhaust of heavy-duty diesel vehicles. Toner et al.
[2006] showed that the top three particle classes comprised
91% of the total particles sampled and consisted of elemen-
tal carbon and engine lubricating oil. However the study
also showed that the results depended on the driving
conditions and on the individual vehicle. While these results
provide remarkable insight into the details of particle mix-
ing state of exhaust particles, it is to date still difficult to
derive quantitative information on the particle composition.
Spencer and Prather [2006] undertook a step in this
direction by deriving a calibration procedure that makes it
possible to determine ratios of organic and elemental carbon
in individual particles, but challenges remain in obtaining
accurate particle composition information.

1.2. Aging of Soot in Atmospheric Models

[5] From the above measurements of vehicle emissions it
is clear that freshly emitted soot particles consist of several
species, namely elemental carbon, organic carbon, and trace
amounts of ionic and metallic species. Weingartner et al.
[1997] found that freshly emitted soot particles are in
general rather hydrophobic, but their initial hygroscopic
properties also depended on the sulfur content of the fuel.
Moreover, during their transport in the atmosphere their
hygroscopic qualities can change owing to coagulation with
soluble aerosols, condensation of secondary organic and
inorganic species, and photochemical processes. These
processes are usually referred to as aging, and they deter-
mine the particle growth in response to ambient relative
humidity and the ability to be activated as cloud condensa-
tion nuclei. The aging processes also have a profound effect
on the aerosol optical properties. For example, soot that is
coated with nonabsorbing substances shows greater absorp-
tivity compared to soot that is not coated. This effect on
radiative properties has been studied by a number of
investigators [e.g., Chýlek et al., 1995; Jacobson, 2001;
Riemer et al., 2003; Schnaiter et al., 2005; Bond et al.,
2006]. Field measurements show that atmospheric soot
particles contain other species in varying proportions, and
that the hydrophobic portion of the aerosol population
decreases significantly as the distance from the sources
increases [Andreae et al., 1986; Levin et al., 1996; Okada
and Hitzenberger, 2001; Johnson et al., 2005; Cubison et
al., 2008].
[6] Since it is well recognized that soot particles contrib-

ute to both the direct and indirect/semidirect climate effect
[Lesins et al., 2002; Jacobson, 2000, 2002b; Nenes et al.,

2002], an adequate representation of soot and its mixing
state is sought for use in both global and regional models,
and the parameterization of soot aging is key to determining
its atmospheric abundance. Many global models have
simulated both (fresh) hydrophobic soot and (aged) hydro-
philic soot, which can be considered as a minimal repre-
sentation of the soot mixing state. Several of the models
have assumed that the conversion from hydrophobic to
hydrophilic soot can be treated as an exponential decay
process, with a half-life of approximately 24 h [Cooke et al.,
1999; Lohmann et al., 1999; Koch, 2001; Chung and
Seinfeld, 2002]. This approach is a substantial simplification
since the conversion rate depends on many different envi-
ronmental conditions. This has led to more mechanistic
approaches, where processes such as condensation of sulfate
on soot particles, chemical oxidation and/or coagulation
between different particle classes are explicitly modeled to
some extent [Wilson et al., 2001; Stier et al., 2005;
Tsigaridis and Kanakidou, 2003]. Koch [2001] and Croft
et al. [2005] compared different aging parameterizations in
global models and concluded that the model results criti-
cally depend on the respective formulation.
[7] To better understand the soot aging process it is

desirable to have models that are capable of representing
the aerosol mixing state. From a computational standpoint,
if the aerosol mixing state can be defined in terms of A
classes of chemical components (e.g., A = 8 with sulfate,
nitrate, ammonium, sea salt, hydrophobic organics, soluble
organics, black carbon, and mineral dust classes), then the
mixing state is an A-dimensional space and the size-
resolved particle composition distribution is a multivariate
function.
[8] Most existing aerosol models, however, represent the

particle population only as a bulk, or as a univariate
function of a single independent variable, typically total
particle mass, diameter, or similar. To do this it is generally
assumed that each particle consists only of a single species
(fully externally mixed), or that all particles in the same
mode or size bin have identical chemical composition (fully
internally mixed). Within this framework the standard
methods are sectional, modal, and moment models. Sec-
tional models [e.g., Wexler et al., 1994; Jacobson, 1997;
Adams et al., 1999; Zaveri et al., 2008] place a grid on the
independent variable space and store the number distribu-
tion or mass distribution (or both) in each grid cell. Modal
models [e.g., Whitby et al., 1991; Whitby and McMurry,
1997; Wilson et al., 2001; Stier et al., 2005; Binkowski and
Shankar, 1995] represent the particle distribution as a sum
of modes, each having a lognormal (or similar) size distri-
bution described by a small number of parameters (typically
number, mass, and width). Moment models [e.g., McGraw,
1997] do not explicitly resolve the distribution, but rather
track a few low-order moments of it.
[9] It is possible to extend the standard aerosol models

to handle multivariate distributions, for example a two-
dimensional distribution that is a function of two species,
or a function of volume and area. Such extensions have
been investigated for sectional models [Fassi-Fihri et al.,
1997], modal models [Brock et al., 1988], and moment
models [Yoon and McGraw, 2004a, 2004b]. All such
models, however, require storage and computation that scale
exponentially in the number of independent variables A. For
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the model we develop here with A = 20 species, fully
resolved multivariate sectional, modal, or moment models
are infeasibly expensive. For example, a sectional model
normally uses on the order of 8–20 size bins to adequately
resolve a univariate aerosol distribution, and even then will
suffer from numerical diffusion [Dhaniyala and Wexler,
1996;Wu and Biswas, 1998]. An A-dimensional distribution
would thus require 8A–20A bins, which is infeasible unless
A is much smaller than our 20 species. In contrast, the
particle-resolved methods developed in this paper scale with
the number of particles, not the dimension of the space they
are in.
[10] While traditional univariate aerosol models are too

expensive if extended to resolve multivariate aerosol mixing
states with more than a few dimensions, there have been a
number of extensions proposed to resolve the mixing state
to some extent. One example of methods that somewhat
resolve the mixing state are the so-called source oriented
models developed by Eldering and Cass [1996], Kleeman et
al. [1997], and Kleeman and Cass [1998] for regional-scale
modeling. In these models, the particles of different sources
remain in separate populations and a number of individual
size distributions (usually about ten) are tracked, while their
mixing states change owing to condensation of secondary
substances. However, because the main focus of their
studies was the prediction of particle mass distributions,
the changes in number concentrations and particle mixing
states due to self-coagulation and heterocoagulation of
particles from different sources was ignored. Coagulation
between aerosol particles is important if one is interested in
predicting the number distribution, especially under polluted
conditions or if long residence times are considered
[Zhang and Wexler, 2002]. Nevertheless, the source-oriented
approach allows the attribution of pollutants to specific
sources and is useful for designing emission control strat-
egies [Kleeman and Cass, 1998; Kleeman et al., 1999]. It
was used in the framework of a Lagrangian trajectory
model, compared to measurements by Bhave et al. [2002],
and has been extended to a 3D Eulerian model [Kleeman et
al., 2001; Ying et al., 2004; Ying and Kleeman, 2006]. The
Lagrangian version described by Kleeman and Cass [1998]
treated the mixing state to some extent, with fresh emissions
introduced as new size distributions at every hour along the
trajectory.
[11] Another variant of mixing state modeling was pre-

sented by Jacobson [2002a], where a total of 18 interacting
aerosol size distributions were considered. His approach
was not source oriented to the degree of Kleeman et al.
[2001], since anthropogenic emissions from specific sectors
were not resolved, but primary mineral dust, sea salt,
organic matter, and black carbon were treated. Three dis-
tributions represented particles containing different propor-
tions of black carbon. Coagulation between different
particle classes was included, and 11 of the 18 particle
classes were used to represent the mixed particles that arise
owing to coagulation interaction of two primary species.
Interactions that would result in the formation of a particle
with three different constituents resulted in a ‘‘mixed’’
particle and were not tracked further. Despite this consid-
erable complexity the limitation remained that particles for a
certain particle class and size were considered to have

identical compositions, and the emissions into the primary
particle categories were instantly aged.
[12] Riemer et al. [2003] presented an approach for

mixing state modeling of soot using a mesoscale modal
modeling framework. Five modes described the composi-
tion and size distribution of submicron particles, consisting
of one pure-soot mode, two soot-free modes (with particles
containing a mixture of inorganic and organic species), and
two soot-containing modes (with particles containing a
mixture of soot, inorganics and organics). The last two
modes thus represented aged soot particles, and aging
occurred either by coagulation between modes or by con-
densation of secondary substances. While this treatment
allowed the distinction between fresh and aged soot, the
simplifying assumption was made that within each mode all
particles had identical compositions.

1.3. Particle-Resolved Models for Representing Mixing
State

[13] Here we present a particle-resolved model, PartMC,
that explicitly stores the composition of many individual
aerosol particles (about 105) within a well-mixed computa-
tional volume. Relative particle positions within this com-
putational volume are not tracked, but rather the coagulation
process is simulated stochastically by assuming that coag-
ulation events are Poisson distributed with a Brownian
kernel.
[14] Applying such a Monte Carlo approach for simulat-

ing the evolution of particle distributions dates back to
Gillespie [1975], who developed the exact Stochastic Sim-
ulation Algorithm [see also Gillespie, 1976, 1977, 1992] to
treat the stochastic collision-coalescence process in clouds.
Variants of Gillespie’s algorithm are widely used in different
fields, including simulations of gene regulatory networks
[El Samad et al., 2005], chemical kinetics [Gillespie, 2007],
and sintering in flames [Wells et al., 2006].
[15] Since Gillespie [1975], particle-resolved methods

have been used to study aerosols by many authors. We do
not attempt to give a comprehensive literature survey here.
Babovsky [1999] and Eibeck and Wagner [2001] developed
the Mass Flow Algorithm with variable computational/
physical particle ratios, Kolodko and Sabelfeld [2003] gave
relevant error estimates, and Debry et al. [2003] coupled it
to evaporation and condensation. Somewhat similarly,
Laurenzi et al. [2002] and Alfonso et al. [2008] (on the
basis of ideas from Spouge [1985]) stored the number of
particles with identical composition to reduce memory
usage and computational expense while using Gillespie’s
method. Guias [1997] studied convergence of stochastic
coagulation to the Smolukowski equation. Efendiev and
Zachariah [2002] investigated enclosures within aerosols
using a particle-based method, while Maisels et al. [2004]
used particle methods with simultaneous nucleation, coag-
ulation, and surface growth.
[16] While not focused on aerosol simulations, much

recent work has investigated efficient simulation methods
for reaction-type Markov processes. Gillespie [2001] devel-
oped the tau-leaping method for efficient generation of
many events with near-constant rates, with extensions by
Gillespie and Petzold [2003], Rathinam et al. [2003], Cao
et al. [2006] and others, including for multiscale systems
with scale separation by Cao et al. [2005]. Multiscale
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variants of Gillespie’s Stochastic Simulation Algorithm
have also been developed by E et al. [2007]. Gibson and
Bruck [2000] developed the Next Reaction Method for
efficient exact sampling, which stores and reuses event
calculations for efficiency. Anderson [2007, 2008] devel-
oped efficient simulation algorithms based on the Next
Reaction Method and the tau-leaping method.
[17] For the large number of particles in the simulations

in this paper, we used an efficient approximate coagulation
method, as described in section 4. This used a binned
sampling method to efficiently sample from the highly
multiscale coagulation kernel in the presence of a very
nonuniform particle size distribution, implemented with a
multievent-per-time-step sampling of the coagulation
events. Multirate versions of Gillespie’s method have been
developed previously by Cao et al. [2005] and E et al.
[2007], but relied on scale separation to average slow event
rates over fast timescales. The method used here does not
accelerate rare events but it does accelerate the generation of
events without scale separation, as needed for the smoothly
varying coagulation kernels and particle size distributions.
The PartMC coagulation method has storage cost propor-
tional to the number of physical particles, computational
cost for evaporation/condensation proportional to the num-
ber of particles, and computational cost for coagulation
proportional to the number of coagulation events.
[18] PartMC was coupled with the new state-of-the-art

aerosol chemistry model MOSAIC [Zaveri et al., 2008],
which simulates the gas and particle phase chemistries,
particle phase thermodynamics, and dynamic gas-particle
mass transfer in a deterministic manner. The coupled model
system, PartMC-MOSAIC, predicts number, mass, and full
composition distributions, and is therefore suited for appli-
cations where any or all of these quantities are required.
[19] Simulating all particles explicitly in a population of

aerosol completely eliminates any errors associated with
numerical diffusion. As a result, the treatment of aerosol
mixing state dynamics and chemistry makes PartMC-
MOSAIC suitable for use as a numerical benchmark of
mixing state for more approximate models, as has been
shown already by McGraw et al. [2008]. It can also be
applied to different environments going beyond the example
of clear-sky photochemistry shown in this paper, including
the in-cloud processing of aerosol, and it can be used to
accurately estimate quantities that depend on the mixing
state, such as cloud condensation nuclei spectra and optical
properties, which we will address in a forthcoming paper.
The current version of PartMC is available under the GNU
General Public License (GPL) at http://lagrange.mechse.
illinois.edu/mwest/partmc/, and the MOSAIC code is avail-
able upon request from R. A. Zaveri.
[20] The main contributions of this paper are: (1) an

accelerated stochastic coagulation method for multiscale
kernels, (2) the coupling of a particle resolved model with
a gas- and aerosol-chemistry code, and (3) an initial study of
the soot mixing states present in a typical polluted urban
environment. This manuscript is organized as follows. In
section 2 we write the governing equations for the coupled
gas-aerosol box model and discuss the approximations
needed by this model of the physical system. The numerical
approximation to the governing equations is given in
section 3, where we introduce the particle-resolved aerosol

model PartMC and describe how it is coupled to the gas-
and aerosol-chemistry code MOSAIC. In section 4 we give
the efficient coagulation algorithm used by PartMC and
verify its performance numerically. Finally, section 5 focuses
on the evolution of the mixing state of soot particles in an
idealized urban plume scenario. The primary value of the
study in section 5 is to demonstrate the new model capabil-
ities. It also begins to address the question of what experi-
mental data would be helpful in studying the effects of
aerosol particle composition, and what the effects are of
ignoring mixing state in existing models.

2. Coupled Aerosol-Gas Governing Equations

[21] We consider a Lagrangian parcel framework where
we simulate the evolution of aerosol particles and trace
gases in single parcel (or volume) of air moving along a
specified trajectory. In addition to coagulation and aerosol
and gas chemistry, the model treats prescribed emissions of
aerosols and gases, and mixing of the parcel with back-
ground air. Within the air parcel we do not track the
physical location of aerosol particles and we assume homo-
geneous environmental conditions and gas concentrations.
[22] An aerosol particle contains mass ma � 0 (kg) of

species a, for a = 1,. . .,A, so that the particle composition
is described by the A-dimensional vector ~m 2 R

A. The
quantity mall (kg) is the total wet mass of the particle, and
mdry = mall � mH2O

(kg) is the total dry mass. The cumulative
aerosol number distribution at time t and constituent masses
~m 2 RA is N(~m, t) (m�3), which is defined to be the number
concentration of aerosol particles that contain less than ma

mass of species a, for all a = 1,. . .,A. The aerosol number
distribution at time t and constituent masses ~m 2 R

A is
n(~m, t) (m�3 kg�A), which is defined by

n ~m; tð Þ ¼ @AN ~m; tð Þ
@m1@m2 . . . @mA

: ð1Þ

[23] The concentration of trace gas phase species i at time
t is given by gi(t) (mol m�3), for i = 1,. . .,G, so the trace
gas phase species concentrations are the G-dimensional
vector ~g(t) 2 R

G. We assume that the aerosol and gas
species are numbered so that the first C species of each
undergo gas to particle conversion, and that they are in the
same order so that gas species i converts to aerosol species i,
for i = 1,. . .,C. We further assume that aerosol species C + 1
is water.
[24] The environment is described by temperature T(t)

(K), pressure p(t) (Pa), relative humidity RH(t) (dimension-
less), and dry air density rdry(t) (kg m

�3). For the simulation
in section 5 the air temperature is prescribed as a function of
time, while the air pressure and water mixing ratio are kept
constant and the relative humidity and dry air density are
updated accordingly.
[25] We assume that we are modeling a vertical slice of a

well-mixed boundary layer during the day and a slice of the
residual layer during the night, always surrounded to the
sides and above by background air that contains prescribed
background gas and aerosol. The height of the boundary
layer is given by H(t) (m). We denote by ldil,horiz(t) (s

�1) the
horizontal dilution rate with the prescribed background gas
and aerosol, and by ldil,vert(t) (s

�1) the vertical dilution rate
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that represents entrainment of a growing boundary layer.
The total dilution rate ldil(t) (s

�1) is then given by

ldil tð Þ ¼ ldil;horiz tð Þ þ ldil;vert tð Þ ð2Þ

ldil;vert ¼ Ientrain tð Þmax 0;
1

H tð Þ
dH tð Þ
dt

� �

; ð3Þ

where vertical entrainment only occurs for increasing
boundary layer heights. The indicator Ientrain(t) is 1 when
the modeled air parcel is within the boundary layer and so
entrainment is possible, and is 0 when the air parcel is in the
residual layer.
[26] The mean evolution of the stochastic particle coag-

ulation process in the limit of a large number of particles,
neglecting fluctuation correlations between the number of
particles of different sizes [Gillespie, 1972], is the classical
Smoluchowski coagulation equation [von Smoluchowski,
1916a, 1916b], which for a multidimensional aerosol dis-
tribution with gas coupling is given in equations (4) and (5),

@n ~m; tð Þ
@t

¼ 1

2

Z m1

0

Z m2

0

� � �
Z mA

0

K ~m0;~m�~m0ð Þn ~m0; tð Þn ~m�~m0; tð Þdm0
1dm

0
2 . . . dm

0
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coagulation gain

�
Z 1

0

Z 1

0

� � �
Z 1

0

K ~m;~m0ð Þn ~m; tð Þn ~m0; tð Þdm0
1dm

0
2 . . . dm

0
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

coagulation loss

þ _nemit ~m; tð Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

emission

þldil tð Þ nback ~m; tð Þ � n ~m; tð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dilution

�
XC

i¼1

@

@mi

ciIi ~m;~g; tð Þn ~m; tð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gas-particle transfer

� @

@mCþ1

cwIw ~m;~g; tð Þn ~m; tð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

water transfer

þ 1

rdry tð Þ
drdry tð Þ

dt
n ~m; tð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

air density change

ð4Þ

dgi tð Þ
dt

¼ _gemit;i tð Þ
|fflfflfflffl{zfflfflfflffl}

emission

þldil tð Þ gback;i tð Þ � gi tð Þ

 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dilution

þ Ri ~gð Þ
|ffl{zffl}

chemical reactions

þ 1

rdry tð Þ
drdry tð Þ

dt
gi tð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

air density change

�
Z 1

0

Z 1

0

� � �
Z 1

0

Ii ~m;~g; tð Þn ~m; tð Þdm1dm2 . . . dmA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gas-particle transfer

: ð5Þ

The integrodifferential equations (4) and (5) must be
augmented with appropriate boundary conditions, which
are chosen on physical grounds to ensure that the
constituent masses of particles cannot become negative
and mass is conserved. In equation (4), K(~m1,~m2) (m

3 s�1) is
the coagulation rate between particles with constituent
masses ~m1 and ~m2, _nemit(~m,t) (m

�3 kg�A s�1) is the number
distribution rate of aerosol emissions, nback(~m,t) (m

�3 kg�A)
is the background number distribution, Ii(~m,~g,t) (mol s�1)
is the condensation flux of gas species i (with Iw(~m,~g,t)
the flux for water), ci (kg mol�1) is the conversion factor
from moles of gas species i to mass of aerosol species i
(with cw the factor for water). In equation (5), _gemit,i(t)
(mol m�3 s�1) is the emission rate of gas species i,
gback,i(t) (mol m�3) is the background concentration of gas
species i, and Ri(~g) (mol m�3 s�1) is the concentration
growth rate of gas species i due to gas chemical reactions.

Many of the rates, coefficients and functions also depend
on the environmental conditions, but we have not written
this dependence explicitly.

3. Particle-Resolved Aerosol Models

3.1. PartMC Aerosol State Representation

[27] We consider a Lagrangian parcel with volume V
(m3), also called the computational volume. We represent
the aerosol state by storing Np particles in this volume,
written P = (~m1, ~m2,. . .,~mNp), where the particle order is not
significant. Each particle is an A-dimensional vector ~mi 2
R
A with components (m1

i , m2
i ,. . .,mA

i ), so ma
i is the mass of

species a in particle i, for a = 1,. . .,A and i = 1,. . .,Np. In the
notation of Debry et al. [2003] for the Mass Flow Algo-
rithm, we are taking (wi/yi)(t) = 1, which means one
computational particle per physical particle. While we track
every particle within the computational volume V, we regard
this volume as being representative of a much larger air
parcel. For example, in section 5 we use a computational
volume on the order of a few cubic centimeters but take this

to be approximating the state of the well-mixed boundary
layer during the day and the residual layer during the night.
[28] The simulation of the aerosol state proceeds by two

mechanisms. First, the composition of each particle can
change, changing the components of the vector~mi as species
condense from the gas phase and evaporate to it, for
example. Second, the population P can have particles added
and removed, either by emissions, dilution or coagulation
events between particles.
[29] The representation of the aerosol as a finite collection

of particles P in a volume V is very flexible, as other
properties can easily be stored for each particle, such as
fractal dimension, electric charge, age since emission, etc.
In the present paper we store the number of coagulation
events undergone by each particle to produce Figure 15 in
section 5.6.
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3.2. PartMC Emissions

[30] Because we are using a finite number of particles to
approximate the current aerosol population, we need to add
a finite number of emitted particles to the volume at each
time step. Over time these finite particle samplings should
approximate the continuum emission distribution, so the
samplings at each time step must be different. We assume
that emissions are memoryless, so that emission of each
particle is uncorrelated with emission of any other particle.
Under this assumption the appropriate statistics are Poisson
distributed, whereby the distribution of finite particles is
parameterized by the mean emission rate and distribution.
[31] Consider an emission rate _nemit(~m, t) (m

�3 kg�A s�1)
of particles as in the emission term of equation (4), a
volume V (m3), and a time step Dt (s). The emissions over
the time step from time t0 to t1 = t0 + Dt are given by

nemit ~m; t0; t1ð Þ ¼
Z t1

t0

_nemit ~m; tð Þdt ð6Þ

� t1 � t0ð Þ _nemit ~m; t0ð Þ; ð7Þ

for which we use the first-order approximation above. To
obtain a finite Poisson sample of the number distribution
n(~m) = nemit(~m;t0,t1) (m�3 kg�A) in the computational
volume V we first see that the mean number N(n,V) of
sampled particles will be

Nmean n;Vð Þ ¼
Z 1

0

Z 1

0

� � �
Z 1

0

n ~mð ÞV dm1 dm2 . . . dmA: ð8Þ

The actual number S of emitted particles added in a time
step will be Poisson distributed, written S � Pois(l), for
mean l = Nmean(n,V), so that

Prob S ¼ kð Þ ¼ lke�l

k!
for k 2 Zþ: ð9Þ

A Poisson sampling Psamp of the number distribution n(~m)
in volume V, written Psamp � Poisdist(n,V), is a finite
sequence of particles given by

Psamp ¼ ~m1;~m2; . . . ;~mS

 �

; ð10aÞ

S � Pois Nmean n;Vð Þð Þ; ð10bÞ

~ms � n ~mð ÞV
Nmean n;Vð Þ for s ¼ 1; . . . ; S; ð10cÞ

where (10c) means that each particle has a composition
drawn from the distribution specified by n(~m).

3.3. PartMC Dilution

[32] As with emissions, we must also obtain a finite
sampling of background particles that have diluted into
our computational volume during each time step. In addi-
tion, some of the particles in our current sample will dilute
out of our volume and will be lost, so this must be sampled
as well. We assume that dilution is memoryless, so that
dilution of each particle is uncorrelated with the dilution of

any other particle or itself at other times, and that once a
particle dilutes out it is lost.
[33] Let the background particle distribution be nback(~m, t)

(m�3 kg�A), the computational volume be V (m3), and the
time step be Dt (s). The distribution of particles that dilute
from the background into the volume V between times t0
and t1 = t0 + Dt is ndil(~m;t0,t1), where ndil(~m;t0,t) satisfies

@ndil ~m; t0; tð Þ
@t

¼ ldil tð Þ nback ~m; tð Þ � ndil ~m; t0; tð Þð Þ ð11aÞ

ndil ~m; t0; t0ð Þ ¼ 0: ð11bÞ

[34] We use the first-order approximation given by

ndil ~m; t0; t1ð Þ � t1 � t0ð Þldil t0ð Þnback ~m; t0ð Þ: ð12Þ

A discrete sampling of ndil(~m; t0, t1) is then given by Pdil �
Poisdist(ndil(~m), V), as in (10).
[35] If we start the time step at time t0 with the particle

population P, then each particle in P has probability p(t0,t1)
to be lost by dilution during the time step, where p(t0,t)
satisfies

@p t0; tð Þ
@t

¼ ldil tð Þ 1� p t0; tð Þð Þ ð13aÞ

p t0; t0ð Þ ¼ 0: ð13bÞ

We use the first-order approximation given by

p t0; t1ð Þ � t1 � t0ð Þldil t0ð Þ: ð14Þ

We denote the binomial distribution for number n and
probability p by B(n, p). The number of particles lost from
P between times t0 and t1 = t0 + Dt is then given by Nloss,
which is distributed as

Nloss � B Np; p t0; t1ð Þ

 �

� Pois Np p t0; t1ð Þ

 �

: ð15Þ

We approximate the binomial distribution with a Poisson
distribution as above, which converges as Dt ! 0 for fixed
Np. As each particle has equal probability to be lost owing
to dilution, we can sample Nloss and then choose Nloss

particles uniformly from P to be removed.

3.4. Coupled PartMC-MOSAIC Method

[36] We coupled the stochastic PartMC particle-resolved
aerosol model to the deterministic MOSAIC gas- and
aerosol-chemistry code in a time- or operator-splitting
fashion [Press et al., 2007, section 20.3.3] to obtain a
complete discretization of the governing equations (4) and
(5). The aerosol distribution n(~m,t) is represented by Np

particles in a computational volume V, as described above,
while the gas vector ~g(t) stores the gas concentrations. The
terms for aerosol coagulation, emissions and dilution are
solved stochastically by the PartMC code. The terms for gas
chemical reactions, emissions and dilution in equation (5)
are integrated deterministically by the MOSAIC code, as are
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the gas-particle transfer terms in equations (4) and (5). The
terms that represent air density changes are implemented
deterministically by scaling ~g and V by the proportional
change in dry air density or its inverse, respectively. The full
coupled PartMC-MOSAIC algorithm is given here.

P is the sequence of particle compositions
V is the computational volume
~g is the gas concentrations
t = 0
while t < tfinal do:
t = t + Dt
update temperature T(t), pressure p(t), relative humidity

RH(t), dry air density rdry(t), and mixing height H(t)

V tð Þ ¼ V t �Dtð Þ
rdry t �Dtð Þ

rdry tð Þ

~g tð Þ ¼~g t �Dtð Þ
rdry tð Þ

rdry t �Dtð Þ

perform one Dt-time step of coagulation for P with the
PartMC algorithm given in section 4.3

add Dt _~gemit(t) + Dt ldil(t) (~gback(t) � ~g(t)) to ~g
randomly choose Nloss � Pois(Dt ldilNp) and remove

Nloss randomly chosen particles from P

add a sample of Poisdist(ldil Dt nback(�, t),V) to P

add a sample of Poisdist(Dt _nemit(�, t),V) to P

integrate with MOSAIC for time Dt the system of
coupled ODEs given by the gas-particle transfer terms
and chemical reactions term from equations (4) and (5)

output data for time t
end while

[37] The current version of MOSAIC treats all the locally
and globally important aerosol species including SO4, NO3,
Cl, CO3, MSA (methanesulfonic acid), NH4, Na, Ca, other
inorganic mass (which includes species such as SiO2, metal
oxides, and other unmeasured or unknown inorganic species
present in aerosols), black carbon (BC), primary organic
aerosol (POA), and secondary organic aerosol (SOA). It
consists of four computationally efficient modules: (1) the
gas phase photochemical mechanism CBM-Z [Zaveri and
Peters, 1999]; (2) the Multicomponent Taylor Expansion
Method (MTEM) for estimating activity coefficients of
electrolytes and ions in aqueous solutions [Zaveri et al.,
2005b]; (3) the Multicomponent Equilibrium Solver for
Aerosols (MESA) for intraparticle solid-liquid partitioning
[Zaveri et al., 2005a]; and (4) the Adaptive Step Time-split
Euler Method (ASTEM) for dynamic gas-particle partition-
ing over size- and composition-resolved aerosol [Zaveri et
al., 2008]. The version of MOSAIC box model imple-
mented here also includes a treatment for SOA based on
the SORGAM scheme [Schell et al., 2001].

4. PartMC Coagulation Algorithm

4.1. Stochastic Coagulation Simulation

[38] For a population of Np particles there areNp (Np� 1)/2
possible coagulation events, with the probability rate of a
coagulation between particles i and j in a volume V given
by K(~mi,~mj)/V for the coagulation kernel K(~mi,~mj) (m3 s�1).
A stochastic coagulation simulation generates a sequence

of coagulation events, each consisting of a pair of particles
(i,j) that coagulate and a time Dt until the coagulation
occurs. For each coagulation event, the particles i and j are
removed from the population P, a new particle is added to
Pwith composition~mnew =~mi +~mj, and the time is advanced
by Dt. A new coagulation event is then generated and the
process repeated.
[39] The standard stochastic simulation algorithm for

coagulation and similar processes is from Gillespie [1975]
and is based on the observation that the probability density
for the time until the next coagulation event is

P Dtð Þ ¼ Ktot

V
e�KtotDt=V ; ð16Þ

where Ktot =
P

i<j K(~m
i, ~mj) is the total rate. We can thus

generate an elapsed time by sampling the probability
density function (16). The conditional probability that the
coagulation event that occurred was between particles i and
j is then

P i; j j Dtð Þ ¼ K ~mi;~mjð Þ
Ktot

; ð17Þ

and this can be sampled to determine which particles
coagulated, and then the coagulation event can be
performed.
[40] Gillespie’s method has the advantage that it gener-

ates exact realizations of the stochastic coagulation process.
It faces two main difficulties in practice, however. First, the
total rateKtot continually changes as coagulation events occur
and particle compositions change owing to condensation.
Computing a reasonable estimate of this parameter quickly
becomes exceedingly expensive, and approximations made
to speed up this estimate introduce errors that are difficult
to estimate and control. Second, while sampling (16) is very
cheap, sampling (17) can be expensive for complex kernels.
The two main methods are use of the cumulative distribution
function, which scales badly in the number of particles and is
thus too expensive for large particle numbers, and use of
accept-reject. While accept-reject scales well as the number
of particles grows, it is very inefficient if the kernel K is
highly nonuniform, as is unfortunately the case for many
physically relevant aerosol distributions. Despite these diffi-
culties, Gillespie’s method is by far the most commonly used
method in practice, with many slight variants appearing in
the literature [e.g., see Efendiev and Zachariah, 2002; Kruis
et al., 2000; Garcia et al., 1987; Fichthorn and Weinberg,
1991].
[41] To avoid these two difficulties we formulate an

improved method. We use a fixed time step method and
we develop a binned acceptance procedure. The use of a
fixed time step removes the need to know Ktot, albeit with
the introduction of some error. This fixed time step also
makes it easy to integrate the coagulation with other physics
and chemistry using a time-splitting scheme. The binned
sampling method means that we are not subject to slow-
downs from nonuniform kernels.

4.2. Fixed Time Step Stochastic Coagulation

[42] We choose a fixed time step Dt and in each time step
choose Ntest particle pairs to test. We then generate Ntest
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random particle pairs uniformly and for each pair (i, j) we
accept a coagulation event with probability

P i; jð Þ ¼ K ~mi;~mjð ÞDt

V

Np Np � 1

 �

Ntest

: ð18Þ

In the limit Dt ! 0 this generates an exact realization of the
stochastic coagulation process, and for finite Dt introduces
a discretization error. The number Ntest should be chosen
large enough that P(i, j) � 1 for all pairs (i, j) and for con-
vergence it must remain bounded away from zero asDt! 0.
This is similar to the sampling technique used byDebry et al.
[2003].
[43] The efficiency of the method, as with any procedure of

accept-reject type, is greatest when the maximum value of
P(i, j) is as close as possible to 1. To ensure this we choose

Ntest ¼ KmaxDt Np Np � 1

 �

=V
 �

; ð19Þ

where Kmax = maxi,j K(~m
i, ~mj) is the maximum kernel value

and dxe is the least integer greater than or equal to x. In
practice we take Kmax to be a cheaply computable upper
bound for K(~mi,~mj), which slightly increases the accuracy of
the method and is much cheaper. We precompute this upper
bound by sampling a range of particle sizes (and particle
densities for the Brownian kernel) in each bin, which works
for any kernel function.
[44] The fixed time step method thus cleanly resolves the

difficulties with Gillespie’s method to do with the need to
determine Ktot. It still has the problem, however, that if the
kernel K(~mi,~mj) is very nonuniform then the acceptance
procedure will be very inefficient. To fix this, we adopt a
binned approach.

4.3. Binned Stochastic Coagulation

[45] For coagulation kernels of physical interest, such as
those arising from Brownian motion or gravitational set-
tling, the kernel K(~mi,~m j) is highly multiscale, with many
orders of magnitude difference between the highest and
lowest rates. This is a problem for the sampling procedure
outlined in section 4.2, because Ntest will be very large and
so we will have to reject many events for each accepted
event.
[46] To accelerate this procedure we take advantage of the

fact that the kernel K(~mi,~mj) is not random in its nonunifor-
mity, but rather depends primarily on the diameter of the
particles. This means that if pairs (i, j) and (k,‘) are similar,
so that the diameters of particles i and k are close, as are
the diameters of particles j and ‘, then K(~mi,~mj) � K(~mk,~m‘).
We thus group particles into bins sorted by diameter and
we use the acceptance procedure (18) for each pair of bins
separately. This binned approach ensures that all particle
pairs under consideration in a particular iteration have
similar coagulation rates, and hence the procedure will have
a high proportion of acceptances. Use of a binned version of
the fixed time step algorithm means that the number of
samples (19) done per pair of bins is automatically adapted
to the number of particles in those bins. It also allows us to
precompute the Kmax values for each bin pair. The resulting
algorithm is given here.

divide diameter axis into bins as for a sectional model
Np(b) is the number of particle in bin b

~m(b, i) is the mass vector of the i-th particle in bin b
Kmax(b1, b2) is a precomputed upper bound on the kernel

for any particles from bins b1 and b2
Dt is the timestep
for all bin pairs (b1, b2) do:

Nevent = Np(b1)Np(b2)/2
Ntest = [Kmax(b1, b2) Dt Nevent /V]
for Ntest repetitions do:
randomly choose particles i1 and i2 uniformly

in bins b1 and b2
K12 = K(~m(b1, i1), ~m(b2, i2))
randomly choose r uniformly in [0, 1]
if r < K12 Dt Nevent/(NtestV) then:

coagulate the two particles, updating the
arrays N (b) and ~m(b, i)

end if
end for

end for

[47] The primary disadvantage of using a binned sam-
pling procedure is in code complexity, as the bin structures
of particles with similar sizes need to be constructed and
maintained. This also adds a small amount of computational
overhead to the coagulation routine, which is far out-
weighed by the enormous efficiency gains. We should note
that the binned sampling procedure introduces no error in
the simulation and is a pure efficiency gain. For typical
aerosol profiles the binned procedure gives about 2–4
orders-of-magnitude speedup in computational time, as
quantified in section 4.4.
[48] The number of particles in the simulation changes

over time as particles are added by emissions and dilution
and removed by coagulation and dilution. To maintain
adequate statistics while avoiding computational limits,
we occasionally adjust the particle number. Whenever the
number of particles becomes less than half of the original
particle number then we double the computational volume
and double the number of particles by duplicating each
particle. Whenever we have more than twice the original
number of particles then we halve the computational volume
and discard half of the particles, chosen at random.
[49] For some kernels, such as the Brownian kernel used

in section 5, the kernel is primarily dependent on the
particle diameters but also depends on particle density. We
could store the particles sorted into a 2D array per diameter
bin and per density bin, but the particle density variation is
bounded and small enough that it is still reasonably efficient
to store them only per diameter bin and to compute Kmax to
take the maximum particle density variation into account.
[50] To enable efficient coagulation, the particle array P

is stored as an array of pointers to partially filled particle
arrays, one per diameter-bin. Insertions into bin arrays are
performed at the end of the currently filled area and
deletions from the middle are followed by a shift of the
last element into the gap, ensuring full packing of each bin
array at all times. Each diameter-bin array is reallocated to
twice its existing size when necessary or half its existing
size when possible. This gives constant-time random access
at the cost of O(logDNp) reallocations and at most twice the
minimal memory usage.
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4.4. Verification of the PartMC Algorithms

[51] For verification of the PartMC stochastic coagulation
method we compared PartMC against a sectional solution
to the Smoluchowski equation for a Brownian kernel
[Jacobson, 1999]. For this test we used a single PartMC
run with 105 particles and a time step of Dt = 1 min (all
identical to the simulation in section 5), while the sectional
model was that of Bott [1998], using a time step of Dt = 1 s
and 220 logarithmically spaced sections between diameters
D = 2 � 10�4 mm and D = 200 mm.
[52] For Figure 1 we used two overlapping lognormal

modes as the initial condition and the results show that we
have excellent agreement for the number and mass distri-
butions for this test case, which is representative of the
simulation in section 5. The PartMC simulation exactly
conserved total particle mass, and the particle number
decreased by exactly the number of coagulation events that
occurred. At the very largest sizes there was some noise in
the particle-based mass distribution, as each individual
particle had significant mass at these sizes. This noise could
be reduced by averaging several simulations in a Monte
Carlo fashion, or by using a variable number of physical
particles per computational particle, as in the Mass Flow
Algorithm [Babovsky, 1999; Eibeck and Wagner, 2001]. We
do not consider this noise to be significant enough for the
study in this paper to require amelioration.
[53] For the Brownian kernel in Figure 1 the use of the

binned stochastic coagulation algorithm of section 4.3

improved the accept rate from 0.95% to 86%, requiring
over 90 times fewer kernel evaluations. For a more non-
uniform gravitational kernel, such as found in cloud-aerosol
simulations, the binned algorithm increased the accept rate
from 0.007% to 86%, a reduction of over 12,000 times in
the number of kernel evaluations (not shown in a figure).
[54] To verify the stochastic treatment of emissions and

dilution, we compared the PartMC algorithm against the
analytical solution for constant mean emission and dilution
rates. The PartMC simulation used a single run, 105 particles,
and a Dt = 1 min time step (all identical to the simulation in
section 5) and the results are shown in Figure 2. This test
also shows excellent agreement. We thus see that PartMC-
MOSAIC is performing emissions, dilution, and coagula-
tion with accurate numerics, and it has been shown that the
MOSAIC chemistry model is of similar or higher accuracy
than other similar trace-gas and aerosol chemistry modules
used in current state-of-the-art sectional and modal aerosol
models [Zaveri and Peters, 1999; Zaveri et al., 2005b,
2005a, 2008].

5. Application of PartMC-MOSAIC to an
Idealized Urban Plume Scenario

5.1. Setup of Case Study

[55] For this study we considered an idealized urban
plume scenario, which is not supposed to represent a
particular location or episode. The purpose of choosing
idealized conditions is to demonstrate the capabilities of the
model described in section 3 while remaining simple
enough so that the dominant effects can be understood.
[56] We tracked the evolution of gas phase species and

aerosol particles in a Lagrangian air parcel that initially
contained background air and was advected over and
beyond a large urban area. The simulation started at 0600
local standard time (LST), and during the advection process,
primary trace gases and aerosol particles from different
sources were emitted into the air parcel for 12 h. After
1800 LST, the emissions were switched off, and the
evolution of the air parcel was tracked for another 12 h.

Figure 2. Comparison of the stochastic particle-resolved
method using 105 particles (circles) against the analytical
solution (lines) for a simulation with only initial particles
and constant mean rate emissions and dilution with a
background population.

Figure 1. Comparison of the stochastic particle-resolved
method using 105 particles (circles) against a sectional
solution (lines) to the Smoluchowski equation for the
Brownian kernel according to Jacobson [1999]. The number
and mass distributions n(D) and m(D) are defined by
equations (20) and (21), respectively.
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[57] Initial gas phase concentrations and emissions were
adapted from the Southern California Air Quality Study
(SCAQS) simulation (26–29 August 1988 period) of Zaveri
et al. [2008], and are listed in Table 1. Note that while gas
phase emissions in the simulation varied with time, Table 1
gives only the average over the emission period. The initial
particle distribution, which was identical to the background
aerosol distribution, was bimodal with Aitken and accumu-
lation modes [Jaenicke, 1993]. We assumed that it consisted
of (NH4)2SO4 and primary organic aerosol (see Table 2).
We considered three different types of carbonaceous aerosol
emissions: (1) meat cooking aerosol, (2) diesel vehicle soot,
and (3) gasoline vehicle soot. The parameters for the
distributions of these three emission categories were based
onwork byEldering and Cass [1996],Kittelson et al. [2006a],
and Kittelson et al. [2006b], respectively. The emission rates

were adapted from the California Air Resources Board data-
base (Emissions database: 2006 estimated annual average
emissions, http://www.arb.ca.gov/ei/emissiondata.htm,
accessed October 2007).
[58] For simplicity in this idealized study, the particle

emissions strength and their size distribution and composition
were kept constant with time during the time period of
emission. This is certainly a substantial simplification as all
these quantities in reality are expected to vary with time.
However, for the purpose of this initial study it simplifies the
interpretation of the results, while the capabilities of the model
can still be demonstrated.
[59] Furthermore, we assumed that every particle from a

given source had the same composition, with the species
listed in Table 2, since to date the mixing state of particle
emissions is still not well quantified. In particular, we
assume that the diesel and gasoline exhaust particles consist
exclusively of POA and BC, which is very nearly the case
[Andreae and Gelencsér, 2006; Medalia and Rivin, 1982;
Kleeman et al., 2000]. At this point we do not have
quantitative information on a single-particle basis of how
the mean of this ratio depends on size or what the variance
around this mean is, so we assigned all diesel particles a
fixed BC/POA ratio and all gasoline particles a different
fixed ratio. We also neglected any trace amounts of ionic
species and metals, any variations with respect to vehicle
operation, and any other particle types that may be present
in the exhaust. For gasoline engines we took a BC dry-mass
fraction of wBC,dry = 20% based on page 5 of Somers [2004]
(about 20% overall) and section 8.4, page 54, of Nam et al.
[2008] (a composite figure of 17.3%). For diesel engines we
used a BC dry mass fraction of wBC,dry = 70%, consistent
with Robert et al. [2007] (73% for ultrafine particles and
61% for fine) and page 5 of Somers [2004] (about 50–
80%).
[60] However, once quantitative particle composition data

for emissions is available, it will be straightforward to use
the information in our model. It would be valuable to have
quantitative guidance on the particle-resolved composition
of the main particle types that are identified in vehicle
exhaust. Recent results [Toner et al., 2006; Shields et al.,
2007] give very interesting particle-resolved composition
data, but to date are qualitative only. Ideally, we would need
for each type the mean size-resolved composition (mass
fractions of BC, POA, ionic species, and metals) and an
estimate of the variance around this mean due to vehicle-to-
vehicle variations and variations in vehicle operation. Even
without this level of detail, for our immediate interest in
optical and CCN properties, valuable information would

Table 2. Aerosol Emissions and Initial Conditionsa

Initial/Background N (m�3) Dgn (mm) sg (1) Composition by Mass

Aitken Mode 3.2 � 109 0.02 1.45 50% (NH4)2SO4, 50% POA
Accumulation Mode 2.9 � 109 0.116 1.65 50% (NH4)2SO4, 50% POA

Emissions E (m�2 s�1) Dgn (mm) sg (1) Composition by Mass

Meat cooking 9 � 106 0.086 1.9 100% POA
Diesel vehicles 1.6 � 108 0.05 1.7 30% POA, 70% BC
Gasoline vehicles 5 � 107 0.05 1.7 80% POA, 20% BC

aParameters are as defined in equation (23). The initial aerosol distribution is also used as the background aerosol distribution. The percentages for the
composition are by mass. E is the area source strength of particle emissions. Dividing E by the mixing height H(t) and multiplying by a normalized
composition distribution gives the number distribution emission rate _nemit(~m, t) in equation (4).

Table 1. Gas Phase Emissions and Initial Conditionsa

MOSAIC Species Symbol
Initial Mole
Fraction (ppb)

Emissions
(nmol m�2 s�1)

Nitric oxide NO 0.1 31.8
Nitrogen dioxide NO2 1.0 1.67
Nitric acid HNO3 1.0
Ozone O3 50.0
Hydrogen peroxide H2O2 1.1
Carbon monoxide CO 21 291.3
Sulfur dioxide SO2 0.8 2.51
Ammonia NH3 0.5 6.11
Hydrogen chloride HCl 0.7
Methane CH4 2200
Ethane C2H6 1.0
Formaldehyde HCHO 1.2 1.68
Methanol CH3OH 0.12 0.28
Methyl hydrogen peroxide CH3OOH 0.5
Acetaldehyde ALD2 1.0 0.68
Paraffin carbon PAR 2.0 96
Acetone AONE 1.0 1.23
Ethene ETH 0.2 7.2
Terminal olefin carbons OLET 2.3 � 10�2 2.42
Internal olefin carbons OLEI 3.1 � 10�4 2.42
Toluene TOL 0.1 4.04
Xylene XYL 0.1 2.41
Lumped organic nitrate ONIT 0.1
Peroxyacetyl nitrate PAN 0.8
Higher organic acid RCOOH 0.2
Higher organic peroxide ROOH 2.5 � 10�2

Isoprene ISOP 0.5 0.23
Alcohols ANOL 3.45

aThe emissions represent area emissions and are averaged over the 12-h
emission period. We obtain the volume emission rate _~gemit(t) in equation (5)
by dividing by the mixing height H(t). Only those species are listed here
that are initially present or emitted. Refer to Zaveri and Peters [1999] for
more a detailed description of the species and reactions in the CBM-Z
mechanism. Missing values indicate zero.

D09202 RIEMER ET AL.: PARTICLE-RESOLVED MIXING STATE MODELING

10 of 22

D09202



consist of the particle-resolved absorbing to nonabsorbing
fraction, and the soluble to insoluble fraction.
[61] Sea salt, biomass burning and mineral dust particles

as well as particles from biological sources (e.g., pollen)
were not treated in this test case.
[62] Before we discuss the results on aerosol mixing state

in detail we provide the context for the conditions in our
case study with Figures 3, 4, 5, and 6. The temperature,
relative humidity, and mixing height along the trajectory
were adapted from spatially averaged values from the Los
Angeles Air Basin simulation of Zaveri et al. [2008] and
references therein. It should be emphasized again that we
did not attempt to simulate a specific episode or trajectory
for the Los Angeles basin (as was done by Kleeman et al.
[1997]), but rather an idealized urban plume scenario, with
conditions that were consistent with a polluted environment.
The temperature and mixing height were prescribed as
functions of time, while the pressure and water mixing ratio
were kept constant and the relative humidity and dry air
density were updated accordingly. The variation of these
parameters is shown in Figure 3. The relative humidity
started at 95%, then decreased to 53% during the day and
increased again to 94% during the following night. As we
show below, the diurnal cycle of the ambient conditions
impacted the thermodynamic equilibria and the phase states
of the particles.
[63] An increase of the mixing height during the morning

caused dilution of the gas and aerosol concentrations within
the air parcel and was accompanied by entrainment of
background air, as discussed in section 3.3. We also
considered dilution due to horizontal turbulent diffusion,
using a first-order dilution rate of 1.5 � 10�5 s�1, which
corresponds to 5.4% per hour. Similar dilution rates have
been observed in urban plumes [e.g., Zaveri et al., 2003].
[64] We resolved the total aerosol distribution with 105

particles initially. The corresponding initial total number
concentration was N = 6100 cm�3 and so the computational
volume was initially V = Np/N = 16 cm3. It remained
between V = 8 cm3 and V = 17 cm3 for the duration of
the run as the number of particles Np and number concen-
tration N changed owing to emissions, dilution, and coag-
ulation. The number of particles remained between Np =
60,481 and Np = 199,949. The time step used for this

simulation was Dt = 1 min (the same as for the verification
studies in section 4.4). While better estimates of the system
statistics could be obtained with multiple runs, we found a
single run to give reasonable results in this case, as demon-
strated in Figures 1 and 2 and discussed in section 4.4.
Although not shown here, runs with different random initial-
ization gave essentially the same results.
[65] To quantify the impact of coagulation we performed

two runs, one base case including coagulation as described
above, and one case without coagulation. Otherwise, the
conditions for the two runs were identical.

Figure 3. Time series of temperature, relative humidity, and mixing height over the course of the 24-h
simulation. The pressure and water mixing ratio were kept constant.

Figure 4. Time series of selected gas phase species. Gas
phase emissions were present from 0600 to 1800 LST.
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5.2. Gas Species Evolution

[66] Figure 4 shows the evolution of selected gas phase
species undergoing a diurnal cycle typical for a photochem-
istry episode under polluted conditions, measured as mole
fractions in ppb (parts per billion, or number of trace gas
molecules per 109 air molecules). During the daytime we
observed a considerable production of O3, reaching a
maximum value of 144 ppb at 1609 LST. The NO2 mole
fraction increased up to 33 ppb during the time that NOx

was emitted, and decreased after 1800 LST owing to
dilution and chemical reactions after the emissions had
stopped. HNO3 reached 17 ppb and contributed to the
formation of ammonium nitrate in the particle phase. NH3

levels reached 6.6 ppb during the daytime and later van-
ished owing to gas-to-particle conversion. HCHO was both
emitted and chemically produced with a maximum value of
12 ppb at 1759 LST.

5.3. Bulk Aerosol Evolution

[67] Figure 5 shows time series of the bulk aerosol mass
concentrations. We observed a pronounced production of
ammonium nitrate, reaching nitrate mass concentration
of up to 26 mg m�3 and ammonium mass concentration
of 10 mg m�3 in the late afternoon. Sulfate mass con-
centrations increased from 4.1 mg m�3 to 6.0 mg m�3 owing
to condensation of photochemically produced sulfuric acid.
POA and BC were directly emitted (with a temporally
constant rate) and accumulated to 11 mg m�3 and 4.3 mg
m�3, respectively, until 1800 LST when the emissions

stopped. After 1800 LST the mass concentrations declined
owing to dilution, especially nitrate and BC for which the
background mass concentration was zero.

5.4. Aerosol Distribution Functions

[68] We take N(D) (m�3) to be the cumulative number
distribution, giving the number of particles per volume that
have diameter less than D. Similarly, the cumulative mass
distribution M(D) (kg m�3) gives the mass per volume of
particles with diameter less than D, while the per-species
cumulative mass distribution Ma(D) gives the mass per
volume of species a in particles with diameter less than
D. We write N = N(1),M =M(1), andMa =Ma(1) for the
total number, mass, and per-species mass concentrations,
respectively.
[69] Given the cumulative distributions, we define the

number distribution n(D) (m�3), mass distribution m(D) (kg
m�3) and per-species mass distribution ma(D) (kg m�3) by

n Dð Þ ¼ dN Dð Þ
d log10 D

; ð20Þ

m Dð Þ ¼ dM Dð Þ
d log10 D

; ð21Þ

ma Dð Þ ¼ dMa Dð Þ
d log10 D

: ð22Þ

The initial, background, and emitted number distributions
used in this paper were all superpositions of lognormal
distributions, each defined by

n Dð Þ ¼ N
ffiffiffiffiffiffi
2p

p
log10 sg

exp � log10 D� log10 Dgn


 �2

2 log10 sg


 �2

 !

; ð23Þ

Figure 5. Time series of mass concentrations of selected
aerosol species: MNO3

, MNH4
, MPOA, MSO4

, MBC, and MSOA.
Particle emissions were present from 0600 to 1800 LST.

Figure 6. Number distributions n(D) for the simulation
with coagulation after 1, 5, 7, and 24 h, as defined in
equation (20). For comparison the distribution without
coagulation after 24 h is also shown.
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where N (m�3) is the number concentration, Dgn (m) is the
geometric mean diameter, and sg (dimensionless) is the
geometric standard deviation. To plot n(D) and similar
distributions from the particle-resolved output of PartMC-
MOSAIC, we took a set of bins on the independent variable
axis (D in this case) and counted the number or mass of
particles that fall in each bin. In this paper we used 70
logarithmically spaced bins between D = 0.01 mm and D =
1 mm.
[70] To discuss the composition of a particle, we refer to

certain mass fractions of species, as

wBC;POA ¼ mBC

mBC þ mPOA

; ð24Þ

wBC;dry ¼
mBC

mdry

; ð25Þ

wH2O;all ¼
mH2O

mall

; ð26Þ

where we recall that ma (kg) is the mass of species a in a
given particle, mall (kg) is the total wet mass of the particle,
and mdry = mall � mH2O

(kg) is the total dry mass.

[71] We can define number and mass distributions as
functions of mass fraction wa,b rather than of dry diameter
D. That is, let Na,b(w) be the cumulative number distribution
of particles with mass fraction of a to b less than w. The
corresponding number distribution na,b(w) is thus

na;b wð Þ ¼ @Na;b wð Þ
@w

: ð27Þ

The definition for mass distributions Ma,b(w) (kg m�3) and
ma,b(w) (kg m�3) are similar. The distributions as functions
of w were plotted in the same way as n(D) and m(D). In this
paper we used 40 bins between w = 0% and w = 80%.
[72] The number and mass concentrations can be further

extended to be functions of both particle composition and
diameter. That is, the two-dimensional cumulative number
distribution Na,b(w, D) (m

�3) is the number of particles per
volume that have a diameter less than D and a mass ratio of
species a to b less than w. The two-dimensional number
distribution na,b(D, w) (m

�3) is then defined by

na;b D;wð Þ ¼ @2Na;b D;wð Þ
@ log10 D @w

: ð28Þ

Figure 7. Number and mass distributions after 24 h of simulation (0600 LST the following day) with
coagulation. (bottom left) Two-dimensional number distribution nBC,dry(D, w) defined in equation (28),
and (top left and bottom right) corresponding one-dimensional distributions as functions of dry diameter D
and BC dry mass fraction wBC,dry, defined in equations (20) and (27), respectively.
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The two-dimensional cumulative mass distribution Ma,b(D,
w) (kg m�3) and mass distribution ma,b(D, w) (kg m�3) are
defined similarly. To plot a two-dimensional distribution we
formed a two-dimensional histogram by taking bins on both
D and w axes and counting the number or mass of particles
that fall within each bin pair. These quantities were then
plotted as a color map, with no color if no particles were
present in a given bin pair. We used the same sets of bins as
for the one-dimensional distribution plots.
[73] We can also define two-dimensional distributions on

the basis of other particle quantities. In particular, if we
denote by k the number of coagulation events that a given
particle has experienced during the simulation time then we
can define the two-dimensional singly cumulative number
distribution Ncoag(D, k) (m

�3) to be the number of particles
per volume with diameter less than D and k coagulation
events. Then ncoag(D, k) (m

�3) is defined by

ncoag D; kð Þ ¼ @Ncoag k;Dð Þ
@ log10 D

: ð29Þ

[74] For ease of comparison between different plots we
frequently use normalized distributions denoted by a hat, so
the normalized two-dimensional number distribution n̂a,b(D,
w) (dimensionless) is defined by

n̂a;b D;wð Þ ¼ na;b D;wð Þ
N

; ð30Þ

and similarly for the mass distribution.

[75] We also find it convenient to plot one-dimensional
mass distributions for certain composition ranges, as in
Figure 14 in section 5.6. We write mBC,dry(D, [w1, w2])
(kg m�3) to refer to the mass distribution (including water)
of particles for which wBC,dry is between w1 and w2, so that

mBC;dry D; w1;w2½ �ð Þ ¼
Z w2

w1

mBC;dry D;wð Þdw: ð31Þ

5.5. Aerosol Size Distribution Evolution

[76] Figure 6 shows the number distribution n(D) after 1,
5, 7, and 24 h of simulation including coagulation. For
comparison, the result after 24 h of simulation without
coagulation is also shown. The distribution after 1 h still
resembled the bimodal initial distribution (compare Table 2),
which was identical to the background distribution. After
5 h the distribution was primarily determined by the
emissions. After 7 h condensation of secondary species
(especially ammonium nitrate) caused substantial aerosol
growth. In addition particles at small sizes were depleted
owing to coagulation. After 24 h the Aitken mode of the
background (as defined in Table 2) appeared again as a
result of dilution.
[77] Compared to the distribution without coagulation,

the distribution with coagulation showed a substantial
decrease in number concentration for particles smaller than
0.1 mm. With coagulation the number concentration N
started at N = 6100 cm�3, then peaked at the end of

Figure 8. Normalized two-dimensional number distribution n̂BC,dry(D, w) (dimensionless) after 1, 5, 7,
and 24 h of simulation with coagulation, as defined in equation (30). The labels P1, P2, and P3 track three
individual diesel emission particles as they evolve over the course of the simulation, with compositions
shown in Figure 10. The maximum plotted value for n̂BC,dry(D, w) is capped at 4 to allow better resolution.
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the emission period after 12 h with a maximal value of
16,700 cm�3. After this,N declined owing to coagulation and
dilution to 7340 cm�3. The simulation without coagulation
started with the same initial number concentration, but the
lack of coagulation lead to a maximum number concentration
of 23,800 cm�3, and a final value of 15,400 cm�3. This
means that coagulation decreased the peak and final number
concentrations by 30% and 52%, respectively. Comparing
the number distributions for the specific diameters D = 0.03,
0.05, 0.07, and 0.1 mmwith and without coagulation, we find
that coagulation decreased the number distribution n(D) by
81%, 84%, 68%, and 36% respectively.
[78] We notice that for all number distributions shown in

Figure 6 the results are somewhat noisy at small and large
diameters. This noise is inherent to the stochastic model that
is used for coagulation, dilution and emissions. Toward the
edges of the size spectrum only a few particles are being
used to represent the distribution owing to the low number
concentration. Single particle variations arising from the
stochastic model thus appear as a noisy curve. This could be
rectified by averaging repeated Monte Carlo simulations or
by using a variable number of physical particles per

computational particle, as in the Mass Flow Algorithm
[Babovsky, 1999; Eibeck and Wagner, 2001].

5.6. Aerosol Mixing State Evolution

[79] While Figures 5 and 6 give an overview of aerosol
size distribution and composition just like we obtain from
traditional size-distribution-based models, they do not ad-
dress the issue of mixing state. To elucidate how the mixing
state evolved over the course of the simulation we display
the data as shown in Figure 7, where the two-dimensional
number distribution is plotted as a function of dry diameter
and dry mass fraction of BC, wBC,dry, in this case after 24 h
of simulation (0600 LST the following day). Our definition
of the two-dimensional number distribution is given in
section 5.4. If we project the two-dimensional distribution
onto the diameter axis, as shown in Figure 7 (top), then we
obtain the regular size-resolved number distribution, as
plotted in Figure 6. We can alternatively project onto the
axis for BC dry mass fraction, giving the number distribu-
tion as a function of the mixing state wBC,dry as shown in
Figure 7 (bottom right). We will discuss this representation
in more detail for Figure 11 later in this section.

Figure 9. Water mass fraction wH2O,all
as a function of BC dry mass fraction wBC,dry and dry diameter D

after 1, 5, 7, and 24 h of simulation with coagulation. The labels P1, P2, and P3 track three individual
diesel emission particles as they evolve over the course of the simulation, with compositions shown in
Figure 10. Note that the water fraction of wet particles is plotted over the hashing for dry particles and
sometimes obscures it. In particular, after 1 h (0700 LST) there are dry diesel and gasoline particles
present but they are not visible. The water fraction plotted for a given two-dimensional bin is the
minimum of the water fraction for all wet particles in that bin. For example, after 24 h the particle P1 is
very wet (see Figure 10) but there are much drier particles present with similar composition, giving a low
wH2O,all

value on the plot at P1. The maximum plotted value for wH2O,all
is capped at 50% to allow better

resolution.
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[80] Figure 8 shows the two-dimensional number distri-
butions as a function of dry diameter and mass fraction of
BC, wBC,dry, after 1, 5, 7, and 24 h of simulation. This
corresponds to local standard times 0700, 1100, 1300, and
0600 on the next morning.
[81] We will discuss the evolution of the two-dimensional

number distribution in conjunction with Figure 9. The gray
scale in Figure 9 shows the water mass fraction of the
particles, wH2O,all

, as a function of BC dry mass fraction,
wBC,dry, and particle size. We also include in Figure 10 the
temporal evolution of the composition of three represen-

tative particles to aid the interpretation. These particles
are labeled with P1, P2 and P3 in Figure 8. Their times
of emission are 0603 LST, 0657 LST, and 1631 LST,
respectively.
[82] Figure 8 shows the BC dry mass fraction, wBC,dry,

relative to all other dry constituents. Since even at the time
of emission no particles were pure BC, particles were not
present at wBC,dry = 100%. Fresh emissions from diesel
vehicles (wBC,dry = 70%) and gasoline vehicles (wBC,dry =
20%) appear as horizontal lines since particles in one
emission category were all emitted with the same compo-
sition. At wBC,dry = 0% all the particles appear that do not
contain any BC (i.e., background particles and particles from
meat cooking emissions that have not undergone coagulation
with particles containing BC). After 1 h (0700 LST) a small
number of particles in between these three classes indicate the
occurrence of coagulation.
[83] Under the initial ambient conditions the emitted

diesel and gasoline particles accumulated small amounts
of ammonium sulfate, ammonium nitrate and water. After
0642 LST the relative humidity fell below 85%, which is
the deliquescence point of the inorganic mixture of ammo-
nium, sulfate and nitrate. As a result of the hysteresis of
particle deliquescence and crystallization, the particles that
had been emitted up to this point stayed wet throughout the
whole day (since the relative humidity never fell below the
crystallization point), but freshly emitted particles were dry
from this point in time onward until the relative humidity
reached 61% in the afternoon at 1554 LST. Hence, between
0649 and 1554 LST, wet and dry particles coexisted in the
air parcel. Particle P1 in Figures 8 and 9 is one of the
particles that was emitted early and stayed wet throughout
the simulation, whereas particle P2 started out dry and
became wet only in the afternoon. For the wet and dry
particles different thermodynamic equilibria applied which
was reflected in the different development of their wBC,dry

values.
[84] As the single-particle plot Figure 10 shows, the wet

particles contained nitrate from the beginning and kept
taking up nitrate, while during the first few hours vapor
pressures of HNO3 and NH3 were too low to allow nitrate
formation on dry particles. Owing to this difference in
nitrate formation, after 5 h (1100 LST) the wet particles
appear distinct from the dry particles in Figure 8 and
reached lower wBC,dry values, reflecting their larger ammo-
nium nitrate content.
[85] This changed after 1130 LST. At this time HNO3 and

NH3mole fractions were high enough that ammonium nitrate
formed on the dry particles. They accumulated ammonium
nitrate quickly, and wBC,dry decreased rapidly for the dry
particles. As a result, wBC,dry of the dry particles fell below
wBC,dry of the wet particles, as is evident in the plot for
7 h (1300 LST) in Figures 8 and 9.
[86] After 1800 LST the ammonium nitrate formation

stopped, as the NH3 mole fraction dropped to near zero
(compare Figure 4). Therefore the fresh particle emissions
after this time did not accumulate much condensable mate-
rial and stayed at high wBC,dry values. This is reflected in the
single-particle plot Figure 10, which shows the diesel
particle P3 that was emitted in the afternoon. The mass of
secondary species for this particle was much lower than its

Figure 10. Time history of the composition of three
individual diesel particles, P1, P2, and P3, from the
simulation with coagulation. See Figures 8 and 9 for
particle locations in size-composition space. P1 is emitted at
0603 LST and always contains water. P2 is emitted at 0657
LST and is initially dry but becomes wet in the afternoon.
P3 is emitted at 1631 LST later in the day when little
condensation occurs.
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BC content. After 12 h (1800 LST) both particle and gas
emissions stopped, and the particle distribution changed
mainly owing to coagulation and dilution. The particle
number concentration decreased as a result of coagulation
and continued dilution with the background, but this effect

is not visible in the normalized number distributions.
During the evening hours the relative humidity increased
again and particles took up a substantial amount of water.
As the 24-h plot in Figure 9 shows, the water content
depended on the mixing state, which in turn was determined
by the history of the individual particles. For a given size we
found particles with water mass fractions between near 0%
and 66%.
[87] Comparing the result for the end of the simulation to

the results at previous times, we note that at the end of the
simulation particles below D = 0.03 mm were heavily
depleted owing to coagulation. A continuum of mixing
states formed in between the extreme mixing states of
wBC,dry = 0% and wBC,dry = 70%. It is also worth noting
that the one-dimensional number distributions in Figure 6
appear quite similar above 0.1 mm at 7 and 24 h, but very
different in the composition-resolved Figure 8.
[88] Figure 11 shows the projection of Figure 8 onto the

axis for BC dry mass fraction, giving the number distribu-
tion as a function of the mixing state wBC,dry. We see that
after 1 h of simulation the emissions were concentrated at
mixing ratios of wBC,dry = 0%, 20%, and 70%. As time
progressed the intermediate mixing ratios filled in to within
1 order of magnitude at the end of the simulation.
[89] The comparison to the case without coagulation

gives results as displayed in Figure 12. Figure 12 is
analogous to Figure 8 and shows the mixing state wBC,dry

of BC with respect to the sum of all other substances.
Without coagulation, similar frontal features appeared, but

Figure 11. Number distributions nBC,dry(w) for the
simulation with coagulation after 1, 5, 7, and 24 h, as
defined in equation (27). For comparison the distribution
without coagulation after 24 h is also shown.

Figure 12. Normalized two-dimensional number distribution n̂BC,dry(D, w) (dimensionless) after 1, 5, 7,
and 24 h of simulation, as in Figure 8, but for the simulation without coagulation. The maximum plotted
value for n̂BC,dry(D, w) is capped at 4 to allow better resolution.
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diesel particles and gasoline particles remained more clearly
distinct until 7 h of simulation (1300 LST) without the
mixing effect of coagulation. Around 1300 LST the mixing
state became continuous, because the most-aged diesel
emissions started overlapping with the relatively fresh gaso-
line emission particles. However, since these mixing states
were formed owing to condensation only, individual particles
only contained both POA and BC if they were emitted as
such. After 24 h of simulation without coagulation, mixed
particles smaller than D = 0.03 mm were still present while
they were depleted in Figure 8 with coagulation.
[90] The impact of coagulation on the mixing state with

respect to the primary components BC and POA is shown in
Figure 13. Figure 13 (left) displays the BC mixing state with
respect to POA, wBC,POA, after 24 h with coagulation. POA
was emitted as a constituent of primary particles, which can
be seen as horizontal lines with high number concentrations
at wBC,POA = 70% for diesel emissions, wBC,POA = 20% for
gasoline emissions and wBC,POA = 0% for meat cooking
emissions. The mixing states between these could only form
as a result of coagulation. Since coagulation is most
efficient between particles of different sizes, we observe
that these mixed particles preferentially formed in a specific
size range. For sizes larger than D = 0.05 mm, POA/BC
mixtures of various degrees of mixing formed owing to
coagulation. Below 0.05 mm coagulation produced very few
particles so particles at these sizes were at their initial
BC/POA mixing state. Nearly all BC-containing particles
below 0.03 mm were removed by coagulation. For compar-
ison, Figure 13 (right) shows the BC mixing state with
respect to POA,wBC,POA, at the end of the simulation without
coagulation. For this case the intermediate mixing states did
not occur, and BC-containing particles below D = 0.03 mm
remained.
[91] Figure 14 shows the one-dimensional distributions

of mass concentration (including water) for different ranges
of mixing states at the end of the simulation, comparing the
cases with and without coagulation. From this we see that
coagulation did not simply reduce the number concentra-
tions, but also shifted black carbon mass within the diameter-

wBC,dry space. The mass concentration of particles smaller
than D = 0.05 mm with high BC content (wBC,dry between
60% and 70%) was reduced by 89% owing to coagulation.
Themass concentration of particles smaller thanD = 0.05 mm
with very low BC content (wBC,dry between 0% and 2% BC)
was reduced by 80% when coagulation was included. Avery
large difference between the cases with and without coagu-
lation occurred for wBC,dry between 2% and 10% and for the
size range above D = 0.1 mm. Mass in this range of
parameters arose mainly from coagulation of large, BC-free
particles with small BC-containing particles and this mass
concentration increased by 426% when coagulation was
included.
[92] With PartMC it is straightforward to track the num-

ber of coagulation events experienced by the individual

Figure 13. Normalized two-dimensional number distribution n̂BC,POA(D, w) (dimensionless) after 24 h
of simulation (0600 LST the following day), with and without coagulation, as defined in equation (30).
The maximum plotted value for n̂BC,POA(D, w) is capped at 4 to allow better resolution.

Figure 14. Mass distribution after 24 h (0600 LST the
following day) for three different mixing state ranges:
mBC,dry(D, [0%, 2%]), mBC,dry(D, [2%, 10%]), and
mBC,dry(D, [60%, 70%]), as defined in equation (31). The
cases with and without coagulation are plotted for
comparison.
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particles. Figure 15 shows the two-dimensional number
distribution n(D, k), where k is the number of coagulation
events. At the end of the simulation, 5% of particles had
undergone at least five coagulation events. The trend was
that particles that had experienced more coagulation events
tended to be larger, with a maximum of 18 events for a single
particle. Given a certain size, the number of coagulation
events varied, which shows the stochastic nature of the
coagulation process. The range of variation was greater
for larger particles. For example, while the number of
coagulation events varied between 0 and 7 for particles
with D = 0.1 mm, it ranged between 0 and 13 for particles
with D = 0.3 mm.

6. Summary

[93] In this paper we presented the development and
application of a stochastic particle-resolved aerosol model,
PartMC-MOSAIC. It explicitly resolves the composition of
individual aerosol particles as the population evolves in time
as a result of emission, dilution, condensation and coagula-
tion. To make this computationally feasible we developed
a new constant-time-step binned-sampling approach for
stochastic coagulation with highly nonuniform coagulation
kernels, such as the Brownian kernel over the atmospher-
ically relevant aerosol size ranges. Owing to the explicit
representation of mixing state on a per-particle level,
PartMC-MOSAIC is suitable for use as a numerical bench-
mark of mixing state for more approximate models. The code
for PartMC is available under the GNU General Public
License (GPL) at http://lagrange.mechse.illinois.edu/mwest/
partmc/, and the MOSAIC code is available upon request
from R. A. Zaveri.
[94] We applied PartMC-MOSAIC to an idealized exam-

ple urban plume case to simulate the aging process of black
carbon in an evolving aerosol population. For the first time,

results of the aerosol composition and size distribution were
available as a fully multidimensional distribution without
any a priori assumptions about the evolution of the mixing
state. This detail of information was only achievable with a
particle-resolved model.
[95] To display the results, we projected the multidimen-

sional mass and number distributions to two-dimensional
distributions depending on particle size and BC mass ratio.
We specifically discussed the results for BC mass ratios
defined with respect to all other dry constituents, wBC,dry,
and to POA, wBC,POA. Owing to the diurnal variations in
temperature, relative humidity, and gas phase concentra-
tions, the thermodynamic equilibrium conditions for the
ammonium-sulfate-nitrate system changed continuously.
The aerosol hydration hysteresis effect led to the coexis-
tence of metastable (wet) and stable (dry) particles in the air
parcel during the daytime, depending on their time of
emission. Since the formation of ammonium nitrate depends
on the particle phase state, this in turn resulted in pro-
nounced differences in how the aging proceeded. As a result
of coagulation and condensation, after 24 h of simulation
the aerosol population evolved into a state where a contin-
uum of BC mixing states existed. Coagulation was effective
in removing smaller particles and in altering the distribution
of mass in the space of mixing states.
[96] We emphasize that the primary value of the study in

section 5 was to demonstrate the new model capabilities.
We designed the urban plume scenario as a compromise in
terms of simplicity while still reflecting processes that are
relevant in reality. For future application it be will important
to strengthen the connection of model results to physical
reality by connecting PartMC-MOSAIC simulation results
to direct measurements. This includes a more detailed
treatment of the properties of individual particle emissions.
In this regard it would be helpful to obtain quantitative
information on the composition of the main particle classes
that are present in the emissions categories being treated.
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Lesins, G., P. Chýlek, and U. Lohmann (2002), A study of internal and
external mixing scenarios and its effect on aerosol optic properties and
direct radiative forcing, J. Geophys. Res., 107(D10), 4094, doi:10.1029/
2001JD000973.

Levin, Z. L., E. Ganor, and V. Gladstein (1996), The effects of desert
particles coated with sulfate on rain formation in the eastern Mediterra-
nean, J. Appl. Meteorol., 35, 1511–1523.

Lohmann, U., J. Feichter, C. C. Chuang, and J. E. Penner (1999), Prediction
of the number of cloud droplets in the ECHAM GCM, J. Geophys. Res.,
104, 9169–9198.

Maisels, A., F. E. Kruis, and H. Fissan (2004), Direct simulation Monte
Carlo for simultaneous nucleation, coagulation, and surface growth in
dispersed systems, Chem. Eng. Sci., 59, 2231–2239.

McGraw, R. (1997), Description of aerosol dynamics by the quadrature
method of moments, Aerosol Sci. Technol., 27, 255–265.

McGraw, R., L. Leng, W. Zhu, N. Riemer, and M. West (2008), Aerosol
dynamics using the quadrature method of moments: Comparing several
quadrature schemes with particle-resolved simulation, J. Phys. Conf. Ser.,
125, 012020, doi:10.1088/1742-6596.

Medalia, A., and D. Rivin (1982), Particulate carbon and other components
of soot and carbon black, Carbon, 20, 481–492.

Menon, S., J. Hansen, L. Nazarenko, and Y. F. Luo (2002), Climate effects
of black carbon aerosols in China and India, Science, 297, 2250–2253.

Nam, E., C. Fulper, J. Warila, J. Somers, H. Michaels, R. Baldauf,
R. Rykowski, and C. Scarbro (2008), Analysis of particulate matter emis-
sions from light-duty gasoline vehicles in Kansas City, Tech. Rep. EPA420-
R-08-010, 85 pp., Environ. Prot. Agency, Washington, D. C.

Nenes, A., W. C. Conant, and J. H. Seinfeld (2002), Black carbon radiative
heating effects on cloud microphysics and implications for the aerosol
indirect effect: 2. Cloud microphysics, J. Geophys. Res., 107(D21), 4605,
doi:10.1029/2002JD002101.

Okada, K., and R. M. Hitzenberger (2001), Mixing properties of individual
submicrometer aerosol particles in Vienna, Atmos. Environ., 35, 5617–
5628.

Penner, J. E. (1995), Carbonaceous aerosols influencing atmospheric radia-
tion: Black and organic carbon, in Aerosol Forcing and Climate, pp. 91–
108, John Wiley, Hoboken, N. J.

Pope, A., and D. Dockery (1996), Epidemiology of chronic health effects:
Cross-sectional studies, in Particles in Our Air: Concentrations and
Health Effects, edited by R. W. und J. Sprengler, pp. 149–168, Harvard
Univ. Press, Cambridge, Mass.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007),
Numerical Recipes: The Art of Scientific Computing, third ed., Cam-
bridge Univ. Press, New York.

Rathinam, M., L. R. Petzold, Y. Cao, and D. T. Gillespie (2003), Stiffness in
stochastic chemically reacting systems: The implicit tau-leaping method,
J. Chem. Phys., 119, 12,784–12,794, doi:10.1063/1.1627396.

Riemer, N., H. Vogel, B. Vogel, and F. Fiedler (2003), Modeling aerosols
on the mesoscale g: 1. Treatment of soot aerosol and its radiative effects,
J. Geophys. Res., 108(D19), 4601, doi:10.1029/2003JD003448.

Robert, M. A., M. J. Kleeman, and C. A. Jakober (2007), Size and compo-
sition distributions of particulate matter emissions: Part 2—Heavy-duty
diesel vehicles, J. Air Waste Manage. Assoc., 57, 1429 – 1438,
doi:10.3155/1047-3289.57.12.1429.

Roeckner, E., P. Stier, J. Feichter, S. Kloster, M. Esch, and I. Fischer-Bruns
(2006), Impact of carbonaceous aerosol emissions on regional climate
change, Clim. Dyn., 27, 553–571.

Saathoff, H., K.-H. Naumann, N. Riemer, S. Kamm, O. Möhler, U. Schurath,
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