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[1] Forest disturbances greatly alter the carbon cycle at various spatial and temporal
scales. It is critical to understand disturbance regimes and their impacts to better quantify
regional and global carbon dynamics. This review of the status and major challenges in
representing the impacts of disturbances in modeling the carbon dynamics across
North America revealed some major advances and challenges. First, significant
advances have been made in representation, scaling, and characterization of disturbances
that should be included in regional modeling efforts. Second, there is a need to develop
effective and comprehensive process‐based procedures and algorithms to quantify the
immediate and long‐term impacts of disturbances on ecosystem succession, soils,
microclimate, and cycles of carbon, water, and nutrients. Third, our capability to simulate
the occurrences and severity of disturbances is very limited. Fourth, scaling issues have
rarely been addressed in continental scale model applications. It is not fully understood
which finer scale processes and properties need to be scaled to coarser spatial and temporal
scales. Fifth, there are inadequate databases on disturbances at the continental scale to
support the quantification of their effects on the carbon balance in North America. Finally,
procedures are needed to quantify the uncertainty of model inputs, model parameters,
and model structures, and thus to estimate their impacts on overall model uncertainty.
Working together, the scientific community interested in disturbance and its impacts can
identify the most uncertain issues surrounding the role of disturbance in the North
American carbon budget and develop working hypotheses to reduce the uncertainty.

Citation: Liu, S., et al. (2011), Simulating the impacts of disturbances on forest carbon cycling in North America: Processes,
data, models, and challenges, J. Geophys. Res., 116, G00K08, doi:10.1029/2010JG001585.

1. Introduction

[2] Forest ecosystems store more than 80% of all terres-
trial aboveground carbon (C) and more than 70% of all soil
organic C worldwide [Batjes, 1996; Jobbágy and Jackson,
2000]. The magnitude of forest‐atmospheric carbon diox-
ide (CO2) exchange is about seven times the current level of

annual global anthropogenic C emissions. From 1850 to
2000, roughly 28–40% of global anthropogenic CO2 emis-
sions resulted directly from deforestation [Houghton, 2010],
whereas recovery from past disturbances is considered to
be the dominant driver for some regional terrestrial carbon
sinks, contributing to a large portion of the current northern
hemisphere terrestrial sink [e.g., Goodale et al., 2002;
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Fang et al., 2001; Kauppi et al., 2006; Pan et al., 2011].
Understanding disturbances is critical for a more accurate
calculation of regional carbon fluxes and helpful to better
inform policy makers on the importance and uncertainty of
disturbances on regulating the regional and global carbon
cycle.
[3] A disturbance is defined as “any relatively discrete

event in time that disrupts ecosystem, community, or pop-
ulation structure and changes resources, substrate avail-
ability, or the physical environment” [Pickett and White,
1985]. Carbon stocks and fluxes of forests are influenced
by both natural and human disturbances that alter forest
structure and affect fundamental carbon cycle processes
[Franklin et al., 2002; Chambers et al., 2007; Goward et al.,
2008; Vargas and Allen, 2008] and the biogeochemical
interactions between forests and the atmosphere [Schimel
et al., 2001; Fang et al., 2001; Kauppi et al., 2006; Masek
and Collatz, 2006; Zhao et al., 2009, 2010a]. For example,
it has been estimated that wildland fire disturbances in
Canada can change the direction of net forest‐atmospheric
C exchange in any given year [J. M. Chen et al., 2000; Kurz
and Apps, 1999; Bond‐Lamberty et al., 2007a; Kurz et al.,
2008b; Stinson et al., 2011]. Wiedinmyer and Neff [2007]
estimated that annual fire emissions are about 0.06 Pg C
per year from 2002 to 2006 in the United States, which is
equivalent to about 4% of U.S. fossil fuel emissions. The
average direct C emission from Canadian forest fires was
0.027 Pg C per year from 1959 to 1999 with large inter‐
annual variability [Amiro et al., 2001], and this emission
was expected to increase under future climate change sce-
narios [Amiro et al., 2009]. Chambers et al. [2007] esti-
mated that about 320 million large trees were killed or
damaged along the U.S. Gulf Coast by Hurricane Katrina in
2005, representing a biomass of 0.09–0.11 Pg C transferred
from live to dead pools. Zeng et al. [2009] analyzed the
impacts of historical tropical cyclones on U.S. carbon cycle
and found that cyclone damages from 1980 to 1990 offset
about 9–18 percent of the C sink in forest trees over the
United States. Vargas and Allen [2008] have reported the
highest annual soil CO2 efflux with nearly 4000 g C
m−2yr−1 after hurricane Wilma in 2005. Forest management
and conversion also affect carbon cycling at large scales
[Beer et al., 2010]. The U.S. Forest Service has estimated
that approximately 4.05 million hectares or 1.3% of forest
lands are affected by harvesting activities each year across
the United States [Smith and Darr, 2004]. Insect outbreaks,
which have impacted millions of hectares of forest in North
America during recent decades, appear to have increased in
both extent and severity [Carroll et al., 2004; Raffa et al.,
2008] and are likely having larger effects on the carbon
balance of North America [e.g., Kurz et al., 2008a].
[4] These observations highlight the importance of

including disturbances for a better estimation of the North
American carbon budget. To date, however, assessment
efforts have not comprehensively considered the full spec-
trum of disturbance impacts on regional to global carbon
budgets, in part, because of the lack of adequate disturbance
databases and appropriate models capable of dynamically
incorporating disturbance information at regional scales
[Beer et al., 2010; Ciais et al., 2010; Harmon et al., 2011].
Therefore, models have rarely included parameters that
describe ecosystem responses to disturbances or have made

assumptions based on few observations in discrete ecosys-
tems (mainly temperate or boreal) [Beer et al., 2010;
Medvigy et al., 2010]. Yet modeling is useful for improving
knowledge of the North American carbon budget in several
ways: (1) replication of measurements with models sug-
gests sufficient understanding of the simulated processes;
(2) model results can fill in the many spatial and temporal
gaps in observations; and (3) models can predict future pat-
terns of carbon stocks and fluxes in the context of future
global change.
[5] Here we conduct a review with an emphasis on North

America as part of a synthesis effort within the North
American Carbon program. Our goals are to (1) describe
observational evidence of the impacts of various disturbances
on forest structure, forest succession, and C cycle, and how
disturbances and their impacts are treated and modeled in
state‐of‐the‐art carbon cycle models at the stand level; (2)
summarize how disturbances and their impacts are scaled up
from stand to continental scales; and (3) review major
regional‐ to continental‐scale data sets on disturbances and C
stocks and fluxes that can be used for quantifying disturbance
impacts. Challenges regarding data sets, knowledge, and
modeling are discussed in each of the sections. Finally, we
suggest a better interaction between the modeling community
and the experimental community to identify the most uncer-
tain areas and develop working hypotheses and data‐model‐
fusion methods to reduce the uncertainty associated with
disturbance impacts.

2. Process Understanding and Representation

[6] Disturbances alter forest structure and affect forest
carbon dynamics in two major ways. First, they transfer
carbon from one pool to another (e.g., from live boles to dead
coarse woody debris, or from the live biomass pool and
surface soil pool to the atmospheric carbon pool through fire
consumption). Second, disturbances modify forest soil’s
physical and chemical factors and microclimatic environ-
ments, creating ecological legacies that have long lasting
effects on carbon dynamics (Figure 1). Because by definition
disturbances always affect the carbon cycle, it is necessary to
have a clear understanding of forest structural components
before we estimate the impacts of disturbances.
[7] The fundamental components contributing to forest

structure and function at the stand level are tree species
composition, stem density, leaf area, canopy coverage, size
of trees, understory, litter and coarse woody debris (CWD),
and soil substrate (Table 1). Forest stand structure is char-
acterized by the vertical distribution of stems, branches, and
foliage and the spatial distribution of trees and other struc-
tures such as standing dead trees (snags) and CWD on the
forest floor [Harmon et al., 1986; Spies and Franklin, 1988].
Removal or falling of trees impacts the spatial distribution of
trees and thus forest structure such as the creation of canopy
gaps [Runkle, 1982; Pickett and White, 1985; Canham et al.,
1990].

2.1. Legacy Impacts of Disturbances

[8] Disturbances are part of the dynamic fabric of eco-
systems with strong spatial and temporal variability, creating
a spectrum of legacies in forest structure, successional stages,
and carbon cycle trajectories (Figure 1). In general, legacy
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impacts of disturbances on the carbon cycle can be sum-
marized into two categories: mortality and mass transfer, and
succession (i.e., changes in heterotrophic respiration, forest
succession, and altered soil‐climate environment).
2.1.1. Mortality and Mass Transfer
[9] Disturbances might kill trees, resulting in direct and

immediate carbon transfer to the atmosphere (in the case of
fire) and a shift in structural elements from live to dead pools
(e.g., leaves to litter, trees to snags or logs, live roots to
coarse woody debris, etc.). Models usually have a set of
algorithms dealing with disturbance‐induced carbon transfer
among pools and their impacts on biogeochemical cycles
[e.g., Parton et al., 1987; Thornton et al., 2002; Liu et al.,
2004; Zhao et al., 2009]. Most of the accounting proce-
dures are straightforward and similar among different mod-
els as the C transferred from any live C pool to its dead C
equivalent is generally calculated as the fraction that dies
(C transfer coefficient) multiplied by the pre‐disturbance
live C pool. However, it is a major challenge to accurately
define the C transfer coefficients for various disturbances as

they vary over time and space (i.e., specifying or simulating
the extent and severity of a disturbance). For example,
although fire extent and severity can be mapped using remote
sensing techniques, linking fire severity with biomass con-
sumption and C transfer coefficients from live to dead C
pools has a high degree of uncertainty [Bond‐Lamberty et al.,
2007c; Rocha and Shaver, 2011; Bond‐Lamberty et al.,
2007b]. In addition, few disturbance models [Bachelet
et al., 2005; Thonicke et al., 2001] can predict the spa-
tial and temporal variation of C emissions and C transfer
coefficients under future global change scenarios [Medvigy
et al., 2010].
[10] Figure 2 details the impacts of various disturbances

using a common framework. In essence, this framework
systematically specifies the effects of disturbances by
assigning coefficients to describe fractions of all C and
nutrients pools that (1) are consumed and emitted to the
atmosphere, (2) die and fall to the ground, (3) die and remain
standing, and (4) are harvested and are laterally transported
out of the forest stand. Mass transfer rates from each of the

Table 1. Simplified Representations of Major Structural Elements and C Pools in Typical Forest Carbon Cycle Models

Model
Type

Representation of
Individuals and

C Pools Key Structural Elements
Live Structural Elements

or C Pools
Dead Structural Elements

or C Pools Soil C Pools

Tree Lumped by trees and
pools

Species, age, diameter, height,
rooting depth

Leaves, branches, stems,
coarse roots, fine roots

Litter, standing dead trees
(snags), large woody debris
(logs), coarse dead roots,
root litter

Soil organic C,
and inorganic C

Cohort Lumped by cohorts
and pools

Species, density, age, diameter,
and height distributions

Stand Lumped by pools Forest type, tree density, age,
canopy height, and leaf
area distribution

Figure 1. Impact of disturbances on forest ecosystem structural development and the creation of distur-
bance legacies.
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C pools on the left side of Figure 2 to all the pools on the
right side are specified using this scheme. Mass transfer
rates effectively describe disturbance intensity or severity,
including both mortality (i.e., the reduction of live C pools
following disturbance) and the amounts of mass transferred
among pools. Simplified, disturbance‐ or model‐ specific
schemes have been used effectively for different databases
and models to focus on the mortality and major disturbance‐
specific C transfer pathways (e.g., partitioning of fire
emissions among CO2, CH4 and CO in the work by French
et al. [2011]). This unified framework is useful to provide a
comprehensive overview on the need of quantifying the
immediate impacts of various disturbances.
2.1.2. Successional Dynamics
[11] Stand evolution trajectories are often altered dramat-

ically by disturbances [Johnstone et al., 2010] (Figure 1), but
natural disturbances rarely eliminate all structural elements
from the affected stand [Franklin et al., 2002]. Disturbances
can create vastly contrasting quantities and types of living
and dead structures that contribute to the ecological legacies
associated with structurally diverse starting points for stand
structural development [Johnstone et al., 2010]. Such dis-
turbance effects can propagate through the forest for decades
at least [Gough et al., 2007] creating lags in heterotrophic
respiration caused by delayed mortality or delayed decom-
position [Harmon et al., 2011]. Less evident observable
effects (e.g., changes in nutrient cycles, belowground pro-
cesses) are not well known and open challenges and
opportunities for basic research and model improvement.
[12] Post‐disturbance carbon balance depends on many

ecosystem processes including regeneration and vegetation
succession, photosynthesis, and respiration [Goulden et al.,

2010]. Disturbances may switch forests from a sink to a
source of carbon by increasing respiration and reducing leaf
biomass and therefore photosynthesis in the period after
disturbances (Figure 3). Measurement of net ecosystem C
exchange has shown that regenerating temperate forests
remained net sources of CO2 for at least 14 years after
logging, due to increased rates of soil respiration [Olsson
et al., 1996; Yanai et al., 2003; Clark et al., 2004]. Amiro
et al. [2010] analyzed more than 180 site‐years of eddy‐
covariance measurements of carbon fluxes made at forest
chronosequences in North America, and showed that net
ecosystem production (NEP) exhibited a carbon loss from
all ecosystems following a stand‐replacing disturbance,
becoming a carbon sink by 20 years for all ecosystems,
and by 10 years for most.

2.2. Modeling Forest Carbon Dynamics and Impacts
of Disturbances

2.2.1. Modeling Approaches
[13] Various process‐based models have been developed

over the past several decades for simulating forest carbon
dynamics. The effects of stand information, interannual cli-
mate variability, disturbance history, and vegetation eco-
physiology on carbon fluxes and stocks are integrated by
these ecosystem process models with various complexities.
These models can generally be placed into two major cate-
gories: ecosystem compartment models and demography
models. It is worthwhile to point out that process models
can also be categorized as either diagnostic or prognostic
models [Knorr et al., 2010; King et al., 2011].
[14] Many compartment models have been developed

over the past three decades [Parton et al., 1987; Running

Figure 2. A unified framework for specifying mortality and C transfer among various C pools in a forest
system caused by a disturbance. One‐to‐many relationships usually exist for mass transfer. For example, a
portion of live trunks in the forest can be killed by a wind storm, which defines mortality, and the dead
materials are transferred to standing and/or down coarse woody debris (CWD), and the rest remains alive.
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and Gower, 1991; Bond‐Lamberty et al., 2005; W. Chen
et al., 2000; Chen et al., 2003; Raich et al., 1991;
McGuire, 1992; Liu et al., 2003]. These biogeochemical and
ecophysiological models use general stand information (see
Table 1) and meteorological data to simulate energy, carbon,
water, and nitrogen cycling in various details. One key
commonality of these compartment models is that the carbon
pools of a stand are organized by biomass compartments
such as leaves, branches, stems, roots, and CWD and the
structural information such as diameter at the breast height
(DBH), tree height, and density are not explicitly considered
in model representations. Most of the models consider both

forest growth recovery under the influence of climate and
atmospheric (CO2 and nitrogen) changes and the interaction
between growth variation and heterotrophic respiration var-
iation. This type of model is needed because during the long
life span of forests, climate and atmospheric changes are
considerable and the impacts of these changes on forest
carbon cycle cannot be ignored [Pan et al., 2010; Norby
et al., 2001]. These models represent the foundation of
ecosystem carbon modeling efforts because of their gener-
alized approach to ecosystem carbon dynamics, and have
been extensively examined and applied to simulate biogeo-
chemical processes of forests associated with disturbance

Figure 3. Theoretical carbon stock and flux changes of a forest ecosytem following a stand‐replacing
disturbance event. (a) Changes of gross primary productivity (GPP), net primary productivity (NPP),
net ecosystem productivity (NEP) and net biome productivity (NBP) following disturbance. (b) Changes
of three major carbon pools as affected by disturbance; the ecosystem lose a significant amount of C
during and after the disturbance, but will have net carbon gain after about 20 years due to forest regrowth.
(c) Changes of ecosystem autotrophic respiration (Ra), heterotrophic respiration (Rh), and removals
(e.g., logging, fire removal, insect consumption, erosion, etc.). Ra = GPP‐NPP; Rh = NPP‐NEP; removal
all = NEP‐NBP.

LIU ET AL.: SIMULATING THE IMPACTS OF DISTURBANCES G00K08G00K08

5 of 22



[W. Wang et al., 2009; Law et al., 2003; Tatarinov and
Cienciala, 2006; Brugnach, 2005].
[15] In contrast, ecosystem demography models, which are

also referred to as gap models, used a different modeling
structure targeted to simulate the impacts of disturbances on
forest composition and structure. They explicitly consider
species composition, mortality, age structure, height, and
disturbances (see Table 1). Since the conception and devel-
opment of the classic JABOWA model [Botkin et al., 1972],
many such models have been developed, including SORTIE
[Pacala et al., 1996], FIRE‐BGC [Keane et al., 1996],
LINKAGES [Pastor and Post, 1986], FORCLIM [Bugmann,
1994], HYBRID [Friend et al., 1997], LANDIS [Mladenoff,
2004], FVS [Dixon, 2002], and ED [Hurtt et al., 1998;
Moorcroft et al., 2001]. They have been widely used to
simulate the impacts of management practices, disturbances,
and global change on long‐term dynamics of forest structure,
biomass, and composition [Shugart et al., 1992; Hurtt et al.,
1998; Bugmann, 2001; Norby et al., 2001; Dixon, 2002]. All
forest gap models are built upon the notion that a forest stand
is a composite of many small horizontally homogeneous
patches of land, and these patches are simulated separately
with possibly different species composition, age, and/or
successional stage. This abstraction and modeling strategy
made it possible to consider the establishment, growth, and
mortality of mixed‐species, mixed‐age forests [Bugmann,
2001; Norby et al., 2001; Wullschleger et al., 2001].
2.2.2. Understanding and Representation of Major C
Cycle Processes
[16] Initially, disturbances kill some or most of the pho-

tosynthetic organs (i.e., leaves) in a forest, instantly reducing
its gross carbon uptake capability. The evolution of photo-
synthetic activity of a forest following disturbances can be
modeled from stand structural information (e.g., species
composition and leaf area index (LAI)), soil moisture, tem-
perature, nutrients, and microclimate using a variety of
approaches. Major approaches for photosynthesis modeling
include (1) the Farquhar’s leaf‐level biochemical equations,
in which Rubisco concentration and stomatal conductance
are key parameters, applied to the canopy level through the

use of LAI based on big‐leaf (Biome‐BGC [Kimball et al.,
1997]), two‐leaf [De Pury and Farquhar, 1997; Wang and
Leuning, 1998], or multilayer [Bonan, 1995] upscaling
methodologies; (2) stand‐specific maximum photosynthesis
rate (prescribed or derived from in situ measurement or
satellite observations, [Zhao et al., 2010a] multiplied by
scalars of LAI, temperature, soil moisture, and/or nutrients;
(3) light‐use efficiency approaches that rely heavily on LAI
or normalized difference vegetation index (NDVI), moisture,
and temperature [Potter et al., 1998; Hicke et al., 2002; Yuan
et al., 2007]; and (4) data‐driven and statistical‐based
approaches in which the predictive models are derived from
eddy covariance flux measurements and explanatory vari-
ables such as land cover, enhanced vegetation index (EVI),
land surface temperature (LST), moisture index, and LAI
[e.g., Xiao et al., 2010, 2011]. Net primary production is
partitioned into biomass compartments, in some models,
following tree‐specific dynamic allocation patterns possibly
adjusted by nutrients and forest development stage [Running
and Gower, 1991]. The growth rate of a recovering forest
varies greatly with the time since disturbance [Gower et al.,
1996; Chen et al., 2002] (Figure 4). This rapid change in
NPP with age is the main cause of the measured NEP vari-
ation with age for boreal forests [Coursolle et al., 2006] and
temperate forests [Law et al., 2003].
[17] Fire disturbance has other near‐instantaneous effects,

in particular the combustion of biomass; the loss of this C
to the atmosphere exerts a significant radiative forcing
[Randerson et al., 2006]. In many high‐latitude forests and
tundra, the depth of burning (in the thick organic horizon) is a
key factor in estimating carbon losses and subsequent eco-
system‐ to biome‐scale climate feedbacks, and one likely to
be affected by changes in fire intensity [Turetsky et al., 2011].
Significant efforts have been directed toward this area as part
of the North American Carbon Program [e.g., Balshi et al.,
2007], and French et al. [2011] provide a comprehensive
review of methods used to model carbon emissions. In
addition, fires generate black carbon [Czimczik et al., 2003;
Kane et al., 2007], a long‐lived though not indefinite [Ohlson
et al., 2009] carbon pool in boreal forests. Black carbon
accumulation can significantly change the composition of
recalcitrance of soil organic matter, in ways that remain
poorly understood [Kane et al., 2010] and rarely modeled.
[18] The impacts of disturbances on heterotrophic respi-

ration, primarily originating from the soil and CWD pools,
are difficult to quantify [Trumbore, 2006; Harmon et al.,
2011]. The size of the soil C pool is determined by the
balance between C input from litterfall (including woody
debris) and root mortality/exudation and the release of C
during decomposition. Soil C decomposition depends on
many factors, including the size of the soil C pools, chem-
ical quality of the substrate, soil microclimate, and soil
properties (temperature, moisture, soil texture, pH, nutrient
status, etc.) [Trumbore et al., 1996; Liski et al., 1999;
Davidson and Janssens, 2006]. Disturbances usually not
only transfer live materials to the dead structural compo-
nents but also alter the subsequent size of soil organic C
pools as well as soil and microclimate conditions, affecting
heterotrophic respiration for several decades after distur-
bance. Decomposition of C on the forest floor and in the soil
profile can be enhanced for years after disturbances because
soils become warmer and possibly wetter due to reduced

Figure 4. Variation of NPP with forest stand age under
various site conditions, for black spruce forests in Ontario,
Canada [Chen et al., 2002].
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evapotranspiration in boreal forests, for example; such
effects have been observed in the field [Yi et al., 2010] and
modeled at the landscape scale [Bond‐Lamberty et al.,
2009]. In addition, uprooting of trees by windthrow can
accelerate the decomposition of partially protected C in deep
soil layers [Vargas et al., 2010]. Litter fall and rhizodepo-
sition dramatically decrease shortly after disturbance, and
labile soil carbon pools would therefore decrease signifi-
cantly, leading to decrease in heterotrophic respiration.
Finally, it is important to understand how disturbances and
heterotrophic respiration are simulated in models and how
elemental equations representing these processes are con-
structed. For example, it is critical to assess whether the
global convergence of temperature sensitivity of ecosystem
respiration (Q10) (∼1.4 [Bond‐Lamberty and Thomson,
2010a; Mahecha et al., 2010]) is consistent after dis-
turbances across ecosystems. Disturbance effects on het-
erotrophic respiration are particularly important to constrain;
Amiro et al. [2010] and Goulden et al. [2010] both found
that the carbon dynamics following disturbance is primarily
driven by gross primary productivity, while heterotrophic
respiration was relatively time‐invariant.
[19] CWD evolution is an aspect of forest structural

changes during forest recovery or succession. The size and
decay classes of CWD at a forest site can be linked to his-
tories of forest disturbance, management, and forest suc-
cession [Gough et al., 2007]. Major disturbances can destroy
the old stands, creating large‐size classes of debris (snags
and logs) in early decay classes, and initiate a new stand
[Oliver, 1980; Harmon et al., 1986] (Figure 1). These large‐
size classes of CWD will gradually degrade into rotting
organic matter during forest stand development. Through
measurements of woody debris pools along numerous
chronosequences, investigators have developed a paradigm
of a U‐shaped curve that characterizes the long‐term CWD
dynamics in unmanaged disturbed forests [Spies and
Franklin, 1988; Currie and Nadelhoffer, 2002]. In this U‐
shaped curve, CWD from the previously disturbed stands
decays slowly, while that originating from the new stand
gradually accumulates after a lag of several decades [Harmon
et al., 1986]. In addition, woody decay after disturbance does
not often follow a monotonic trend, since wood debris pools
standing in the air will be different from the pools fallen on the
ground in terms of decomposition rates, resulting in a few
pulses of decomposition many years after the disturbance
[Harmon et al., 2011].
[20] Finally, a novel aspect of forest recovery after dis-

turbances is the ability of plants to use old nonstructural
carbon compounds (NSC) for metabolic activities [Vargas
et al., 2009]. After disturbances plants are under stress
with a limited capacity to photosynthesize and to take up
nutrients and water, which may further reduce gross primary
productivity (GPP). Thus, the possibility that plants allocate
older stored carbon for metabolic activities provides a new
dimension of the fate and the implied role of stored carbon
in plants that could be incorporated in the next generation of
models. Failure to account for the mobilization of older
stored carbon for plant metabolic activities can lead to
inaccurate estimates of above and below‐ground NPP, and
has implications for our understanding of plant recovery and
resilience adaptations [Langley et al., 2002].

2.2.3. Modeling the Impacts of Harvest
[21] Manymodeling studies have investigated the effects of

harvest on the carbon cycle at regional to continental scales
[e.g., Hurtt et al., 2002; Liu et al., 2003; Zhao et al., 2010a;
Albani et al., 2006; Shevliakova et al., 2009]. The effects of
harvesting practices on aboveground biomass C reduction are
straightforward, but its impacts on soil carbon dynamics are
poorly understood. Harvesting results in structural damages
to forest canopy and soils, and can increase litter C stock at the
forest floor and in soil temporarily. But overall it enhances
soil C loss because of structural damages to forest canopy and
the soil. In the years following disturbances, soil C loss may
exceed C gain in the aboveground biomass [Kowalski et al.,
2004]. Pennock and van Kessel [1997] showed that soil C
was reduced between 5 and 20 t C/ha over 20 years following
clear‐cutting, which is a significant loss compared to the
accumulated C in the biomass of the maturing forest.
[22] Soil C dynamics are related to the intensity of har-

vesting and recovery of productivity. Whole‐tree harvesting
can cause a small decrease whereas conventional harvesting
(leaving the non‐timber materials on site) results in a small
increase of soil C [Johnson and Curtis, 2001; Tang et al.,
2009]. Nevertheless, the small changes usually diminish
over time without a lasting effect [Johnson and Curtis, 2001;
Tang et al., 2009]. Tang et al. [2005] found that forest
thinning did not change soil respiration because thinning
caused combined effects of a decrease in root respiration, an
increase in soil organic matter, and changes in soil temper-
ature and water content. Jandl et al. [2007] analyzed the
effects of harvesting, thinning, and control of natural dis-
turbances on soil C dynamics, and found that soil C storage
can be enhanced by increasing C input to the soil through
enhanced forest productivity. At the same time, minimizing
the impacts of disturbances on forest structure and soil
reduces the risk of unintended C loss.
[23] Selective harvesting (or thinning) is a centerpiece of

silvicultural practices in the world to promote desired tree
species, stem quality, and ecosystem services. For example,
the areal extent of partial cutting is 61 percent of that of
clear‐cutting in the United States [Masek et al., 2011].
Although selective cutting is a widespread forest manage-
ment practice, the effects of selective cutting on carbon
budget have largely been ignored over large areas. It is dif-
ficult to use process models to assess such effects at regional
to continental scales because of data scarcity and technical
limitations [Franklin et al., 2009]. Realizing the importance
of selective cutting in the simulation of regional C dynamics,
Liu et al. [2003] calculated the area of selective cutting from
clear‐cut area (detected from remote sensing) and the ratio of
clear‐cut and selective‐cut at regional scale from surveys,
and then randomly allocated the total selective‐cut area to
grid cells on landscape.
2.2.4. Modeling the Impacts of Insect Outbreaks
[24] Herbivorous insects have serious impacts on forests

either through the consumption of leaves or fluids (e.g.,
defoliation) or through consumption of phloem (e.g., by bark
beetles). Defoliators feed on tree leaves, causing reductions
in leaf area and primary productivity [Cook et al., 2008;
Hogg et al., 2008]. Some insects such as the forest tent
caterpillar are responsible for widespread defoliation that
rarely results in whole tree mortality [Volney and Fleming,
2000]. However, other defoliators like the eastern spruce
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budworm in northeastern North America can result in
widespread tree mortality following multiple years of severe
attacks [Fleming et al., 2002; Samman and Logan, 2000].
For example, the mountain pine beetle (Dendroctonus pon-
derosae Hopkins, Coleoptera: Curculionidae, Scolytinae), a
native insect of the pine forests of western North America,
has recently affected 130,000 km2 in British Columbia [Kurz
et al., 2008a]. Other bark beetles that have caused damage
over large regions include spruce beetle and Ips spp. in
western North America, and southern pine beetle in the
southern U.S. [U.S. Department of Agriculture (USDA),
2009; Raffa et al., 2008].
[25] Several factors require consideration for modeling the

impacts of insect outbreaks on the carbon cycle, including the
type, extent and severity of insect disturbance and the con-
sequences of tree mortality. The type of insect disturbance
(e.g., bark beetle or defoliator) determines which carbon
cycle process is affected. Consequences of tree mortality,
such as subsequent needledrop, snagfall, and seedling
establishment, need to be represented. The spatial extent and
severity of outbreaks need to be prescribed in the model.
[26] Several studies have investigated impacts of insect

outbreaks to the C cycle at the stand scale. For instance,
Hogg [2001] investigated the impact of forest tent cater-
pillars on growth and dieback dynamics of trembling aspen
using a modified version of the FOREST‐BGC ecosystem
model, and found that this insect was a key factor in con-
trolling the growth and dieback of aspen. Schäfer et al.
[2009] conducted a similar study on gypsy moth defolia-
tion using the 4C‐A model. Only 50% of the foliage ree-
merged after the disturbance, which reduced productivity by
75%. Seidl et al. [2008] examined spruce bark beetle dis-
turbances on 1 ha stands using the patch model PICUS in
Europe, with insect damage calculated as a function of the
infestation risk, infestation damage, spatial distribution of
mortality, and population dynamics. Biotic disturbances
were found to be important mechanisms controlling future
responses of productivity to climate change in this study.
Pfeifer et al. [2010] used the Forest Vegetation Simulator
(FVS) to investigate stand‐level responses to mountain pine
beetle outbreaks in central Idaho, USA. The prescribed
insect‐caused tree mortality in this study resulted in sub-
stantial reductions in carbon stocks and fluxes following the
outbreak, depending on the extent of tree mortality. Pfeifer
et al. [2010] also found that stands generally recovered 25
years following the outbreaks, and that recovery rate was
strongly governed by the size of surviving trees.
[27] Several studies have addressed regional effects of

insect outbreaks. Kurz and Apps [1999] used the Carbon
Budget Model of the Canadian Forest Sector version 2
(CMB‐CFS2) to investigate carbon fluxes in the forests of
Canada from 1929 to 1989. The area affected was derived
from aerial surveys by converting the area affected into the
effective area of mortality through multipliers specific to
particular insect pest species. The study concluded that the
large increases in insect outbreaks in the late 20th century, in
conjunction with increased wildfire, caused Canadian for-
ests to switch from a net carbon sink to a net carbon source.
Kurz et al. [2008a] used CMB‐CFS3 to quantify the impacts
of an ongoing mountain pine beetle outbreak in British
Columbia. They used historical observations and predictions
of the future trajectory of the outbreak to determine that this

disturbance has caused the region to become a carbon source
that will continue for 20 years. Hicke et al. [2007] modeled
net primary productivity using satellite‐derived estimates
and the Carnegie‐Ames‐Stanford‐Approach light‐use effi-
ciency model in North America from 1982 through 1998.
They found significant increases in productivity in eastern
North America and suggested that this increase occurred as
forests recovered following outbreaks of spruce budworm
that had occurred in previous decades. Finally, Albani et al.
[2010] used the Ecosystem Demography model to investi-
gate the impact of the hemlock woolly adelgid on carbon
cycling in the eastern U.S. and found that this insect had a
small overall impact on regional carbon cycling due to the
low amount of hemlock in eastern forests.
[28] These studies suggest that some insect outbreaks may

have profound impacts on carbon dynamics in North
America, but that the impacts of climate and atmospheric
changes on forest insects and diseases are difficult to pre-
dict. Under changing conditions of ozone and ambient CO2

concentration, the population of insects and the frequency of
diseases increased in a FACE experiment in North America
with aspen (Populus tremuloides) and mixed aspen–birch
(Betula papyrifera) stands [Percy et al., 2002; Loya et al.,
2003]. In addition, forest productivity was suppressed
either because of damage or the detrimental effect of ozone.
The reduced production significantly lowered the rate of soil
C formation.
[29] The impacts of insects and diseases on forest carbon

dynamics are usually ignored in large‐scale model simula-
tions of carbon dynamics. Aerial survey databases exist and
can be used for defining when and where historical out-
breaks occur [Law et al., 2003]. However, such data have
limitations because they are not collected with the goal of
driving process models. Predictive models of insect out-
breaks exist for some processes for a few insect species
(e.g., winter mortality [Régnière and Bentz, 2007]), but
integrated prognostic models generally have not been
developed. An additional and rarely explored complication is
the potential interactions between disturbances, e.g., how
insect‐stressed stands might be more vulnerable to fire
[Kulakowski and Veblen, 2006].
[30] Significant gaps in our understanding of the impact of

insect and disease outbreaks on carbon cycling include
(1) the method of prescribing insect and diseases outbreaks
in a carbon cycle model; (2) adequate field observations
for model evaluation; and (3) representation of significant
disturbance‐related processes in carbon models. First, pre-
scribing insect outbreaks within a modeling framework
requires careful consideration. Observations quantifying
outbreak extent exist, but contain many uncertainties and
lack rigorous evaluation with ground observations. Con-
verting these data into actual area of mortality or carbon is
key to accurately specifying the extent of tree mortality [Kurz
and Apps, 1999]. In addition to prescribing historical out-
breaks, complete insect or disease prognostic models are
currently lacking. Ideally, such models would include host
tree susceptibility and population dynamics, both of which
are not well understood. Second, although field observations
of carbon cycle consequences of outbreaks exist [e.g., Amiro
et al., 2010], additional studies are needed across a broader
range of insect/disease and forest types and mortality
severity. Particularly useful are studies that observe all
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component carbon fluxes and that provide a control site for
comparison. Finally, a complete representation of processes
affected by outbreaks within carbon models may be lacking.
Tree mortality is rarely 100% within a stand (grid cell), so
the ability to track tree cohorts through time at a subgrid
scale facilitates simulations. Modifications in canopy struc-
ture due to snags also have an impact on light and water
interception, and thus on carbon stocks and fluxes. Seedling
establishment is another process controlling postoutbreak
carbon stocks and fluxes [Pfeifer et al., 2010]. The responses
of these processes are important for accurately modeling
forest carbon stocks and fluxes following an insect or dis-
ease disturbance.
2.2.5. Modeling the Impacts of Wildfire
[31] Wildland fire plays a critical role in the structure and

function of forest ecosystems in many regions in North
America. It is the primary disturbance in most western North
American forests and it is the primary stand‐renewing agent
in the Canadian boreal forest [Weber and Stocks, 1998]. The
role of fire in ecosystem C dynamics is complex and com-
plicated, however. Combustion emissions are often balanced
by long‐term C sequestration in young, vigorous trees
growing in the absence of competition. Nitrogen and phos-
phorus released by the consumption of duff and coarse
woody debris can be immediately utilized by surviving and
colonizing plants, increasing the potential for C sequestra-
tion, yet subsequent growth will be affected by nitrogen
losses as well [Harden et al., 2003]. Soil carbon lost during
fire events can be very difficult to replace if fire frequencies
increase [Turetsky et al., 2011]. However, the amount of C
lost to fire is difficult to estimate because of the challenges in
quantifying pre‐fire forest structure and biomass conditions,
severity of fire, the impacts of fire (e.g., consumption) on
diverse structural components [Amiro, 2001].
[32] Fire severity or the long‐ and short‐term ecological

effects of fire have been explored and quantified in field
studies [e.g., Kasischke and Johnstone, 2005; Zhu et al.,
2006; Turetsky et al., 2011]. Low severity fires produce
few C emissions but may immediately stimulate plant growth
and C storage by removing competition and releasing
sequestered nutrients. Few models provide comprehensive
fire severity estimates because fire effects are manifested at
all scales of simulation [Dalziel and Perera, 2009]. The
LANDSUM model [Keane et al., 2006], for example, can
generate generalized burn severity (low, medium and high)
probability maps based on stand‐level terrain and vegetation
conditions, while the FireBGC landscape model provides
comprehensive mechanistic simulations of tree mortality,
fuel consumption, smoke emissions, and carbon cycling at
the tree level [Keane et al., 1996]. Some landscape models of
fire and vegetation may oversimplify the effects of wildland
fire on carbon cycling by generalizing fire severity into
ordinal categories, while other sophisticated models simulate
fire behavior and model its effect on individual trees and fuel
consumption [Keane et al., 2004].
[33] Generalized combustion and/or mortality ratios for

tree, shrub, grass, surface fine litter, and soil organic matter
have been estimated based on field data from over 80 burns
(collected by C. Key et al., USGS, manuscript in review,
2011) are available for empirical model development, but
complex mechanistic models need fine‐scale, process driven
parameters. To validate and parameterize ecosystem models,

the USDA‐USGS Monitoring Trend of Burn Severity
(MTBS) project provides important remote sensing based
estimates of burn severity based on an index called
Differenced Normalized Burn Ratio (DNBR) and an index
called Composite Burn Index (CBI), which is a commonly
collected ground‐based variable to estimate postfire effects.
However, it should be noted that the use of the DNBR family
of indices to map fire severity requires collection of field data
for algorithm development in specific forest types, and has
been found to not perform well for some forest systems,
particularly in Alaskan boreal forests [French et al., 2008].
[34] Fire management, such as wildfire suppression and

fuel reduction treatments, are additional important activities
that affect fire behavior and subsequent C dynamics. For
example, the continued suppression of wildfires may
increase C storage, but the inevitable catastrophic wildfire
that cannot be suppressed will undoubtedly release more C
into the atmosphere and cause the most ecological damage
because of high accumulated fuel loadings and low fuel
moistures [Stocks et al., 1996]. Moreover, fire‐prone eco-
systems may sequester less carbon the longer fire is
excluded from them because photosynthetic gains are offset
by high respiration [Keane et al., 2002]. Forest models
should have the ability to simulate individual tree growth
and fuel accumulation to account for fire management
effects on the C cycle [Bugmann, 2001].
2.2.6. Modeling the Impacts of Storms
[35] Both ice and wind storms reduce NEP mainly

through a reduction in assimilation capacity and an increase
in heterotrophic respiration from CWD decomposition
[Schulze et al., 1999; Tremblay et al., 2005;McCarthy et al.,
2006; Lindroth et al., 2009]. Storm damages include wind-
throw or ice‐break of stems or branches, crown reduction,
increased mortality, and changes in site conditions (light,
temperature, etc.). The severity of damage varies by tree
traits (species, diameter, height, etc.), slope, aspect, fre-
quency of storms, and wind speed [McCarthy et al., 2006;
Zeng et al., 2009]. Spatially explicit individual tree‐based
forest models (e.g., SORTIE) can be especially useful to
simulate the effects of storms on the basic demographic
processes (i.e., recruitment, growth and mortality) that reg-
ulate forest community and carbon dynamics [Tremblay
et al., 2005].
[36] Storm damage, and subsequent management (e.g.,

salvage harvesting) may dramatically change forest structure
resulting in increased amounts of CWD on the forest floor
[e.g., Vargas and Allen, 2008]. No organic matter is con-
sumed, but these disturbances substantially increase organic
matter consumption rates since most of biomass materials
lay on the ground, subject to microbial decomposition. The
CWD deposited in the ground usually has high nutrient
ratios and is available for rapid decomposition, limited only
by climate; in hot humid regions decomposition could occur
in less than 1 year, resulting in large short‐term C losses
after the disturbance [Vargas et al., 2010], whereas in
temperate and boreal regions decomposition would be
slower resulting in different heterotrophic respiration rates
[Harmon et al., 2011].
[37] Only a few studies have attempted to directly quan-

tify how carbon fluxes are affected by storms over large
areas [Chambers et al., 2007; McNulty, 2002; Luo et al.,
2003; Zeng et al., 2009]. McNulty [2002] estimated that a
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single storm can convert the equivalent of 10% of the total
annual U.S. carbon sequestration to dead and downed bio-
mass. Chambers et al. [2007] estimated that an amount
equivalent to 50–140% of the net annual U.S. carbon sink in
forest trees was lost because of Katrina. Zeng et al. [2009]
evaluated the impacts of historical tropical cyclones from
1851 to 2000 on forest and carbon cycle over the continental
U.S. They found that hurricane‐induced release of CO2
potentially offset the carbon sink in forest trees by 9–18%
over the entire United States over the period 1980–1990,
and U.S. forests after 1900 experienced twice the impact
before 1900 because of more active tropical cyclones and a
larger extent of forested areas. Lindroth et al. [2009] esti-
mated that the Lothar storm in 1999 reduced the European
carbon balance by ca. 16 million tons C, which was 30% of
the NBP in Europe. All these studies demonstrated that the
impact of increased forest damage by more frequent storms
must be considered to explain partially the large inter‐
annual variability of the terrestrial carbon sink.

3. Scaling Up From Sites to Regions

[38] Individual disturbance events usually result in sub-
stantial short‐term ecosystem carbon loss locally. These
carbon losses may be offset by carbon uptake in other areas
where recovery is taking place. The overall net carbon flux
from forests to the atmosphere resulting from disturbance
depends on the spatial extent, severity, and heterogeneity of
disturbances (e.g., fire suppression, logging, and insect
outbreaks) within the region. Goodale et al. [2002] found
over 80% of the estimated forest sink in the Northern
Hemisphere occurred in only one‐third of the forest area
(i.e., regions affected by fire suppression, agricultural aban-
donment, and plantation forestry), and that carbon accumu-
lation from the regrowth of forests in boreal regions can be
offset by fire and other disturbances that vary considerably
from year to year. Therefore regional modeling estimates
face the challenge of including disturbances and the influ-
ence of interannual variability.

3.1. Scaling Approaches and Practices

[39] Many modeling efforts at landscape to global scales
have attempted to incorporate disturbance information into
the simulation of carbon dynamics at regional scales. These
efforts differ substantially in the types of disturbances con-
sidered and the modeling approaches used [Hurtt et al.,
2002; Liu et al., 2003; Masek and Collatz, 2006; Zhao
et al., 2010a; McGuire et al., 2001; Balshi et al., 2007; Yi
et al., 2010]. These upscaling approaches can be classified
broadly into two categories: paint pixels by process models
and by data‐driven statistical models.
3.1.1. Paint Pixels by Process Models
[40] All the upscaling practices in this category apply site‐

scale models to simulate carbon dynamics for each pixel (or
by pixel group) within the study areas. There is an explicit
fundamental rule associated with this approach: the site‐
scale models should be applied to site scale, meaning the
cell size should be compatible with field scale. Unfortu-
nately, this rule is not often observed in many applications
for two main practical reasons. First, computation becomes
prohibitive when the total number of simulation units or
pixels becomes too big over large areas with a small cell

size. Second, we usually do not have high‐resolution sup-
porting data layers of soil, climate, land cover change, and
disturbances over large areas.
3.1.1.1. Cell Size of Modeling and Characterization of
Disturbances
[41] The influence of the spatial resolution of disturbance

information on the simulation of terrestrial carbon dynamics
is not well understood and is often ignored, as various grid
cell sizes have been used [Hurtt et al., 2002; Liu et al., 2003;
Masek and Collatz, 2006; Zhao et al., 2010a;McGuire et al.,
2001; Balshi et al., 2007; Yi et al., 2010]. Many modeling
studies used the resolution of grid cell given by climato-
logical data sets (e.g., 0.5° or 1°), and the organization of
disturbance information on landscape using such coarse
resolution is challenging. An improved approach is the use
of “cohorts” or joint frequency distribution (JFD) table,
where each cohort or JFD represents all the cells (landscape
units) of a unique combination of soil, climate, vegetation,
and disturbance history [Liu et al., 2003; Balshi et al., 2007;
McGuire et al., 2010]. The use of JFD or cohorts can save
simulation time while retaining all the spatially explicit
information.
[42] A few studies have investigated the importance of

including fine‐scale land cover and disturbance data layers.
Turner et al. [2000] investigated the scale of mapping
spatial heterogeneity in land cover on NPP and NEP in the
central Cascades Mountains of western Oregon, and found
that NPP and NEP was 12% lower and 4% lower at 1000 m
compared to 25 m. Zhao et al. [2010b] quantified and
evaluated the impact of land cover change and disturbances
at various spatial resolutions (250 m, 500 m, 1 km, 2 km,
and 4 km) on the magnitude and spatial patterns of regional
carbon sequestration in four counties in Georgia and Ala-
bama using the General Ensemble biogeochemical Model-
ing System (GEMS). This study found a threshold of 1 km
for accurately characterizing land disturbances and esti-
mating regional terrestrial carbon sequestration. Dalziel and
Perera [2009] found fire disturbance patterns and forest
community structure interact at a range of spatial scales
because tree species vary in their fuel value and in their
tolerance to fire damage. With increasing cell size, minor
landscape features and processes such as rare forests (e.g.,
wetlands) and disturbances (e.g., selective harvesting and
windthrow) can be missed and not included in modeling
[Zhao et al., 2010b].
[43] These findings have important implications for con-

tinental to global‐scale carbon modeling efforts: what spatial
resolution is adequate for characterizing disturbances to
support carbon modeling? As carbon fluxes among different
land cover types differ greatly and are nonlinear functions of
many stand‐structural and environmental parameters, the
validity of this 1 km threshold value might be related to the
heterogeneity and the level of fragmentation of the land
surface. For the relatively homogenous boreal landscape, up
to 45% correction is needed for LAI derived at 1 km reso-
lution [Chen et al., 1999] because of mixed land‐water
pixels, which are the norm at high latitudes. As many global
LAI and GPP products are currently produced at about 1 km
resolution ([Garrigues et al., 2008] MODIS), corrections to
these products by subpixel cover type fractions or other
measures will be useful. Some such efforts have already
been reported for NPP [Simic et al., 2004] and ET [El
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Maayar and Chen, 2006]. New algorithms or procedures
need to be added into models to improve the quantification
of disturbance impacts as more cross‐scale understandings
become available.
3.1.1.2. Adequate Characterization and Modeling of
Disturbance in Time
[44] The temporal interval between two consecutive dis-

turbance maps is also an important consideration in both
disturbance mapping and incorporation of disturbance
information into simulation models. Some disturbance maps
are generated based on remotely sensed information from
optical sensors. If the time interval is longer than the time
needed for ecosystem recovery (optically), these maps will
miss some disturbances. Zhao et al. [2009], using GEMS,
evaluated the impacts of the length of time interval between
two consecutive land use change maps on estimating regional
carbon sequestration in the southeastern United States. The
results of this study indicate that ignoring detailed fast‐
changing dynamics of land cover change and disturbances in
the region can lead to a significant overestimation of carbon
uptake as the regional carbon sequestration rate increased
from 0.27 to 0.69, 0.80 and 0.97 Mg C ha−1 yr−1 when land
use change mapping frequency shifted from 1 year to 5 years,
10 years, and static (no land cover change or disturbances),
respectively.
[45] These results suggest that it is essential to incorporate

fast‐changing detailed dynamics of disturbances into local
to global carbon cycle studies. Otherwise, it is difficult to
accurately quantify the geographic distribution, magnitudes,
and mechanisms of terrestrial carbon sinks and sources at
the local to global scales. The critical time interval (number
of years between two consecutive maps) depends on a
number of factors including the type and severity of dis-
turbances and the speed of ecosystem recovery optically. In
general, annual maps of land cover and disturbances are
useful with respect to simulating interannual variability in
carbon dynamics. Shorter time intervals of disturbance
mapping may be useful for capturing short‐lived processes
such as defoliation or for comparison with atmospheric
inversion analyses of carbon exchange. From a practical
standpoint, the time interval of disturbance mapping should
be optimized by considering the speed of ecosystem
recovery after disturbance. Longer time intervals can be used
in slow‐recovering regions, and shorter ones in the fast
recovering regions. Disturbances span across multiple tem-
poral and spatial scales where the most extremes (i.e., LIDs)
are limited in frequency but may have the largest impact on
ecosystems. The use of the concept “extreme events” is
populating the ecological and biogeoscience literature
because of the potential link between these events and cli-
mate change. However, it is appropriate to rethink the con-
cept of disturbances especially for those related to extreme
events at large geographical distances (LIDs) [Turner and
Dale, 1998]. These events are infrequent with respect to
human scales or the life span of organisms in the environ-
ment, and may have large consequences on the dynamics
of energy and matter of natural and human‐modified
ecosystems.
3.1.1.3. Model Initialization or Spin‐Up
[46] Explicit modeling of disturbance over large areas

poses challenges for traditional model ‘spin‐up’ procedures.
Model spin‐up is already computationally costly [Bond‐

Lamberty et al., 2005] and numerically uncertain (relative
to field data), as it constitutes a classic initial value problem
[Luo et al., 2003; White et al., 2006]. Explicitly modeling
disturbances during spin‐up perturbs all ecosystem carbon
pools, including the stable soil compartments whose rate of
change typically determines the spin‐up termination
[Pietsch and Hasenauer, 2006]. Disturbances thus extend
the spin‐up phase, potentially forever; imposing an upper
limit on spin‐up time can result in a simulation cell whose
carbon balance is strongly negative or positive at the end of
model initialization. The use of real and hindcasted fire
histories ameliorate this problem [Mouillot and Field, 2005;
Balshi et al., 2007]. However, they do not completely solve
the problem of initial conditions.
[47] To fully quantify disturbance effects on carbon sink

dynamics, we need to quantify three sets of parameters
respectively related to carbon influx, ecosystem carbon
residence time, and initial values of all carbon pools. The
three sets of parameters can adequately define disequilib-
rium of carbon cycles caused by disturbances [Luo and
Weng, 2011]. The traditional, spin‐up approach in combi-
nation with some historical data could not accurately
quantify the degree of dynamic disequilibrium in land car-
bon cycle. To estimate all the three sets of parameters to
quantify disturbance effects, we need to use data assimila-
tion techniques, which have recently applied to a few eco-
systems [Weng and Luo, 2011]. Finally, it has been
discussed that the steady state assumption in process‐based
models, whenever it’s adopted, may lead to erroneous
parameter estimates when the considered ecosystem is not in
steady state [Carvalhais et al., 2008]. The conditions of
steady state required by most models to run may not be
appropriate under a disturbance regime since direct and
indirect effects generate nonsteady state conditions in the
ecosystem [Carvalhais et al., 2010].
3.1.1.4. Emerging Approaches to Address Scaling
Issues
[48] Work on upscaling C dynamics from sites to large

areas has been dominated by ecosystem‐scale compartment
models because of their simplified lumped treatment of trees,
ease of parameterization, and lower computation load. With
increases in computing power, however, more demography
models are being used for this purpose, including some
major regional to continental applications in North America
and Europe [Hurtt et al., 2002; Dixon, 2002]. For example,
the Forest Vegetation Simulator (FVS), a national system of
forest demography models maintained by the USDA Forest
Service that can be dynamically linked with the national
forest inventory system (FIA) [Dixon, 2002], has been
widely used for regional and national applications [DeRose
and Long, 2009; Crookston and Dixon, 2005]. The Eco-
system Demography (ED) model has been used at the
regional to global scales to explicitly account for the impacts
of various disturbances including fire and fire suppression
[Hurtt et al., 2002] and insect outbreaks [Albani et al., 2010].
Overall, demography models provide several advantages
over the compartment models including explicit representa-
tion of demographic processes (e.g., seed advection, seed
mixing, sapling survival, competitive exclusion and plant
mortality). They separate the lumped tree compartments
(as in the compartment models) into cohorts organized by
species or plant functional type and age, providing a better
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framework to simulate the impacts of various disturbances
on the structure and functions of forests.
[49] In reality, it is always necessary to reach a balance

among model complexity, cell size, and the size of the study
area because of the constraints in input data layers and
computation resources. For example, gap models simulate
tree growth, survival, and mortality on gap‐sized forest plots
(e.g., 0.01–10 ha in size). Direct applications of these
models wall‐to‐wall to each plot‐scale cell (pixel) over large
areas are prohibitive. To facilitate the scaling of gap‐
processes to large areas, coarser vegetation characteristics
such as plant functional types by age cohort have to be used
within each cell instead of species‐level information [Hurtt
et al., 2002] (see Table 1), and this need resulted in the
development of many dynamic global vegetation models
(DGVMs) including HYBRID [Friend et al., 1997], IBIS
[Foley et al., 1996], LPJ [Haxeltine and Prentice, 1996],
SDGVM [Woodward et al., 1998], VECODE [Brovkin et al.,
1997], and LM3V [Shevliakova et al., 2009]. Forest dis-
turbances and age structure and management are not simu-
lated by most DGVMs. Validation of DGVMs most
frequently focus on carbon fluxes from FLUXNET [Thornton
et al., 2002; Schwalm et al., 2010], and future validation
effort needs to use a broad range of data (e.g., height, basal
area, and volume increment) [Hurtt et al., 1998; Desai et al.,
2007; Bellassen et al., 2011].
[50] Another emerging need is to merge the so‐called

diagnostic and prognostic modeling approaches to improve
our understanding of the consequences of disturbances and
the confidence in predictive upscaling. Diagnostic approa-
ches rely heavily on remote sensing and field observations
[Potter, 1993; Frolking et al., 2009; Xiao et al., 2010,
2011]. For example, the impacts of disturbances on GPP or
NPP can be robustly “seen” or inferred from remotely
sensed data [Potter, 1993; Hicke et al., 2003; Zhao and
Running, 2010; Yuan et al., 2007; Xiao et al., 2010]. The
purpose of diagnostic modeling has been to quantify and
understand the impacts of disturbances and other stressors on
C stocks and fluxes using prescribed data layers, while the
purpose of prognostic modeling has been on predicting dis-
turbances (occurrence, extent, and severity) and their con-
sequences. In order to increase confidence in prognostic
models, these models must have effective hindcasting capa-
bility of disturbance history (fire, insects, harvest, etc.) so
they can spin‐up through a realistic representation of dis-
turbances. This capability is critically needed and currently
not well implemented in most models.
[51] Disturbance regimes in a region can be represented in

models using statistical methods. A disturbance regime is
usually defined by its frequency, severity, and spatial cov-
erage. Most natural disturbances, such as fire, storms, and
insect outbreaks are stochastic processes, which are usually
characterized by probability distributions. Thus we can
construct probability distributions of frequency, severity,
and spatial coverage for different types of disturbances from
regional databases. The constructed probability distributions
can be used as a disturbance generator in an ecosystem
model to assess carbon sink dynamics in a region [Albani
et al., 2010; Hurtt et al., 2002; Luo and Weng, 2011; Zeng
et al., 2009].

3.1.2. Paint Pixels by Data‐Driven Statistical Models
[52] In addition to process‐based modeling, data‐driven

and statistical‐based approaches have been used to estimate
forest carbon dynamics and examine the impacts of dis-
turbances. In contrast to the process‐based modeling
approach, data‐driven approaches rely heavily on in situ and/
or remotely sensed data or observations. Data‐driven
approaches often employ statistical or artificial intelligence
methods to derive empirical models directly from observa-
tions, and these derived models are then used to estimate C
stocks and fluxes.
[53] Xiao et al. [2010, 2011] produced continuous gross

primary productivity (GPP) and net ecosystem carbon
exchange (NEE) estimates with high spatial (1km) and
temporal (8 day) resolutions for temperate North America
over the period 2000–2006 from eddy covariance measure-
ments and satellite observations using piecewise regression
models. This approach makes use of eddy flux data from
towers encompassing a wide range of ecosystem and climate
types, disturbance history, and uses satellite observations
such as EVI, LAI, and LST before and after disturbances to
account for disturbance effects. Xiao et al. [2010, 2011] used
these continuous flux estimates to assess the magnitude,
distribution, and interannual variability of the recent U.S.
terrestrial carbon sinks, concluding that the dominant sources
of the recent interannual variation in U.S. carbon sinks
included extreme climate events (e.g., drought) and dis-
turbances (e.g., wildfires, hurricanes). Similar regional
efforts are needed across the whole of North America with
process‐based models, data‐driven and statistical‐based
approaches.

3.2. Beyond Forests

[54] While the main focus of this paper is on forest eco-
systems, we realize that several issues are broader than
forests per se. First, it is necessary to distinguish NEE and
NEP and their spatial and temporal dependence [Chapin
et al., 2006]. For example, harvest creates an apparent C
sink at the stand‐level, but that will be gradually returned to
the atmosphere through decomposition of wood products
somewhere else (in the region, continent, or other parts of the
globe) [e.g., Skog, 2008]. Many life‐cycle analyses have been
made to account for the fate of harvested wood [e.g., Eriksson
et al., 2007]. However, these activities are often done with
regional and national timber harvest numbers and not directly
linked with biogeochemical or demography models. Along
the same line of wood harvest, to our knowledge, no studies
have investigated the magnitude, spatial distribution, and
consequences of salvage logging after fire/insects dis-
turbances over large areas. Second, land cover transitions
(i.e., deforestation and reforestation) or woody encroach-
ments in the western U.S. [Barger et al., 2011] are important
aspects of forest landscape disturbances. A holistic landscape
perspective is needed to capture such kind of disturbances
[Liu et al., 2003; Zhao et al., 2010a], and this requires the
models be able to simulate C dynamics not only in forests but
also in other ecosystems including crops and grasslands [e.g.,
Wang et al., 2005]. Third, erosion of soils and residues after
disturbances can have a significant impact on on‐ and off‐
site carbon dynamics and ecosystem recovery [Liu et al.,
2003; Smith et al., 2007]. Webster et al. [1990] showed
that forest logging disturbance has increased C export from
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stands, has accelerated turnover of benthic particulate
organic matter, and is depleting benthic material. These
changes are related primarily to the decline of woody debris
dams in the disturbed streams. Nevertheless, the impact of
disturbance‐induced erosion and its impact of C dynamics
are rarely mapped and quantified.

3.3. Regional Considerations

[55] Many gaps exist between countries at the moment in
terms of modeling development and application, and char-
acterization of disturbances over large areas (i.e., across all
North America [Canada‐USA‐Mexico]). Thus, it may not be
possible to comprehensively test models on Mexican eco-
systems at present because the lack and accessibility to
databases about disturbances and ecosystems responses.
However, a wide North American effort can be made in the
near future. For example, an initiative of a network of eddy
covariance towers at different Mexican ecosystems is
underway (MexFlux currently has eight operating sites;
R. Vargas personal communication, 2011). Mexico also has
high beta diversity so there are many ecosystems that are also
present in Canada and the U.S. but there are also many others
that are only present in Mexico. Most importantly, most
models have not been tested and parameterized for these
ecosystems (e.g., tropical forests wet versus dry) so there is a
large opportunity for interaction and research across North
America.
[56] North American boreal forests have a number of

attributes that make them, in some ways, more easily
modeled than their temperate or tropical counterparts: veg-
etation diversity is minimal [Shugart et al., 1992]; most
stands are even‐aged as a result of frequent fires [Kurz and
Apps, 1999]; and nitrogen deposition is low [Reay et al.,
2008]. There are a number of unique challenges in model-
ing disturbances in the boreal forest, associated with the
frequent fires and poor drainage of a young, post‐glacial
landscape [Camill et al., 2009; Grosse et al., 2011]. Most
process models are ill‐equipped to simulate such ecosystems
[Trettin et al., 2001]; problematic aspects (from the models’
points of view) include a high and fluctuating water table;
significant methane production and consumption; anoxic soil
and low soil redox potentials that limit decomposition; and
the dominance of nonvascular plants. Dedicated wetland
models [Wang et al., 2007; Frolking et al., 2001; Mitsch
et al., 1988] incorporate many of the hydrological and
biogeochemical complexities of wetlands but are of limited
applicability in well‐drained systems. In contrast, general‐
purpose process models frequently lack mechanisms to
simulate biotic and abiotic processes in poorly drained soils
[Peng and Apps, 1999; Zhuang et al., 2003; Yarie and
Billings, 2002; Thornley and Cannell, 2004]. One solution
is to extend these biogeochemical process models from
upland forest ecosystems to poorly drained ones and even
continually inundated wetlands [Zhang et al., 2002; Potter
et al., 2001; Pietsch et al., 2003; Brown et al., 2010; Bond‐
Lamberty et al., 2007a].

4. Databases Over Large Areas

[57] A number of efforts have focused on the character-
ization of various disturbances from landscape to global
scales [Frolking et al., 2009; Kennedy et al., 2007; Rollins,

2009; Masek et al., 2008; Goward et al., 2008; Hurtt et al.,
2006; Huang et al., 2009; French et al., 2011]. As new data
products on forest disturbance emerge, they will be inte-
grated into biogeochemical models to generate more robust
estimates of forest carbon stocks and fluxes over large areas.

4.1. Type, Extent, Intensity, Timing, and Spatial
Resolution

[58] Land cover and change maps are the very basic
information required for modeling the spatial and temporal
changes of C stocks and fluxes over large areas. Major
national and international efforts have been designated to
map land cover change at regional to continental scales.
There are two types of land cover and land use change
database available at the moment. The first include data sets
compiled from pre‐existing maps, regional and national
ground surveys, and highly generalized biogeographic maps
[Waisanen and Bliss, 2002; Hurtt et al., 2006]. For example,
Hurtt et al. [2006] has developed a global gridded data set
describing land‐use transitions, wood harvest activity, and
resulting secondary lands for the past three centuries. The
second type of database is derived from remotely sensed
data. With more remote sensing data sources (e.g., Landsat,
MODIS, SPOT, MERIS), better processing techniques, and
increasing capacity [Xian and Homer, 2010; Kennedy et al.,
2007; Masek et al., 2008; Huang et al., 2009; Friedl et al.,
2010], it is possible to map land cover change in more detail
over large areas. Annual land cover and change information
are being generated globally using MODIS data [Hansen
et al., 2003; Friedl et al., 2010]. The U.S. Geological
Survey (USGS) has been developing National Land Cover
Database (NLCD) from Landsat at 30 m resolution for the
United States at five‐year intervals [Xian and Homer, 2010].
USGS is also generating high‐quality land cover change
information for the United Stated from 1970s to present
using Landsat data [Loveland et al., 2002] and has been used
to quantify the impacts of land use change and disturbances
on C dynamics [e.g., Liu et al., 2003].
[59] Disturbances have been mapped and monitored sep-

arately by disturbance type. Severe storms can cause exten-
sive tree mortality and damage to forest structure [Zeng et al.,
2009; Lindroth et al., 2009]. Few data sets are available
characterizing the frequency, extent, strength/severity, and
consequences of large storms at regional and continental
scales. Zeng et al. [2009] developed a data set on historical
tropical cyclones from 1851 to 2000 over the continental
U.S., and evaluated the impacts on forest mortality and
carbon cycle. However, this data set has not been released to
the public. The Canadian Large Fire Database (LFDB) from
the Canadian Forest Service [Stocks et al., 2002] provides
quantitative information for large fires across Canada. The
LFDB was constructed from provincial and territorial fire
reports with information on start location, area burned, fire
start date, and ignition source (human, lightning, unknown).
Quantitative information on large fires across Alaska can be
obtained from the historical large fire database for Alaska
from the Bureau of Land Management, Alaska Forest Ser-
vice; this database represents a compilation of fires in Alaska
between 1942 and 2007, with point and boundary location
information for fires. USGS LANDFIRE project is also
producing consistent and comprehensive maps and data on
vegetation, wildland fuel, and fire regimes across the United
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States [Rollins, 2009]. More information on fire disturbances
in North America can be found in the works by French et al.
[2011] and Kasischke et al. [2011].
[60] Efforts are also underway to map disturbances syn-

optically. MODIS has been used to generate disturbance
index maps including extent, severity, and timing of dis-
turbances [Mildrexler et al., 2009]. North American forest
disturbances are mapped from a decadal Landsat record
[Goward et al., 2008;Masek et al., 2008] and from stacks of
Landsat images that have much shorter time intervals
[Kennedy et al., 2007; Huang et al., 2009]. While these
efforts provide a complete picture on all the disturbances
happened on the landscape, additional effort is needed to
attribute the detected disturbances to causes because differ-
ent disturbance types can generate totally different impacts
on forest structure, recovery, and carbon stocks and fluxes.
[61] Complementary to remote sensing, ground‐based

monitoring programs, such as the Forest Inventory and
Analysis (FIA) program of the USDA Forest Service (http://
fia.fs.fed.us/[Woodall et al., 2010]) or similar monitoring
systems in Mexico and Canada, provide valuable informa-
tion on stand age, biomass, mortality, partial and clear‐
cutting, and other disturbances (e.g., fire, wind, and harvest).
Although based on spatially discrete sampling plots, these
programs can provide critical information on disturbances at
the county or state/province level, which can then be used to
constrain model simulations or spatially explicit mapping
efforts.
[62] Insect and disease outbreaks are mapped by the USDA

Forest Service Aerial Detection Survey program [USDA,
2009]. Surveys are available from one to several decades,
depending on region. Damage is recorded by observers in
planes that identify polygons and estimate causal agent
(e.g., bark beetle), tree species, and number of trees affected.
Tree mortality as well as defoliation is noted. Although a rich
data source, these surveys are subjectively developed, pro-
duce polygons that include unaffected as well as affected
trees, and do not cover all forested areas every year. Cana-
dian insect surveys are similar in design. Regional and
national maps describing the extent and severity of outbreaks
are available but are limited to recent years and must be
converted from polygon to gridded data before suitable for
use in modeling. While mapping of insect outbreaks across
Canada and the U.S. has undergone significant improvement
over the past 2 decades, prior to this time, data to quantify the
aerial extent of insect disturbances is generally limited to
major insect species in the U.S., with more detailed infor-
mation being available for Canada back to 1975.

4.2. Stand Age

[63] Stand age, directly reset by stand‐replacing dis-
turbances such as harvesting and severe fires, is likely the
most available surrogate variable for forest carbon dynamics.
It is an important parameter to determine the balance
between the carbon gain through growth and carbon loss
through respiration. Forest age maps are particularly useful
for upscaling from site‐level measurements (flux, biomass,
soil carbon) to large regions. Chen et al. [2003] developed
forest age maps for Canada, collaborating with Pan et al.
[2010], they developed the North American Forest Stand
Age database using forest inventory, large fire polygons, and
remotely sensed data. This database is the first continental

forest age map of North America, and provides stand age
information for each 1 km cell across Canada and the lower
48 states of U.S., but future efforts should include Mexico to
truly represent all North America. The CONAFOR (Comi-
sión Nacional Forestal; htpp://www.conafor.gob.mx) in
Mexico has conducted an extensive forest survey including
stand age and harvest [Masek et al., 2011], but the full
database is yet not open to the public. These maps can be
used to determine the year of disturbance for each pixel, and
thus provide a possibility to estimate the direct carbon
emission at the time of disturbance and to model the full
carbon dynamics after the disturbance as a result of growth
recovery and its influence on the soil carbon pools. They will
be a valuable data set for large‐scale carbon modeling and
will potentially improve the accuracy of carbon cycle
simulations.

4.3. Standing Biomass or Carbon Pools

[64] In addition to disturbances, it is also important to
monitor the spatial distribution and temporal changes of
forest structure, recovery, and carbon accumulation for two
purposes. First, such data sets are necessary for calculating
the immediate and long‐term impacts of disturbances on
carbon emissions and transfer among different C pools.
Second, they can provide detailed information on forest
recovery, which can be used to calibrate and validate model
simulations. A few data sets depicting forest biomass have
been developed for the United States and Canada. Zhang
and Kondragunta [2006] developed a forest biomass data
set at a spatial resolution of 1 km for the conterminous U.S.
using foliage‐based generalized allometric models and
MODIS data. The following components were included in
the data set: foliage biomass, branch biomass, and above-
ground biomass. Blackard et al. [2008] developed a forest
biomass for the conterminous U.S., Alaska, and Puerto Rico
using nationwide forest inventory data and MODIS data at a
spatial resolution of 250m (http://fsgeodata.fs.fed.us/raster-
gateway/biomass/), with uncertainty estimates for above-
ground biomass at each grid cell. Scientists at the Woods
Hole Research Center have generated maps of canopy
height and standing carbon stock for the conterminous
United States (http://www.whrc.org/nbcd/). Ron Hall and
others have developed a national forest biomass map for
Canada using forest inventory data and remote sensing
(http://www.gofc‐gold.uni‐jena.de/documents/missoula09/
9_Hall%20ECV%20 biomass%20canadav2.pdf). County‐
level maps of forest biomass in the eastern U.S. [Brown
et al., 1999] and carbon stocks in the western U.S. [Hicke
et al., 2007] have been produced using forest inventory
data. Future effort should drive producing biomass maps for
the entire North America with a higher temporal repetitive
cycle. In addition, it is critical to supply uncertainty esti-
mates for all biomass maps.

4.4. Carbon Fluxes

[65] A number of publicly available databases (as opposed
to meta‐analyses) have been assembled for documenting
observations of carbon fluxes in ecosystems, particularly
forests, across the globe; such databases, increasingly avail-
able and updated continuously on the Internet, may provide
valuable constraints on modeled ecosystem function. For
example, Luyssaert et al. [2007] assembled a high‐quality
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database of forest NEE and other flux measurements. In a
similar vein, a global compendium of soil respiration studies
was published by Bond‐Lamberty and Thomson [2010b],
including seasonal to annual fluxes, temperature sensitivities,
and a variety of ancillary data. Finally, FLUXNET data,
although highly constrained in their spatial coverage, are
valuable and frequently used for model‐data comparisons
[e.g., Stöckli et al., 2008; Baldocchi et al., 2001; Schwalm
et al., 2010]. Recently there has been a compilation of site
level carbon fluxes and corresponding model outputs for
selected sites across North America under the organization of
the North American Carbon Program [e.g., Schwalm et al.,
2010]. Gridded flux fields derived from FLUXNET obser-
vations using upscaling methods provide spatially continu-
ous estimates of ecosystem carbon fluxes [Yuan et al., 2007;
Xiao et al., 2010, 2011], and these flux fields can be used to
evaluate ecosystem models over broad regions. For instance,
the continuous flux fields derived from AmeriFlux and
MODIS data streams for the United States, referred to as
EC‐MOD [Xiao et al., 2010, 2011], have been used to
evaluate modeled GPP and NEE from a water‐centric eco-
system model at the continental scale [Sun et al., 2011].

4.5. Issues With Current Databases

[66] There is a wealth of untapped information for use in
regional modeling efforts, and there is a huge opportunity
for regional models to take advantage of existing data sets.
As more data become available, they will contribute to the
improvement of regional C simulations and reduction of
uncertainty. However, development of most data sets is at
present not well organized across disciplines and regions.
We do not have a systematic set of defined variables that can
be readily mapped or predicted to satisfy the needs for
carbon simulations and accounting at regional to global
scales. Disturbance intensity is usually not available, or,
when available, is not well linked to its impacts on carbon
storage of forest ecosystems. Information on uncertainties in
disturbance severity is critical for quantifying uncertainty in
modeled carbon dynamics, but rarely provided. At present,
not all major disturbances are mapped at the continental
scale with adequate spatial and temporal resolution. Future
effort should focus on (1) defining a set of variables to map
or predict for supporting the need of C science and man-
agement; (2) mapping all major disturbances systematically
across North America at appropriate spatial resolution and
temporal frequency; and (3) mapping mortality and carbon
transfer coefficients (see Figure 2) directly in addition to
mapping the properties of disturbances such as type, timing,
extent, and severity.
[67] There are gaps among the modeling, experimentalist,

and remote sensing communities. All need each other to test
hypotheses, generate data, and advance our understanding of
disturbances at multiple spatial and temporal scales.
Experimentalists cannot test disturbances over and over
because: (1) they are infrequent, (2) they usually reduce the
metabolic state of an ecosystem and reduce the ecosystem
services, (3) it is expensive to do, and (4) they are difficult to
replicate in space and time. However, with limited infor-
mation experimentalists have proposed hypotheses (e.g., for
nitrogen cycling, ecosystem recovery, etc). These hypothe-
ses have been tested (usually) at small spatial and temporal
scales. However, modelers, working with experimentalists

and remote sensing community, have the advantage of using
the experimental data as a baseline, and then test the per-
formance of the model, and help in developing future
hypotheses for disturbances.

5. Uncertainty

[68] The very nature of many physical systems results in
significant and sometimes inevitable uncertainty [Roe and
Baker, 2007]. Nonetheless, quantifying and constraining
uncertainty is necessary to understand the strengths and
limits of carbon‐cycling models [Oreskes et al., 1994], and
to produce meaningful policy recommendations.
[69] Uncertainty comes from three sources: input data,

model parameter, and model structure. Big uncertainties exist
in carbon modeling at the regional to continental scales
because some major processes or feedback mechanisms were
missing in the models [Beer et al., 2010] and some key data
sets were not available [Ciais et al., 2010]. To our knowledge,
no study has been performed to comprehensively quantify
uncertainty of carbon stocks and fluxes from uncertainty
sources, to error propagation, and to error attribution at the
regional to continental scales. Nevertheless, various studies
have emerged to account for different components of the
uncertainty. For example, Liu [2009] and O’Hagan [2011]
illustrated how to incorporate input data uncertainties using
statistical distributions and Monte Carlo approaches. Model
parameter uncertainties have been addressed using various
model‐data fusion techniques at the site scale by applying
them on eddy covariance observations and/or other biometric
measurements [Rayner et al., 2005; Y. P. Wang et al., 2009;
Liu et al., 2008; Chen et al., 2008; Richardson et al., 2010;
Ricciuto et al., 2011]. Model structure uncertainty have been
assessed by model intercomparisons [Friedlingstein et al.,
2006; Heimann et al., 1998; Schwalm et al., 2010], quanti-
fying the improvement of model fit after a given component is
switched on [Zaehle et al., 2006; Bellassen et al., 2011], and
forcing amodel usingmeasurements instead ofmodel outputs
[Demarty et al., 2007].
[70] Stochastic, nonlinear disturbances make uncertainty

quantification considerably more difficult, as, for example,
most algorithms for parameter‐space searches will not
handle gracefully stochastic disturbance‐induced changes in
model state [e.g., Williams et al., 2005]. Bootstrap techni-
ques have been used to produce uncertainty estimates for
many regional‐scale analyses [Bond‐Lamberty et al., 2007b;
Saleska et al., 2003]. Modern data assimilation techniques,
in which observed data and models are combined to find the
model representation most consistent with observations
[Rayner et al., 2005], allow new possibilities. In particular,
the ‘systemic shock’ of disturbances can uniquely constrain
the model and thus its uncertainty; for example, the effect of
major volcanic eruptions on atmospheric CO2 has been used
to examine the temperature sensitivity of soil respiration
[Jones and Cox, 2001]. Thus while disturbances are chal-
lenging with respect to model uncertainty, they also offer
unique opportunities.
[71] Uncertainty exists in every step of the effort to simu-

late the impacts of disturbances on carbon dynamics. Both
measurement/observations and models are subject to errors.
Procedures are needed to quantify the uncertainty of model
inputs or data layers, model parameters, andmodel structures,
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and their impacts on model simulations. Working together,
modelers and data layer developers can identify the most
uncertain areas and developworking hypotheses to reduce the
uncertainty.

6. Summary

[72] Disturbances such as wildfire, insect/disease out-
breaks, blowdowns, hurricanes, logging, and thinning are
prevalent at many spatial and temporal scales. They impact
the structure of ecosystems, communities, or populations and
change their resources, substrate availability, and/or the
physical environment. Understanding disturbances and their
impacts is critical for a better quantification of regional
carbon stocks and fluxes to better inform policy makers.
However, there are major challenges because of the hetero-
geneity of the disturbances in time and space and the com-
plexity of the responses of forests to disturbances.
[73] First, there are significant advances in process under-

standing and representation, scaling, and characterization of
disturbances using remote sensing and monitoring networks
(i.e., databases), and these advances should be included in
regional modeling efforts. There is a wealth of untapped
information for use in improving regional modeling efforts,
including synthesis results of FLUXNET observations and
fast‐emerging geospatial data layers on disturbances, eco-
system properties, and C stocks and fluxes. The advance of
computational technology also offers new opportunities. This
includes improved representation of processes (e.g., demo-
graphic or gap processes at species or plant functional type
level rather than lumped to ecosystem level) that was not
previously possible, and improved spatial and temporal
resolutions for regional and continental modeling.
[74] Second, there is an urgent need to develop effective

and comprehensive process‐based procedures or algorithms
that can be used to quantify the immediate and long‐term
impacts of disturbances on forest succession, soils, micro-
climate, and cycles of carbon, water, and nutrients. Although
many models have been developed over the past three dec-
ades, they are originally designed for specific ecosystems
within certain regions, and most of them lack systematic
calibration and validation over North America. Relevant
observations can be from FLUXNET, Long‐term Ecological
Research stations, etc. It is critical to evaluate all aspects of
model performance not only on the carbon cycle but also
on the simulations of vegetation succession, alterations of
soil and microclimate, and water and nutrients dynamics
because adequate simulations of carbon dynamics rely on
the correct quantification of the changes of soil and veg-
etation conditions.
[75] Third, our capability to simulate the occurrences and

severity of disturbances under climate and management
changes is very limited, even though climate change and
management practices will alter disturbance regimes. It is
important to develop relationships between disturbance
regimes and climate change and/or land use to improve our
capability in quantifying carbon sequestration and its spatial
and temporal patterns at the continental scale under global
climate change scenarios.
[76] Fourth, scaling challenges have rarely been addressed

at the continental scale. We do not understand which pro-
cesses and properties are critical at a given temporal or

spatial scale, and which can be simplified. Previous and
current model simulations at the continental scale did not
incorporate a full suite of disturbances information, due to
the lack of spatially explicit information on disturbance and
model limitations to account for disturbance effects, and
therefore provided little insight on the relative importance of
various disturbances at the continent and regional scales on
the carbon cycle. We may take statistical approaches to
quantify disturbance regimes with probability distributions
of disturbance frequency, severity, and spatial coverage at
continental scales. Those probability distributions can be
used as a generator of disturbances in ecosystem models to
predict regional‐scale impacts of disturbance.
[77] Fifth, we do not have continentally consistent distur-

bance databases to support model simulations of the impacts
of disturbances on C dynamics in North America. Combin-
ing freely available Landsat imagery with other information
may provide some data layers in the near future, but major
issues remain to be addressed as to what should be mapped
and what variables should be quantified. It is necessary to
coordinate the regional efforts mapping the occurrence and
severity of disturbances to generate wall‐to‐wall maps to
characterize and monitor the occurrences and properties of
major disturbances across North America. International
standards for disturbance databases should be developed
with explicit inclusion of uncertainty measurements, and
adequate spatial and temporal resolutions. Another promi-
nent issue is to develop explicit and quantifiable links with
model simulations; current databases can rarely be directly
used by models to quantify the immediate transfer of carbon
among different pools, the alterations of forest succession,
soils, and microclimate, and eventually the dynamics of
carbon in vegetation and soils.
[78] Finally, uncertainty exists in every step of the effort

to simulate the impacts of disturbances on carbon dynamics.
Both measurement/observations and models are subject to
errors. Procedures are needed to quantify the uncertainty of
model inputs or data layers, model parameters, and model
structures, and their impacts on model simulations. Working
together, modelers and data layer developers can identify the
most uncertain areas and develop working hypotheses to
reduce the uncertainty.
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