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Abstract 18 

Changes in the spring onset of vegetation growth in response to climate change can profoundly 19 

impact climate–biosphere interactions. Thus, robust simulation of spring onset is essential to 20 

accurately predict ecosystem responses and feedback to ongoing climate change. To date, the 21 

ability of vegetation phenology models to reproduce spatiotemporal patterns of spring onset at 22 

larger scales has not been thoroughly investigated. In this study, we took advantage of phenology 23 

observations via remote sensing to calibrate and evaluated six models, including both one-phase 24 

(considering only forcing temperatures) and two-phase (involving forcing, chilling, and 25 

photoperiod) models across the Northern Hemisphere between 1982 and 2012. Overall, we found 26 

that the model that integrated the photoperiod effect performed best at capturing spatiotemporal 27 

patterns of spring phenology in boreal and temperate forests. By contrast, all of the models 28 

performed poorly in simulating the onset of growth in grasslands. These results suggest that the 29 

photoperiod plays a role in controlling the onset of growth in most Northern Hemisphere forests, 30 

whereas other environmental factors (e.g., precipitation) should be considered when simulating the 31 

onset of growth in grasslands. We also found that the one-phase model performed as well as the 32 

two-phase models in boreal forests, which implies that the chilling requirement is probably fulfilled 33 

across most of the boreal zone. Conversely, two-phase models performed better in temperate forests 34 

than the one-phase model, suggesting that photoperiod and chilling play important roles in these 35 

temperate forests. Our results highlight the significance of including chilling and photoperiod 36 

effects in models of the spring onset of forest growth at large scales, and indicate that the 37 

consideration of additional drivers may be required for grasslands. 38 



Introduction 39 

The timing of spring vegetation growth onset has significantly advanced due to global warming 40 

over the past decades, and this has substantially impacted interactions between the atmosphere and 41 

terrestrial ecosystems (Walther et al., 2002; Menzel et al., 2006; Piao et al., 2007; Peñuelas & 42 

Filella, 2009; Friedl et al., 2014; Piao et al., 2017). Numerous phenology models, typically 43 

parameterized with ground-based phenological observations under ambient climatic conditions 44 

(Cannell & Smith, 1983; Hänninen, 1990; Kramer, 1994a; Chuine, 2000), have been developed and 45 

embedded into state-of-the-art land surface models (LSMs) to simulate the response and feedback 46 

of vegetation to climate change (Botta et al., 2000; Sitch et al., 2003; Krinner et al., 2005). 47 

However, a recent study reported that current vegetation phenology models generate considerable 48 

uncertainties in these LSMs, consequently leading to large biases in the estimation of ecosystem 49 

carbon balances (Richardson et al., 2012). Therefore, improved modeling of vegetation spring 50 

phenology at large scales is essential to reliably simulate the impact of climate change on 51 

vegetation growth and ecosystem carbon, water, and nutrient cycles.  52 

 53 

Previous studies have reported the complex role of environmental cues in regulating the onset date 54 

of vegetation growth in spring. Temperature is generally considered as the main driver of spring 55 

onset (Cannell & Smith, 1983; Hänninen, 1990; Menzel et al., 2006; Piao et al., 2015), whereas 56 

photoperiod (Körner & Basler, 2010; Laube et al., 2014a; Chuine et al., 2016; Zohner et al., 2016), 57 

air humidity (Laube et al., 2014b), and precipitation (Forkel et al., 2015; Fu et al., 2014) 58 

co-determine vegetation growth onset dates for specific plant functional types and/or in specific 59 

regions. Based on these findings, various process-based models have been proposed to simulate the 60 

spring onset of growth. These models can be categorized into two types. One-phase models (e.g., 61 



the Spring Warming model) only involve the ecodormancy phase, and consider the day when 62 

accumulated forcing temperatures reach a required threshold (i.e., the heat requirement) to be the 63 

date of leaf unfolding (Sarvas, 1974). Two-phase models, such as the Sequential, Parallel, Unified, 64 

UniChill, and DORMPHOT models (Hänninen, 1990; Kramer, 1994b; Chuine, 2000; Caffarra et al., 65 

2011a), involve both the endodormancy and ecodormancy phases. These models assume that a 66 

certain amount of chilling is required to break endodormancy, and that a certain amount of heat 67 

must be accumulated to break ecodormancy and induce leaf unfolding (Cannell & Smith, 1983; 68 

Murray et al., 1989; Myking & Heide, 1995). The DORMPHOT model also integrates the 69 

photoperiod effect and assumes that increased photoperiod (longer days) promotes the rate of 70 

forcing accumulation during the ecodormancy phase (Caffarra et al., 2011a). Overall, one-phase 71 

and two-phase models differ in their assumptions regarding the control over spring phenology 72 

processes, and consequently predict widely diverging spring growth onset dates under future, 73 

warmer conditions. 74 

 75 

Phenology models have generally been calibrated using ground-based records for specific plant 76 

species, and have provided reasonable simulations of local conditions and similar climatic regions 77 

(Hunter & Lechowicz, 1992; Chuine, 2000; Migliavacca et al., 2011; Jeong et al., 2013; Melaas et 78 

al., 2013a). However, these locally parameterized models cannot simply be extrapolated to larger 79 

scales (Cleland et al., 2007; Rayner, 2010). In contrast to ground-based phenology observations, 80 

remotely sensed satellite imagery provides spring phenology estimates at the landscape scale 81 

(White et al., 2009; Jeong et al., 2011; Wang et al., 2015), bridging plant physiology and ecosystem 82 

processes as they relate to global change (Díaz & Cabido, 1997) at the same resolution as 83 

state-of-the-art LSMs. Therefore, satellite-based phenological observations are ideal for optimizing 84 



phenology models (Peñuelas & Filella, 2009) and for scaling up site-level phenological models to 85 

regional and even global scales. Several studies have investigated vegetation phenology models at 86 

the regional scale using satellite-derived estimates of the starting date of the growing season (SOS) 87 

(Yang et al., 2012; Melaas et al., 2015; Xin et al., 2015; Chen et al., 2016); however, these studies 88 

only considered forcing and/or chilling, ignoring the effects of photoperiod, whose role is expected 89 

to become increasingly important under future climate warming conditions (Fu et al., 2015). 90 

 91 

In the current study, we calibrated and evaluated six widely used spring phenology models, 92 

including one-phase and two-phase chilling and photoperiod models, using remote-sensing based 93 

SOS inferred from a newly released GIMMS (Global Inventory Modelling and Mapping Studies) 94 

NDVI (Normalized Difference Vegetation Index) dataset from 1982 to 2012. The primary goals of 95 

this study were (1) to calibrate different vegetation spring phenology models across the Northern 96 

Hemisphere; (2) to evaluate and identify an optimal model for specific plant functional types (PFTs) 97 

in reproducing spatiotemporal SOS patterns; and (3) to explore the chilling, forcing, and 98 

photoperiod effects in modeling vegetation growth onset for each PFT.99 



Materials and Methods 100 

Datasets 101 

Climate data and vegetation map. Daily temperature data with a spatial resolution of 0.5° × 0.5° was 102 

retrieved from the CRU-NCEP v5 climate dataset (available at 103 

ftp://nacp.ornl.gov/synthesis/2009/frescati/model_driver/cru_ncep/analysis/readme.htm), spanning 104 

the study period from 1982 to 2012. This dataset was generated from NCEP reanalysis and 105 

CRU-TS climatology data (New et al., 2000; Mitchell & Jones, 2005). Vegetation type data used in 106 

this study was adapted from a land cover dataset based on PFT (Verant et al., 2004; MacBean et al., 107 

2015). We focused on natural vegetation across the Northern Hemisphere (latitudes exceeding 30° 108 

N) including three temperate forests, two boreal forests, and two grasslands. We did not take 109 

regions dominated by cropland into consideration, because cropland did not exhibit clear 110 

seasonality and was more susceptible to interruption by human activities. To eliminate the effects of 111 

any spatial mismatch between the two datasets, we remapped the PFT map into the same spatial 112 

resolution as the temperature data and calculated the fraction of PFT located within each 0.5° × 0.5° 113 

pixel. Finally, seven PFTs were chosen, including temperate needleaf evergreen (TeNE), temperate 114 

broadleaved evergreen (TeBE), temperate broadleaved deciduous (TeBD), boreal needleaf 115 

evergreen (BoNE), boreal broadleaved deciduous (BoND), natural C3 grass (NC3), and natural C4 116 

grass (NC4) (Fig. S1). 117 

 118 

Satellite-derived phenology. The seasonal cycle of NDVI serves as a proxy for vegetation greenness 119 

and photosynthetic activity (Myneni & Hall, 1995; Myneni et al., 1997), and is thus widely applied 120 

in the extraction of vegetation phenology at the regional and global scales (Buitenwerf et al., 2015; 121 

Garonna et al., 2015; Piao et al., 2015). In this study, we estimated the satellite-derived SOS from 122 



the latest release of the GIMMS NDVI datasets (NDVI3g.v1) at a spatial resolution of 1/12° × 1/12° 123 

during the period from 1982 to 2012. Apart from the update of satellite sensors, atmospheric 124 

interference, and non-vegetation dynamics addressed in NDVI3g (Pinzon & Tucker, 2014), artifacts 125 

associated with snow coverage and changes in calibration that took place after 2006 were processed 126 

(Pinzon & Tucker, 2016). Following the methods of previous studies (Jakubauskas et al., 2001; 127 

Zhang et al., 2003; Piao et al., 2006; Julien & Sobrino, 2009), we estimated SOS using four 128 

commonly used phenology extraction methods (i.e., Hants-Mr, Polyfit-Mr, double logistic, and 129 

piecewise logistic), which depend on either predefined thresholds or changing characteristics of the 130 

NDVI curve (Liu et al., 2016). To reduce the uncertainty resulting from different interpretations of 131 

SOS from NDVI data, we applied an average SOS value derived from the four methods in the 132 

following analysis. As with the resample of the PFT map, we categorized all of the SOS data 133 

located in 0.5°× 0.5° pixels into specific PFTs, and then calculated the average for each PFT in each 134 

pixel. 135 

 136 

Spring phenology models 137 

Six spring phenology models, including the one-phase Spring Warming model and two-phase 138 

Sequential, Parallel, Unified, UniChill, and DORMPHOT models, were employed in this study. 139 

These models were calibrated on a daily basis, using gridded SOS and temperature data. The 140 

modeled SOS was defined as the day when the state of forcing (Sf) reached its critical value (Fcrit). A 141 

detailed description of these models is provided below. 142 

 143 

Spring Warming model. The one-phase spring warming model only considers the influence of 144 

forcing and calculates the accumulated daily rate of forcing (Rf) according to a logistic function (Eq. 145 



1) (Sarvas, 1974) starting from t0 (set as January 1 of the current year). Therefore, the SOS date is 146 

defined as the date when Sf exceeds Fcrit:  147 
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 149 

Sequential model. The Sequential model assumes that the accumulation of forcing will not start 150 

until a critical threshold (Ccrit) of chilling state (Sc, a daily sum of chilling rates) is met (Kramer, 151 

1994b). In this model, the rate of chilling (Rc) is described using a triangular function (Hänninen, 152 

1990) (Eq. 2) and Sc begins to accumulate after September 1 of the previous year, according to the 153 

methods of previous studies (Eq. 3) using a 1-day time step (Chuine, 2000). This model uses an Rf 154 

similar to that of the Spring Warming model, but with a competence function (K) (Eqs. 4 and 5). 155 

The forcing begins to accumulate when the daily temperature (T) is greater than Td and Ccrit is 156 

fulfilled:  157 
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 163 

Parallel model. Unlike the Sequential model, the Parallel model assumes that forcing functions 164 

even when Ccrit has not been attained (Landsberg, 1974); however, the parameters Rc, Sc, and Rf are 165 

exactly the same as in the Sequential model. The competence function (K, Eq. 7), however, 166 

introduces another parameter (Kmin), determining the minimum potential of an unchilled bud to 167 

respond to the forcing temperature (Hänninen, 1990; Kramer, 1994b). Therefore, the state of 168 

chilling and forcing could increase simultaneously over time:  169 
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 171 

Unified model. The Unified model (Chuine, 2000) applies paired sigmoid functions to describe Rc 172 

and Rf. The accumulation of chilling (Sc, Eq. 8) starts at tc (fixed on September 1 of the previous 173 

year) and continues even after Ccrit is attained. Forcing begins after the chilling critical state, and 174 

the forcing requirement for leaf-out (i.e., the critical state of forcing, Fcrit), is an experimental 175 

function of the total chilling accumulation (Ctot) (Eq. 11):  176 
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 181 

UniChill model. The Unichill model is simplified from the Unified model (Chuine, 2000), and is 182 



similar to the Sequential model. The difference between the UniChill and Sequential models is the 183 

rate function incorporating chilling and forcing accumulation. The UniChill model uses the same Rc 184 

and Rf as the Unified model. The accumulation of chilling begins September 1 of the previous year 185 

(Eq. 12), and continues until Ccrit is reached. Forcing (Sf) begins once Ccrit is attained (Eq. 13) and 186 

leaf-out begins when Fcrit is reached (i.e., SOS): 187 
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 190 

DORMPHOT model. The DORMPHOT model integrates the photoperiod effect to improve the 191 

simulation of budburst (Caffarra et al., 2011a), which involves dormancy induction, dormancy 192 

release, and growth resumption. In this model, dormancy induction is triggered by both short 193 

photoperiods (DRP) and low temperatures (DRT), and is complete when the state of dormancy 194 

induction (DS, Eq. 14) reaches a critical value (Dcrit):  195 
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where t0 is the start date of dormancy induction (fixed to September 1 of the year preceding 197 

budburst), T is the daily mean temperature, and DL is day length on day t. Dormancy release and 198 

growth resumption then begin. As in the Unified model, Sc is defined as the daily sum of Rc after td 199 

(the day when dormancy induction is complete) as follows: 200 
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By contrast, Rf is determined by both photoperiod and Sc. Long days above a certain threshold 202 

increases Rf (i.e., photoperiod sensitivity), which is in turn promoted by a longer previous chilling 203 



exposure or accumulation by decreasing this threshold (Caffarra et al., 2011b). This mechanism is 204 

characterized by Equations 16–18. The mid-response temperature (T50) decreases as DL increases, 205 

and results in an increase in Rf (Eq. 16). DL50 corresponds to the critical day length at which T50 is 206 

30°C and decreases with higher Sc (Eqs. 17–18). This negative relationship is set by parameters gT (≥ 207 

0) and hDL (≥ 0), respectively. 208 
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 212 

Model calibrations using satellite-derived SOS 213 

The minimum root mean square error (RMSE, Eq. 19) was used as the criterion to calibrate the 214 

parameters of the models given in Table 1. Bayesian optimization techniques (Mockus, 2012; 215 

Martinez-Cantin, 2014) were applied to determine the minimum RMSE and the corresponding 216 

parameter set for each PFT. The model parameters were constrained within a range based on the 217 

literature, and a Gaussian process model of the objective function (i.e., RMSE between model 218 

simulations and satellite observations) was maintained to train the model. Then the next point to 219 

evaluate was determined by an acquisition function, which could balance sampling at points with 220 

low-modeled objective functions and help to find an optimal boundary value. To evaluate the 221 

robustness of these models, PFT-specific samples for model internal (90%) and external (10%) 222 

validation were randomly sampled from satellite-derived SOS. In addition to RMSE, other metrics 223 

were introduced to assess model performance for specific PFT. For example, the Akaike 224 

Information Criterion (AIC, see Eq. 20) trades off the goodness of fit and the complexity of the 225 



models, with lower AIC values indicating better model simulation (Akaike, 1998). Following Chen 226 

(2017), the Nash–Sutcliffe Efficiency index (NSE, Eq. 21) (Nash & Sutcliffe, 1970) was applied to 227 

quantitatively describe the reliability of the calibrated models. Positive NSE (varies from 0 to 1, 228 

higher = better) indicates that the model explained more variance than the null model (i.e., mean 229 

SOS):  230 
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   (21), 233 

where i
obs  and i

pre  are pixel–year observed and predicted SOS, respectively; obs is the mean 234 

value of observed SOS; n is the number of pixel–year SOS; k is the number of parameters in each 235 

model. 236 



Results 237 

Best model for each PFT 238 

Table 1 summarizes the optimal parameters for each of the six models for each PFT, as well as the 239 

internal and external model evaluations. Overall, the models performed better than the null model 240 

(mean SOS) across all of the PFTs (i.e., NSE > 0). The percentage of variance explained by the 241 

models ranged from 24% (NC4, Parallel model) to 82% (NC3, DORMPHOT model), and varied 242 

greatly among the PFTs and models. Models generally performed better for the boreal forest than 243 

the temperate forest (Table 1, Figs. 1 and S2). For the boreal forest, although the one-phase spring 244 

warming model performed similarly to the two-phase models, the UniChill and DORMPHOT 245 

models performed slightly better in BoND (RMSE: approximately 9 days) and BoNE (RMSE: 246 

approximately 12 days) than the other models, according to the lowest AIC values (Table 1). In 247 

temperate forests, the two-phase models generally outperformed the one-phase model. The 248 

DORMPHOT model performed best for TeNE, TeBE, and TeBD (RMSE: approximately 14 days) 249 

(Table 1, Figs. 1 and S2). In the two grassland ecosystems, these models could not successfully 250 

reproduce the SOS dates, particularly in NC4, because the RMSE was greater than 21 days (Table 1, 251 

Figs. 1 and S2).  252 

 253 

Evaluation of spring phenology models at the regional scale 254 

The spatial patterns of SOS predicted by the six calibrated models during the period 1982–2012 255 

were broadly similar to those of the satellite-derived SOS, with spatial correlation coefficients 256 

ranging from 0.91 to 0.94 (Fig. 2). Nonetheless, model predictions differed greatly from satellite 257 

observations in western America and in arid/semi-arid regions (e.g., central Eurasia, Fig. 2). 258 

Moreover, SOS generally occurred earlier in low latitudes but later in the middle and higher 259 



latitudes (Fig. 2a). We found that such latitude gradients in satellite-derived SOS were captured 260 

precisely by model simulations except by the Parallel and Unichill models, which showed slight 261 

disagreement in latitudes lower than 35°N (Fig. 2e and i). Within boreal forests, all six models were 262 

in quite close agreement, with less than 10 days of difference in long-term mean SOS in more than 263 

68% of BoNE and 85% of BoND (Fig. S3). In temperate forests, the spring warming model 264 

displayed the largest differences, whereas the DORMPHOT model agreed best with the satellite 265 

observations (Fig. S3). The largest discrepancies between model predictions and observations were 266 

found in the C4 grasslands (Fig. S3). Across the Northern Hemisphere, all of the six models 267 

predicted SOS with a median RMSE of 7–15 days for forests and 10–18 days for grasslands (Fig. 268 

3). Within forests, boreal forest (e.g., BoNE and BoND) generally exhibited the highest overall 269 

accuracy (with a median RMSE of < 10 days), whereas within grasslands, the spring phenology of 270 

C4 grasses was very poorly captured by the models (Fig. 3). In temperate forests, the one-phase 271 

Spring Warming model displayed poorer accuracy than the two-phase models involving chilling 272 

and photoperiod effects (mainly for TeNE and TeBE, Fig. 3a). The spatial distribution of RMSE 273 

indicated better agreement with satellite observations at latitudes higher than 45°N (e.g., RMSE < 274 

10 days, except for the one-phase spring warming model), whereas higher RMSE values (e.g., > 15 275 

days) were obtained in lower latitudes, such as western America and central Eurasia (Figs. 4 and 276 

S4). Across the Northern Hemisphere (Fig. 4g), the two-phase DORMPHOT, Unified, and 277 

Sequential models showed the best accuracy (with median RMSE = 9.3, 9.5, 9.8 days, respectively), 278 

and the poorest performance was found in the one-phase Spring Warming model (median RMSE = 279 

11.9 days).  280 

 281 



Evaluation of predicted SOS trends in the past three decades 282 

During the period of 1982–2012, the modeled advancing trends in SOS in the Northern Hemisphere 283 

were obtained by the six models, which were in good agreement with the observations (Fig. 5). The 284 

model predictions captured SOS trends across approximately 74% (Parallel) to 78% (DORMPHOT) 285 

of the study area, although their magnitudes were weaker than the observations (Fig. 5). The 286 

differences in trends between satellite-derived SOS and model predictions were mainly distributed 287 

in northeastern Europe and southwestern North America (Fig. 5), which are primarily covered by 288 

TeBE and grasslands (Fig. S5). At the PFT scale, satellite observations documented a significant 289 

trend towards earlier SOS across all of the PFTs (except for NC4, P = 0.67) during the period of 290 

1982–2012; however, the one-phase Spring Warming model generated non-significant changes in 291 

SOS, particularly in temperate forests, and the two-phase models showed good agreement with 292 

satellite observations in boreal, but not temperate, forest. Overall, the DORMPHOT model 293 

provided a better performance in trend simulations across most PFTs (Figs. 5, S5, and 6). 294 

 295 



Discussion  296 

Our study, covering a large spatial and temporal scale, revealed an overall median RMSE of 7–15 297 

days for forests and 10–18 days for grasslands between the model predictions and satellite-derived 298 

SOS (Fig. 3). The overall accuracy of the simulations was comparable with previous efforts limited 299 

to either fewer PFTs or much shorter study periods. For example, the models fitted for TeBD 300 

showed similar accuracy to those of Melaas et al. (2015) for the eastern United States (median 301 

RMSE: 5–10 days), although in our study, model predictions for TeBD in southern Europe showed 302 

larger differences with satellite-derived SOS (Figs. 4 and S4). The models reproduced SOS less 303 

accurately for grasslands than for forests in this study (e.g., NC4 in central America, NC3 in 304 

western America) and in previous research (Xin et al., 2015), suggesting that other environmental 305 

factors besides spring forcing temperatures, chilling, and photoperiod should be considered in the 306 

phenology models. These factors may include soil moisture or precipitation, particularly in arid and 307 

semi-arid regions (Schwartz et al., 2006; Forkel et al., 2015). In terms of model-predicted SOS 308 

trends during the period of 1982–2012, advanced SOS trends were well captured among most PFTs 309 

(except for TeBE), with consistent signs but weaker magnitudes. These results may be related to the 310 

fact that current phenology models do not predict phenology dates well under extreme climate 311 

conditions, and that a few years’ poor model predictions during the study period (e.g. 1983-1984, 312 

2005-2006 for TeBE and 1982-1983 for TeBD for most models) can result in a large bias in the 313 

trend estimation (Figure S6). Moreover, we found that this issue was less likely related to the model 314 

calibration, because the ensemble means of four phenology-extraction methods did not reduce the 315 

temporal variation as shown in the SOS at PFT scale using individual method (Figure S7). 316 

 317 

Previous studies parameterized spring phenology models with ground phenological records and then 318 



extended the ground-based models to regional and hemispherical scale (Schwartz et al., 2006; Jeong 319 

et al., 2013; Yang et al., 2012). However, large unclear in understanding the mechanisms underlying 320 

leaf-out process, especially scaling them from species level to ecosystem level, is still existed and 321 

needs to be explored. In this study, we found that the Spring Warming model, which only involves 322 

thermal forcing, performed as well as two-phase models in the boreal forests (particularly for 323 

BoND), which is consistent with previous phenological modeling studies (Hunter & Lechowicz, 324 

1992; Vitasse et al., 2011). This may be because the boreal forests experience long and cold winters, 325 

with chilling requirements largely satisfied even under the ongoing climate warming conditions 326 

(Chuine, 2000; Vitasse et al., 2011; Xu & Chen, 2013). For temperate forests, however, a lower 327 

accuracy in predicting SOS was found in the Spring Warming model than in the two-phase models, 328 

implying that chilling is generally insufficient, and thus that chilling is an important factor in 329 

modeling spring phenology in temperate forests. This finding is also consistent with those of 330 

previous studies in temperate regions (Chuine et al., 2010; Fu et al., 2015). Importantly, we found 331 

that the DORMPHOT model, which incorporated the photoperiod effect, performed better in 332 

temperate deciduous and evergreen broadleaf forests, but yielded similar results in boreal or 333 

temperate evergreen needle-leaf forests. This finding is also supported by recent experimental 334 

studies that documented the fundamental but species-specific role of photoperiod in temperate tree 335 

species (Körner & Basler, 2010; Caffarra et al., 2011b; Zohner et al., 2016). Therefore, we 336 

conclude that the spring phenology of temperate forests might rely more on chilling and 337 

photoperiodic cues than boreal forest, which mainly depends on spring forcing temperatures under 338 

current climate conditions. With continued climate warming, however, chilling requirements might 339 

not be completely fulfilled in boreal forests, such that chilling and/or photoperiod might become 340 

more important in the spring onset process of these forests, although this speculation remains to be 341 



tested experimentally.  342 

 343 

Forecasts of spring vegetation growth onset and its variation under climate change scenarios 344 

depend largely on model structure, thereby requiring a better understanding of the interactions with 345 

environmental cues across different PFTs (Richardson et al., 2012). In this study, models 346 

integrating chilling and photoperiod generally produced better agreement in spatiotemporal patterns 347 

with satellite-derived SOS, although their RMSEs remained high. This result illuminates the 348 

potential to further improve current temperature-driven models by considering more environmental 349 

and physiological factors. Previous studies based on either in situ or satellite observations reported 350 

statistically significant correlations between spring growth onset and other environmental cues, 351 

such as soil water content or precipitation (Peñuelas et al., 2004; Bernal et al., 2011; Fu et al., 352 

2014), snowfall (Chen et al., 2015), daytime (rather than daily mean) temperature (Piao et al., 2015; 353 

Fu et al., 2016) and successional status (Jeong et al., 2013). Undoubtedly, these cues co-determine 354 

vegetation spring phenology; however, the mechanisms via which they influence the leaf-out 355 

process remain unclear. Further investigation through manipulative experiments at species and 356 

ecosystem level is necessary to make the models more biologically realistic, thus enhancing their 357 

predictive ability. Another possible source of uncertainty between satellite-derived SOS and model 358 

predictions may stem from the coarse spatial resolution of the observations applied in this analysis. 359 

The inclusion of different plant species within a pixel or specific PFT could misrepresent the 360 

response of spring onset to climate change (Chuine et al., 2000; Fu et al., 2014; MacBean et al., 361 

2015), and recent studies have found substantial differences in chilling requirements and 362 

photoperiod sensitivities of different tree species (Körner & Basler, 2010; Laube et al., 2014; 363 

Zohner et al., 2016). Regional climate datasets and satellite-based spring phenology dates with 364 



finer spatial resolution, as phenology data inferred from Landsat imagery (Melaas et al., 2013b) are 365 

becoming increasingly available, and thus would be profitable for modeling spring phenology. 366 

Besides, the parameterization of spring phenology models might be the third source of uncertainties 367 

in simulating SOS. We applied the optimal parameters in models, while large spatial variation of 368 

model parameters may exist and the Markov Chain Monte Carlo (MCMC) approach may be a good 369 

reference when applying these models within the PFTs (Jeong et al., 2012). 370 

 371 

In conclusion, we calibrated six frequently applied spring phenology models using satellite-derived 372 

SOS, and compared their simulations across PFTs in the Northern Hemisphere during the period of 373 

1982–2012. Model performance relied strongly on their interpretations of the effects of forcing, 374 

chilling, and photoperiod. Across the Northern Hemisphere, forcing temperatures might play a 375 

prominent role in modeling boreal forest SOS (particularly for BoND), with the one-phase Spring 376 

Warming model (which considers only forcing temperature) showing similar accuracy to the 377 

two-phase models. By contrast, for temperate PFTs (e.g., TeNE and TeBE), models involving 378 

chilling and particularly photoperiod provided better simulations. Specifically, the DORMPHOT 379 

model (which represented the photoperiod effect) best captured the spatiotemporal pattern of SOS 380 

in most PFTs (except in TeBD). Our results suggest that chilling and photoperiod effects should be 381 

embedded in large-scale vegetation phenology simulations, albeit in a PFT-specific manner. Several 382 

issues, however, still need to be addressed: 1) incorporating soil moisture or precipitation in 383 

arid/semi-arid regions and snowmelt in higher altitudes to improve simulations in grasslands; and 2) 384 

applying climatic and phenology observational datasets with finer spatial and temporal resolutions. 385 

Moreover, manipulative experiments aimed toward elucidating environmental and biological 386 

mechanisms underlying spring vegetation growth onset are required to better predict the date of 387 



SOS, and thus ecosystem responses to ongoing climate change. 388 
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Supporting Information Captions 601 

Figure S1. Spatial distribution of the fractional cover of PFTs across the Northern Hemisphere (> 602 

30°N). Seven main PFTs were included: (a) Temperate needleleaf evergreen (TeNE), (b) Temperate 603 

broadleaved evergreen (TeBE), (c) Temperate broadleaved deciduous (TeBD), (d) Boreal needleleaf 604 

evergreen (BoNE), (e) Boreal needleleaf deciduous (BoND), (f) Natural C3 grass (NC3), and (g) 605 

Natural C4 grass (NC4). Color indicates the proportion of a specific PFT in a 0.5° × 0.5° grid. 606 

 607 

Figure S2. Heat plots showing the relationship between predicted and satellite-derived SOS. SOS 608 

data was randomly sampled (10%) from each PFT in the Northern Hemisphere and was excluded 609 

from the calibration of spring phenology models. a–p1: predictions were generated using six spring 610 

phenology models at the PFT scale. Diagonal lines are 1:1 lines, indicating perfect agreement 611 

between predicted and satellite-derived SOS. Colors indicate the percentage of pixels within each 612 

bin. 613 

 614 

Figure S3. Spatial pattern of averaged SOS during the period 1982–2012 at the PFT scale. a–d was 615 

SOS inferred from satellite observations and h–p1 shows the SOS predicted by five phenology 616 

models. Pie charts beneath each model indicate the differences between predicted and 617 

satellite-derived SOS; a positive value indicates that the model produced later spring onset than 618 

observed, and vice versa.  619 

 620 

Figure S4. Maps of RMSE (days) between satellite-derived SOS and model simulations at the PFT 621 

scale. Results are based on six spring phenology models: (a–g) Spring Warming, (h–n) Sequential, 622 



(o–u) Parallel, (v–b1) UniChill, (c1-i1) Unified, and (j1–p1) DORMPHOT. Colors indicate 623 

differences between satellite- and model-derived SOS. 624 

 625 

Figure S5. Changes in satellite-derived and model-predicted SOS at the PFT scale during the period 626 

1982–2012. Figures S5a–g show linear trends estimated from satellite-derived SOS, and Figures 627 

S5h–w1 show results based on six spring phenology models: (h–n) Spring Warming model, (o–u) 628 

Sequential model, (v–b1) Parallel model, (c1–i1) UniChill model, (j1–p1) Unified model, and 629 

(q1–w1) DORMPHOT model. 630 

 631 

Figure S6. Variation of satellite-derived and model predicted SOS over the period 1982-2012. a-f 632 

shows the results across the temperate broadleaved evergreen (TeBE) based on six spring phenology 633 

models while g-l indicates the results across temperate broadleaved deciduous (TeBD). 634 

 635 

Figure S7. Comparison between individual phenology extraction method and their ensemble mean 636 

over the period 1982-2012. Bars and error bars indicate the temporal average and standard deviation 637 

of SOS for each PFT, respectively. 638 



Figure legends 639 

Figure 1. Heat plots showing the relationship between predicted and satellite-derived SOS. SOS data 640 

was randomly sampled (90%) from each PFT in the Northern Hemisphere and was applied to the 641 

calibration of spring phenology models. Figure 1a–p1: predictions were generated using six spring 642 

phenology models at the PFT scale. Diagonal lines are 1:1 lines, indicating perfect agreement 643 

between predicted and satellite-derived SOS. Colors indicate the percentage of pixels in each bin 644 

area. 645 

 646 

Figure 2. Spatial pattern of averaged SOS in the period of 1982–2012. (a) satellite-derived SOS, (b) 647 

SOS predicted by the Spring Warming model, (c) Sequential model, (d) Parallel model, (e) Unichill 648 

model, (f) Unified model, and (g) DORMPHOT model. The subplot in the bottom left of each spring 649 

phenology model shows the relationship between satellite-derived SOS and model prediction 650 

(*denotes significant correlation at P < 0.05). Figure 2e and i show the distribution of SOS across the 651 

latitude gradient (30°N–75°N). 652 

 653 

Figure 3. Boxplots of root mean square error (RMSE, days) between satellite-derived SOS and 654 

model-simulated SOS (from 1982 to 2012) across seven main PFTs in the Northern Hemisphere. 655 

 656 

Figure 4. Maps of RMSE (days) between satellite-derived SOS and model simulations. RMSEs were 657 

determined at the pixel scale during the period 1982–2012. Figures 4a–f show the spatial distribution 658 

of RMSEs across the Northern Hemisphere based on six spring phenology models including the (a) 659 

Spring Warming model, (b) Sequential model, (c) Parallel model, (d) UniChill model, (e) Unified 660 



model, and (f) DORMPHOT model. Figure 4g is the probability of RMSEs across the Northern 661 

Hemisphere, with vertical lines showing the median of RMSEs. 662 

 663 

Figure 5. Changes in satellite-derived and model-predicted SOS during the period from 1982 to 2012. 664 

Figures 5a and b–g indicate linear SOS trends inferred from satellite observation and model 665 

simulations, respectively. Dotted regions indicate that the trends were significant at P < 0.05.  666 

 667 

Figure 6. Linear trends of satellite-derived SOS and model simulations at the PFT scale. *indicates 668 

that detected trends were statistically significant at P < 0.05. 669 



 

Table 1. Estimates of six spring phenology models for each PFT and their performance. 

Models Model Parameters  Model EvaluationInternal 

a
. 

S
p

ri
n

g
 W

a
rm

in
g

 

PFTs alpha beta Fcrit Af - - - - - - -  RMSE R2 AIC 

TeNE –0.07  15.00  498.24  19.69  - - - - - - -  18.9  0.52* 1.24E + 06

TeBE –0.16  8.54  498.86  25.52  - - - - - - -  19.5  0.49* 1.68E + 05

TeBD –0.05  12.64  270.24  8.30  - - - - - - -  17.1  0.42* 4.03E + 05

BoNE –0.59  6.29  226.33  40.00  - - - - - - -  13.5  0.57* 1.22E + 06

BoND –0.65  3.60  381.57  39.99  - - - - - - -  8.9  0.65* 3.65E + 05

NC3 –0.08  0.95  359.88  8.54  - - - - - - -  18.5  0.76* 3.58E + 06

NC4 –0.05  32.77  495.09  30.73  - - - - - - -  25.8  0.29* 8.97E + 04

b
. 

S
eq

u
en

ti
a

l 

PFTs alpha beta Ccrit Fcrit Tb Td Ta Tc Af - -  RMSE R2 AIC 

TeNE –0.20  –5.31  179.60  63.90  7.04  1.24  –99.38  76.63  7.31  - -  16.0  0.55* 1.17E + 06

TeBE –0.35  –12.76  144.92  66.42  0.27  0.78  –99.21  83.74  36.41  - -  17.9  0.50* 1.63E + 05

TeBD –0.14  -6.35  170.32  353.07  5.07  1.86  –57.10  92.72  42.81  - -  17.5  0.41* 4.06E + 05

BoNE –0.14  1.84  180.57  497.71  –4.86  0.72  –81.55  98.63  37.53  - -  12.1  0.59* 1.17E + 06

BoND –0.40  53.11  55.21  384.22  –7.79  2.39  –58.06  -0.94  33.08  - -  9.1  0.64* 3.67E + 05

NC3 –0.18  -4.46  150.49  462.42  –1.55  1.26  –63.99  90.50  38.49  - -  17.0  0.80* 3.47E + 06

NC4 –0.05  27.59  170.58  62.61  9.77  5.68  –29.41  89.49  20.31  - -  26.6  0.25* 9.05E + 04

c.
 P

a
ra

ll
el

 

PFTs alpha beta Ccrit Fcrit Tb Td Ta Tc Af Kmin -  RMSE R2 AIC 

TeNE –0.03  -6.94  145.13  243.68  –17.61  1.13  –59.44  4.13  26.34  0.09  -  16.7  0.57* 1.19E + 06

TeBE –0.10  14.59  118.10  226.64  –5.54  1.78  –73.80  0.03  11.99  0.11  -  17.3  0.50* 1.61E + 05

TeBD –0.65  -0.19  112.23  229.55  –12.06  4.01  –61.37  4.76  14.88  0.08  -  18.1  0.41* 4.11E + 05

BoNE –0.02  -11.11  139.52  154.15  –15.62  1.99  –55.54  4.33  26.99  0.05  -  12.6  0.58* 1.18E + 06

BoND –0.13  34.52  163.59  171.01  –8.93  0.95  –99.54  3.28  11.09  0.01  -  9.0  0.63* 3.68E + 05

NC3 –0.02  -8.90  192.43  78.55  –9.13  3.97  –89.87  5.54  11.98  0.08  -  17.3  0.81* 3.48E + 06

NC4 –0.11  -17.57  173.36  263.35  –10.94  0.83  –30.64  27.76  26.96  0.01  -  27.3  0.24* 9.12E + 04

 



 

d
. 

U
n

iC
h

il
l 

PFTs alpha beta Tb Ta Tc Ccrit Fcrit - - - -  RMSE R2 AIC

TeNE –0.18  3.95  0.00  0.00  4.41  88.05  19.47  - - - -  16.2  0.56* 1.18

TeBE –0.11  11.31  0.00  0.00  –2.67  68.74  16.26  - - - -  18.3  0.45* 1.64

TeBD –0.08  2.26  0.01  0.00  2.45  58.94  42.52  - - - -  17.3  0.41* 4.05

BoNE –0.38  4.60  0.66  0.02  –3.95  39.25  13.78  - - - -  12.5  0.59* 1.14

BoND –0.97  0.24  0.39  0.01  –11.53  39.77  20.09  - - - -  9.0  0.64* 3.60

NC3 –0.39  1.86  0.01  0.00  7.50  82.99  22.29  - - - -  16.8  0.80* 3.46

NC4 –0.08  9.22  0.00  0.00  0.82  29.07  52.29  - - - -  26.4  0.28* 9.02

e.
 U

n
if

ie
d

 

PFTs alpha beta Tb Ta Tc w z Ccrit deltaP - -  RMSE R2 AIC

TeNE –0.38  6.43  0.00  0.00  –1.93  759.34  –0.05  93.11  41  - -  15.8  0.56* 1.17

TeBE –0.31  9.36  0.01  0.00  7.30  605.88  –0.06  74.56  189  - -  17.6  0.51* 1.62

TeBD –0.21  5.70  0.01  0.00  4.43  235.74  –0.03  86.62  105  - -  17.6  0.41* 4.07

BoNE –0.39  7.87  0.01  0.00  0.45  210.11  –0.05  80.85  22  - -  12.3  0.61* 1.18

BoND –0.35  6.76  0.77  0.02  –3.52  1379.60  –0.07  77.56  129  - -  8.7  0.66* 3.59

NC3 –0.37  4.05  0.01  0.00  –1.99  494.70  –0.04  85.39  195  - -  16.4  0.81* 3.43

NC4 –0.03  2.77  0.03  0.00  4.63  110.80  –0.01  0.65  62  - -  25.8  0.29* 8.96

f.
 D

O
R

M
P

H
O

T
 

PFTs DLcrit Dcrit Ccrit Fcrit aD bD aC cC dF gT hDL  RMSE R2 AIC

TeNE 12.75  29.43  99.68  19.45  0.05  23.17  0.01  18.41  –0.30  0.33  0.05   15.7  0.56* 1.16

TeBE 11.01  31.94  24.38  16.32  0.04  20.42  0.02  14.59  –0.76  0.25  0.11   16.8  0.53* 1.60

TeBD 10.47  28.42  12.49  14.88  0.03  13.36  0.01  16.13  –0.90  0.30  0.02   16.9  0.43* 4.01

BoNE 9.69  31.21  63.20  15.81  0.91  4.91  0.01  9.70  –0.59  0.25  0.15   11.8  0.60* 1.15

BoND 10.63  55.42  61.95  19.70  0.44  16.78  0.02  –11.01  –0.44  13.26  14.34   8.7  0.63* 3.45

NC3 10.42  21.38  8.65  21.99  0.02  6.79  0.01  15.72  –0.77  0.30  0.04   15.7  0.82* 3.38

NC4 10.58  33.87  49.70  6.03  0.94  19.39  0.41  0.92  –0.05  14.34  11.66   26.6  0.28* 9.04

Note: R2 represents the percentage of variance explained by the model (*P < 0.01). AIC: Akaike Information 

Criterion; the lowest AIC indicates the optimum model for the simulation of spring phenology. NSE: 

Nash–Sutcliffe efficiency index; higher (positive, ranging from 0 to 1) NSE values indicate higher model 

reliability. 
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Figure S1. Spatial distribution of the fractional cover of PFTs across the Northern Hemisphere 

(> 30°N). Seven main PFTs were included: (a) Temperate needleleaf evergreen (TeNE), (b) 

Temperate broadleaved evergreen (TeBE), (c) Temperate broadleaved deciduous (TeBD), (d) 

Boreal needleleaf evergreen (BoNE), (e) Boreal needleleaf deciduous (BoND), (f) Natural C3 

grass (NC3), and (g) Natural C4 grass (NC4). Color indicates the proportion of a specific PFT 

in a 0.5° × 0.5° grid. 

 



Figure S2. Heat plots showing the relationship between predicted and satellite-derived SOS. 

SOS data was randomly sampled (10%) from each PFT in the Northern Hemisphere and was 

excluded from the calibration of spring phenology models. a–p1: predictions were generated 

using six spring phenology models at the PFT scale. Diagonal lines are 1:1 lines, indicating 

perfect agreement between predicted and satellite-derived SOS. Colors indicate the percentage 

of pixels within each bin. 

  



Figure S3. Spatial pattern of averaged SOS during the period 1982–2012 at the PFT scale. a–d 

was SOS inferred from satellite observations and h–p1 shows the SOS predicted by five 

phenology models. Pie charts beneath each model indicate the differences between predicted 

and satellite-derived SOS; a positive value indicates that the model produced later spring onset 

than observed, and vice versa.  

 

 



Figure S4. Maps of RMSE (days) between satellite-derived SOS and model simulations at the 

PFT scale. Results are based on six spring phenology models: (a–g) Spring Warming, (h–n) 

Sequential, (o–u) Parallel, (v–b1) UniChill, (c1-i1) Unified, and (j1–p1) DORMPHOT. Colors 

indicate differences between satellite- and model-derived SOS. 

 



Figure S5. Changes in satellite-derived and model-predicted SOS at the PFT scale during the 

period 1982–2012. Figures S5a–g show linear trends estimated from satellite-derived SOS, and 

Figures S5h–w1 show results based on six spring phenology models: (h–n) Spring Warming 

model, (o–u) Sequential model, (v–b1) Parallel model, (c1–i1) UniChill model, (j1–p1) Unified 

model, and (q1–w1) DORMPHOT model. 

  



Figure S6. Variation of satellite-derived and model predicted SOS over the period 1982-2012. 

a-f shows the results across the temperate broadleaved evergreen (TeBE) based on six spring 

phenology models while g-l indicates the results across temperate broadleaved deciduous 

(TeBD). 

 



Figure S7. Comparison between individual phenology extraction method and their ensemble 

mean over the period 1982-2012. Bars and error bars indicate the temporal average and standard 

deviation of SOS for each PFT, respectively. 

 

 

 

 




