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Abstract In this paper we present an overview of agent-

based models that are used to simulate mechanical and

physiological phenomena in cells and tissues, and we discuss

underlying concepts, limitations, and future perspectives of

these models. As the interest in cell and tissue mechanics

increase, agent-based models are becoming more common

the modeling community. We overview the physical aspects,

complexity, shortcomings, and capabilities of the major

agent-based model categories: lattice-based models (cellular

automata, lattice gas cellular automata, cellular Potts mod-

els), off-lattice models (center-based models, deformable

cell models, vertex models), and hybrid discrete-continuum

models. In this way, we hope to assist future researchers in

choosing a model for the phenomenon they want to model

and understand. The article also contains some novel results.

Keywords Cell mechanics · Agent-based modeling ·
Lattice-based models · Lattice-free models · Deformable

cell models · Hybrid models

1 Introduction

Biological cells are constantly exposed to mechanical stress.

In response to this stress they may change their shape,

migrate, or change their state in another way. In the

past decades, research majority focused on the molecu-
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lar processes and their impact on biological organization

processes. Molecular biology was led by the expectation

that unveiling the genome, identifying genes and their func-

tion, could be sufficient to understand functioning and failure

of living organisms. Despite impressive insights triggered

by molecular biology, these expectations were not fulfilled.

Since then, stepwise higher levels of organization have

been linked to the lower levels, arriving at gene expression,

gene regulation, gene translation, post translational pro-

tein modifications, and signal transduction and metabolism.

It is becoming increasingly obvious that molecular events

can impact cell behavior and subsequently modify multi-

cellular organization, which in turn can feed back to the

molecular control inside the cell [1]. Beside feedback by

signaling molecules outside of the cell, cells can sense

mechanical stress by mechanotransduction, which is the

mechanism by which cells transduce an external mechani-

cal stimulus into an internal molecular signal. The dynamics

of the cytoskeleton (CSK) and focal adhesion complexes

plays a major role herein [2,3]. Mechanotransduction can

materialize itself in different types of cell responses: (i)

primary mechanoreceptors like ion channels and integrins.

Integrins are transmembrane adhesion proteins that instan-

taneously mediate coupling between the plasma membrane

or the extracellular matrix (ECM) and the cystoskeleton;

(ii) mechanosignaling complexes, like caveolae [4] or focal

adhesions [5], which respond rapidly (seconds to minutes

range) to forces. The protein talin seems to play a crucial

role herein since it undergoes force-induced conformational

changes and reveals cryptic sites to actin bundles (via vin-

culin) binding [265]; (iii) signal integrators like the actin

CSK [6] which is essential to propagate extracellular forces

to the nucleus. The nucleus has also been proposed to act

as a mechanosensor [7], where integration of the changes in

nuclear shape may cause conformational changes in chro-
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matin organization; (iv) nuclear shuttling proteins [8] (like

zyxin, YAP, Yes-associated protein, MRTFA, myocardin-

related transcription factor), which transit from the cytoplasm

to the nucleus where they affect gene expression. In turn,

these signals lead to cell organization and function adjust-

ments. In particular, they alter the mechanical properties

and response of the cell. Mechanotransduction is therefore

intrinsically a feedback mechanism. For these reasons the

understanding of biological organization requires to ulti-

mately include the contribution of mechanics, as well as the

level of cells and tissues.

Mechanical stimuli play a prominent role in the develop-

ment and constitution of an organism. Already in the early

stages of development mechanosensing plays a role in stem

cell differentiation [9]. This role is maintained in later stages

of differentiation, e.g., in chondrocytes in bone remodeling.

The tissue engineering community now acknowledges that

physical influences, such as ECM geometry, ECM elastic-

ity, or mechanical signals transmitted from the ECM to the

cells (i.e., mechanotransduction) are of great importance to

explain biological observations [10]. In order to get more

insight and quantify the relations between mechanical stress

and biological processes, people have started to study the

mechanics of tissues such as bone, heart, and the artery sys-

tem using mathematical models. Yet, experimental studies

continue to raise important questions and reveal new obser-

vations.

In cancer, cells experience augmented stresses as the

tumor develops. Helmlinger et al. [11] set up an experi-

ment where cells were grown in an elastic gel and they

found that the growth of the tumor was gradually stalled

(reaching compressive stresses of several kPa) although no

indication of apoptosis was reported. In similar experiments,

however, Cheng et al. [12] concluded induced apoptosis in

regions of high compressive stress and allowing proliferation

in regions of low stress. Basan et al. [13] studied the influence

of mechanical stress by compressing tissue in a cylindrical

chamber. This led to concept of homeostatic pressure, i.e.,

the pressure at which the net result of growth and apop-

tosis is zero. The same group also studied spheroids in an

osmotic solution to mimic external pressure. They observed

diminished proliferation rates in the spheroid except at the

periphery. Similarly, Alessandri et al. [14] showed that spher-

oids in a confined environment exhibited a declined growth

rate but an increased migrative activity at the periphery of

the tumor. The origin of this “skin” effect is not yet clari-

fied. There is still discussion whether increased stress triggers

migrative activity in the tumor [14–17].

In wound healing, cells that attempt to repair the tissue are

steered by both passive and active (motility) forces. Traction

force microscopy studies using a variety of in vitro mono-

layers have revealed that active motility forces are not only

generated by the boundary cells but also by cells in the mid-

dle of the epithelia [18]. The leading edge of the epithelial

tissue often does not move uniformly but forms finger-like

protrusions while cells in the bulk can exhibit spontaneous

swirl-like flow patterns, which depend on the cell density and

viscous forces between cells and substrate.

Various experiments illustrate the importance of cell–

matrix mechanics. Matrix mechanics can foster tissue forma-

tion by correlating the relative motions of cells, promoting

the formation of cell–cell contacts. For instance, it has been

reported that cardiac cells can synchronize their beating

through substrate deformations [19]. In blood vessel forma-

tion and growth, diverse mechanical forces originating from

key cell processes, such as lamellipodium and filopodium

formation, regulate the direction and rate of formation of

the vessels [20]. Also in this case there is a prominent

role for cell–matrix mechanical interactions, which has been

recognized in several modeling studies using a continuum

approach [21–24] and was recently included in and agent-

based angiogenesis model [25]. During metastasis in cancer,

cells detach from the tumor and migrate through the stroma.

Studies have revealed that cells remodel the matrix around

them [26,27], thereby possibly creating trails for other cells

[28,29].

Modeling cells and tissue mechanics is an emerging field

in biomedical sciences. The abovementioned phenomena

have created plenty of challenges for engineers, mathemati-

cians, physicists, and biologists, and endowed a whole new

subject in the biomechanics and mechanobiology modeling

community. Clearly, modeling these phenomena is not a triv-

ial task due to the biological complexity and various scales

involved. Agent-based models were developed to understand

tissue dynamics as a result of interplay of its individual cells.

In these models, cells are by definition regarded as separate

units. This approach is contrary to continuum methods, where

the individual character of the cells is discarded and tissue

dynamics is derived from mesoscopic or macroscopic conser-

vation and constitutive laws. Agent-based systems provide an

ideal framework for the integration of intracellular molecular

processes as their directly represent the cell itself as indi-

vidual which captures natural spatial inhomogeneities and

variability between cells.

Inhomogeneities on the level of individual cells can be

fundamental to understand the organization on the tissue

level. For example, it has been realized that understanding

of tumor progression and resistance to treatment requires to

take into account the cell-to-cell variability [30,31]. These

inhomogeneities can readily be represented within an agent-

based approach (e.g., [32]). Tissue architecture in vivo can

closely be related to the function of the organ in which case

it needs to be represented explicitly. For example hepato-

cytes, the parenchyma of liver, that detoxify blood from

food toxins and other toxins, are arranged within a com-

plex architecture around a network of micro-vessels in such
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a way that the exchange area between hepatocytes and blood

is very large [33]. Another example are intestinal crypts

forming one-cell-thick pockets in the intestinal wall hence

optimizing resorption from the intestine (e.g., [34–37]). Such

inhomogeneities and small scale effects favor agent-based

approaches as they are often difficult to be represented in

continuum models which usually deal with quantities locally

averaged over a group of many cells. Agent-based models

can also probe properties of in vitro multi-cellular systems

such as monolayer cultures or multicellular spheroids as these

systems can, due to their moderate cell population size, be

modeled in a 1:1 manner, yielding an abstraction of the “wet”

experiment on the computer.

Recent developments of experimental imaging techniques

facilitate validation of simulation models at histological

scales. Confocal laser scanning micrographs can be used to

reconstruct the three-dimensional tissue architecture at his-

tological scales [33]. For liver tissue, standard imaging and

image processing protocols have been developed indicating

that in the future more and more automated or half automated

well established procedures will be established to speed up

analysis of tissue organization processes at histological scales

[38]. Staining for tissue components such as cell types or cell

properties can be used to collect information about the mul-

ticellular state. The information can directly be fed into a

pipeline of image analysis and modeling, whereby the mod-

eling can be regarded as in silico experiment [39]. Modeling

can be either started directly out of reconstructed 3D volume

data sets, or be performed in virtual tissue architectures that

represent the image information in a statistical sense. Live

imaging permits direct observation of cellular arrangement

processes in real time over a period of several hours. Hence,

combining different image modalities operating on the his-

tological scale can provide complementary information on

different time and length scales that can be used to construct

and validate agent-based tissue models.

Over the last decades a number of different agent-based

approaches have been developed to mimic multicellular orga-

nization. Our focus here is on agent-based models in space.

“Space-free” agent-based models have been considered for

example in hematology and are reported elsewhere [40].

Spatial agent-based models can roughly been distinguished

by those operating on space fixed lattices [41–60] and

those operating without a lattice (“lattice-free”, “off-lattice”;

[52,61–66]). Among lattice models, either (i) a lattice site

may be occupied by many cells (e.g., [67]) permitting mod-

eling of large cell population sizes, (ii) cells may occupy

at most a single lattice site (e.g., [68]), or (iii) many lat-

tice sites may be occupied by one biological cell (e.g., [53]).

In each of the aforementioned lattice approaches, division,

death, and migration are modeled as stochastic processes.

The degree to which biomechanical aspects can be captured

depends much on which of the three types (i)–(iii) is cho-

sen. Model types (i) and (ii) can represent excluded volume

effects, (iii) can capture qualitatively cell deformation and

compression, while each of the three approaches to some

extend can describe the effect of mechanical forces of one

cell on its neighbor, or on a group of neighbor cells. A last type

of agent-based model defined on a lattice is the lattice gas cel-

lular automaton (LGCA) [69] in which each lattice site also

contains velocity channels. Among lattice-free models one

can roughly distinguish between center-based models and

deformable cell models. The first class models the interac-

tion of cells based on forces or energies between cell centers

and does not resolve cell shape precisely. The second class

resolves cell shape in detail and permits for representation of

complex cell shapes.

As agent-based models are used by an expanding mod-

eling community, our goal is to provide an overview of

agent-based modeling approaches on the modeling aspects

with emphasis on the cell mechanics that they can capture,

rather than to give an overview of mathematical models

developed for the modeling of well-defined phenomena such

as tissue growth [70] or tackling a specific clinical problem

[71]. For each of the approaches we make the trial to list

their specific capabilities, advantages and drawbacks (know-

ing this is partially worthy of discussion and therefore a bit

a matter of taste as so far no absolute quantitative measures

for it exist), and provide as such an short guide to people

entering or already established community of biomechanical

modeling. In addition, we present some complementary so

far unpublished (novel) results.

The paper is organized as follows: in Sect. 2 we introduce

the lattice models addressing different spatial resolutions.

This is followed by off-lattice models, encompassing center-

based models (CBM) and deformable cell models (Sect. 3),

considering the cell as a object being able to move continu-

ously in space. Finally, we give a short overview on how dis-

crete models can be coupled to continuum models (Sect. 4).

An overview of existing software tools is given in Sect. 5.

Where respective simulation results are available we dis-

cuss the different model approaches referring to monolayer

and multicellular spheroid growth as they may represent a

good reference (“traveling salesman”) example for in how

far the models are able to capture tissue mechanics of growth

processes. By monolayer we mean cell populations grow-

ing in vitro on a flat substrate without shortage of nutrients,

growth factors etc.. Multicellular spheroids are their three-

dimensional counterpart, cell populations growing in vitro

either in liquid suspension or collagen-like gel.

2 Lattice models

Among lattice models, either only positions of cells are con-

sidered, or, with the class of lattice gas cellular automata
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Fig. 1 Construction scheme of unstructured lattice for cellular automa-

ton simulations with type B automaton [72]. From left to right (i) a

square lattice is generated with one point in each square. (ii) the nearest

neighbors are connected by lines generating a Delaunay triangulation;

(iii) the Voronoi tessellation representing the dual graph of the Delaunay

triangulation is generated from it, by drawing the perpendicular bisec-

tion on every edge of the Delaunay triangulation; (iv) the final Voronoi

tessellation with the construction points. Notice that each point in space

closer to one construction point (each of the black points is a construc-

tion point) than to any other construction point belongs to the Voronoi

cell of that construction point. Points with equal distance to more than

one construction point form the borders between neighboring Voronoi

cells (black lines). If a biological cell changes site, the volume (area

in Fig. 2d) changes too, as the volume (area in Fig. 2d) is an intrinsic

property of the lattice site, not of the cell

(LGCA), in addition the velocity of the cells is denoted (e.g.,

[68]. We consider first those where the velocity is no explicit

variable. In this case either (type A) a lattice site may be occu-

pied by many cells [67] which permits simulation of large cell

population sizes, (type B) cells may occupy at most a single

lattice site [72], or (type C) many lattice sites may be occu-

pied by one biological cell [53]. Model type C is derived from

the Potts model and therefore usually called “Cellular Potts

model” [73]. Our choice of the enumeration by letters A, B,

C is led by the relative size of a cell compared to the size

of the lattice spacing (constant): type A: cell size is much

smaller than the lattice spacing, type B: cell size is the same

or about the same as the lattice spacing, type C: cell size

is much bigger than the lattice spacing. LGCA (denoted as

model type D) usually also have several cells on the same

lattice site, but in addition carry a velocity variable.

For didactic reasons we first discuss model type B, then

model types A, C and D in subsequent subsections.

2.1 Cellular automaton with one cell per lattice site

(type B)

We start with type B as reference case because type A can be

described as a generalization of type B.

Cellular automaton models of type B are used quite a lot

in cancer modeling to study how intrinsic cell mechanisms

contribute to tumor growth, death, and morphology (e.g.,

[74–77]), and have been intensively used to model monolay-

ers and multicellular spheroids (e.g., [67] and refs. therein).

The growth, death and migration dynamics of cells on a

lattice is usually modeled by a stochastic process. In type

B automata, the volume of a cell is usually identified with

the volume associated with that lattice site. On a cubic lat-

tice with lattice spacing a this is ad , with d being the spatial

dimension. A commonly used alternative to the structures

lattice is the Delaunay lattice [72,78], in which the number

of cell neighbors corresponds to the value found in epithelial

tissues [79,80]. The Delaunay lattice is generated by seeding

a set of constructions points and then generating the corre-

sponding Voronoi mesh and Delaunay lattice (Fig. 1).

Block et al. [72] proposed generating a 2D Delaunay lat-

tice by placing the construction points into each square of

a square lattice to ensure that cell sizes only slightly vary

around a2. This way of constructing the cellular automaton

lattice was later extended to three dimension by Radszuweit

et al. [67]. For illustration, Fig. 2 represent an recent example

for a simulation of population growth in a CA model on an

unstructured lattice and within a graphic scheme illustrates

the key processes that can occur. There are growth, migra-

tion, division, death, or pushing [72,81]. The processes are

explained below.

The cell cycle time distribution found experimentally is

peaked and does not correspond to the assumption that divi-

sion is a Poissonian process, as such a process generates a cell

cycle time distribution decreasing exponentially with time.

By introducing intermediate states with Poissonian transi-

tions, the experimentally observed cell cycle distribution can

be reproduce and the emerging cell cycle time distribution is

an Erlang distribution:

f (τ ) = λ(λmτ)m−1

(m − 1)! e−λmτ , (1)

where λm = m/τe is the transition rate between subsequent

states, τ the cell cycle time, and m the total number of states.

This yields 〈τ 〉 = τe.

The magnitude of the expansion speed of dense one-cell-

thick monolayers is incompatible with the assumption that

only those cells at the monolayer border grow and divide

[82]. Furthermore, in monolayers both glucose and oxygen

are abundant, suggesting that the expansion speed of the

monolayer may be controlled by physical forces [72,82,83].

Different from a monolayer in a multicellular spheroid,
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Fig. 2 a Determination of free lattice site with circle of radius �R [72]. b Fundamental processes during growth of multicellular spheroids [81].

c Typical growth scenario in absence of migration and death [72]

the three-dimensional counterpart of a monolayer, nutrients

become limiting in the interior of the multicellular spheroid if

the size of the multicellular spheroid grows beyond a certain

size. A careful analysis of EMT6/Ro growing multicellular

spheroids shows significant central necrosis above a certain

size which is associated to the lack of glucose and oxygen (see

[82] and refs. therein). The central necrotic core and the diam-

eter of these multicellular spheroids grow linear in time [84]

suggesting the existence of a proliferating rim of constant

size. Moreover, change of glucose does not change the growth

speed, while it does change the size of the necrotic core.

All these observations suggest, that biomechanical forces,

presumably by the same mechanisms, play an important role

in the control of the growth speed in both monolayer and mul-

ticellular spheroids, and that the proliferating rim is constant

in time.

A growing and dividing cell can exert forces on neigh-

boring cells pushing them aside to generate free space for

its division. In type B cellular automaton this was taken into

account by defining a certain length �L over which a cell is

able to push neighbor cells away [72,78,83] (Fig. 2a). This

would generate a constant proliferating rim and comply with

the observations in growing monolayers and multicellular

spheroids. A cell can only divide if at least one lattice site

within radius �L is free. To make space for the daughter

cells, a line is drawn linking the cell’s site to the closest free

lattice site and all intersecting neighbors are shifted one posi-

tion towards the free lattice site. Next, one daughter cell is

placed at the site of the mother cell and the other one is placed

at the lattice site that was freed by the shifting procedure

(Fig. 2). This procedure ensures that the daughter cells of the

same mother cell are neighbors directly after division. Instead

of using for �L a fixed length, one may also use an upper

bound for the number of neighbor cells a dividing cell can

push aside. The algorithm mimics that a dividing cell exerts

forces on its environment, leading to a rearrangement of cells

in its neighborhood such that the total energy needed to push

the neighbor cells away is minimal. Most models used �L as

a threshold parameter with cells having the same chance of

dividing if their distance to the next free lattice site does not

exceed �L [72,78,83], but direct comparison with experi-

mental data on multicellular spheroids suggest that the prob-

ability of division depends on the distance of the cell to the

spheroid border leading to a slightly different dynamics [81].

Using the shifting procedure in a type B cellular automa-

ton, the grow kinetics of one-cell-thick monolayers can be

reproduced (Fig. 3).

The processes migration, growth, birth and death are usu-

ally modeled by a master equation providing an equation for

the time development of the multivariate probability to find

the entire system in a particular state. The master equation is

a balance equation and permits to calculate transitions into

accessible neighboring states. The transitions in a type B cel-

lular automaton are described as:

∂p(Z , t)

∂t
=
∑

Z ′
W (Z ′ → Z)p(Z ′, t)−W (Z → Z ′)p(Z , t),

(2)
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Fig. 3 Left Simulations of a growing monolayer with a type B cellular

automaton (points experiment, red line simulations with type B cellular

automaton, blue line with squares off-lattice CBM (see later section).

The parameters for the type B cellular automaton are �L = 9 (in lat-

tice units, here cell diameters), m = 60 (Erlang parameter), φ = 0

(migration rate). The experimental growth curve can be explained also

by other parameter sets, and other mechanisms [72]. Additional exper-

imental information is needed to uniquely fix model mechanisms and

parameters. Middle Cell cycle duration distribution for type B cellular

automaton and CBM for the simulations depicted in the middle. Right

Simulation of a xenograft in mouse with a type A cellular automa-

ton (points experiment, line simulation) [67]. Cells can be shifted

over �L = 2.85 lattice units, here b = 10 cell diameters. NIH3T3

xenografts show only small necrotic lesions, hence nutrient limitation

can be neglected even inside the tumor. This means the speed of tumor

expansion is controlled by the thickness of the proliferating rim of size

�L = 2.85b = 28.5 cell diameters. Here, Nmax = 1000 cells and zero

micro-motility (no migration) have been assumed. (Color figure online)

where the first term denotes all transition from neighbor

states Z ′ into the “current” state Z and the second term

denotes all transitions from the current state Z into any

accessible neighbor state Z ′. This master equation may

either be solved with a fixed time-step algorithm choos-

ing the time step �t so small that only a single event is

likely to occur within [t . . . t + �t], or by the Gillespie algo-

rithm (often also called Kinetic Monte-Carlo) [85,86]. In

the Gillespie algorithm a variable time step is calculated by

�t = −
(

1/
∑

Z ′ W (Z → Z ′)
)

ln(1 − ξ), where ξ ∈ [0, 1)

is a uniformly distributed random variable. W (Z → Z ′)
denotes the rate of a transition from Z to Z ′. Different from

chemical particles, hopping of cells should not depend on

the number of free neighbor sites as long as at least one free

neighbor site exists. Accordingly, one may only sum over

Z̃(Z ′) states assuming that the rate at which a cell changes

its state by a hop, a progress in the cell cycle, a division,

or death process is independent of the number of accessible

states as long as at least one state is accessible, that is, one free

adjacent lattice site in case of a hop and one free site within

a circle of radius �L in case of a division. For example, a

cell in d = 3 having three free neighbor sites would then be

chosen for a move with rate (λ1 +λ2 +λ3)/3 (instead of with

λ1 + λ2 + λ3) if λi with i = 1, 2, 3 denoting the individual

hoping rates. Once it has been selected for a move, the move

to lattice site j is performed with probability λ j/(
∑3

j=1 λ j ).

An equivalent line of argument holds for division. Growth

can be modeled by allowing a cell to occupy two adjacent

lattice sites simultaneously without considering the cell as

having divided [81]. This means, that in this case the same

cell would occupy more than one lattice site. This princi-

ple can be extended to occupation of many lattice sites of a

cell then changing into an occupation of at most double of

many lattice sites during growth until division takes place. A

migrating cells may also be able to exert forces to a neighbor

cell which can be implemented in the same way as division

[72]. Cell–cell or cell–extra-cellular matrix interactions can

be included in the transition rate for each move, which then

becomes ∝ e−�E/FT where �E denotes the total energy of

change for a particular cell move, FT a reference energy that

was proposed to represent the membrane fluctuation energy

as a formal equivalent to kBT in fluids (kB: Boltzmann con-

stant, T : temperature) [87].

By systematic simulations it was possible to infer the

growth speed of a growing population with hopping rate φ,

shift radius �L , cell cycle time τ , and Erlang-number m in

the linear growth regime for monolayers (Fig. 3a) to

v2 ≈ B2

⎛

⎜
⎝[�L ′(�L)]2/τ 2

eff
︸ ︷︷ ︸

(1)

+φ/τeff
︸ ︷︷ ︸

(2)

⎞

⎟
⎠ , (3)

with τ−1
eff = m(21/m −1)τ−1, τ = τe (with λm = m/τe being

the rate with which the internal state of the cell is increased

by +1), �L ′(�L) = A(�L − 1) + 1, with A ≈ 0.68,

B ≈ 1.4 for the 2D case, and A ≈ 0.708, B ≈ 1.236

for the 3D case. φ is here expressed in units of a2/τe, a

is the lattice spacing and τe the expected cycle time. The

term (1) expresses the front movement due to proliferation,

(2) the front movement due to random migration. In case the

proliferation length is much larger than the diffusion length,

v ∝ �L/τeff i.e., the mechanical pushing movement controls

the expansion of the moving population surface. In the oppo-

site case, where the diffusion length is much larger than the

proliferation length, the limiting continuum equation of the

Type-B cellular automaton can be shown by a statistical field
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Fig. 4 Growth figures in absence of migration and in case of m = 60 states that have to be passed until division. a Square lattice with division

along the x and y axes. b Square lattice with division along x , y axes and in diagonals (Moore neighborhood), c hexagonal lattice, d Voronoi lattice

theoretical approach to be a stochastic Fisher–KPP equation

with and intrinsic multiplicative noise term [83]. The veloc-

ity change with increasing proliferation length on large scale

can be included in the Fisher–KPP equation by some heuris-

tic redefinition of the diffusion constant but the short range

behavior of the cellular automaton type B model cannot cor-

rectly be captured by this approach. The reason is, that in the

derivation of the Fisher–KPP equation, local homogeneity

on small scales had to be assumed which is only valid if the

diffusion length overcomes the proliferation length [83].

Recent direct comparison of model simulations with a type

B cellular automaton model with KI 67 staining in multicel-

lular spheroids of non-small cell lung cancer (NSCLC) cells

shows that the assumption that a cells divide with equal prob-

ability as long as the dividing cell has to push at most �L/a

(a: lattice spacing) cells away in order to divide does not suf-

fice for the quantitative reproduction of the experimentally

observed spatial proliferation pattern [81]. The experimen-

tally found proliferation profiles can be correctly reproduced

if the transition rate for division is assumed to be ∝ e−di /�L .

Here di j is the distance between the dividing cell and the lat-

tice site that will be occupied as a consequence of the division

and the shift of neighbor cells coming with it. The distance is

proportional to the number of neighbors that has to be shifted,

and might be proportional to the energy to shift the neigh-

bors. Also other model variants have been studied addressing

cells pushing during migration, cell–cell adhesion etc. [72].

In the CA type B approach, cells can neither be com-

pressed nor deformed. Only rigid cell body movements

are possible. On a regular lattice, this corresponds to rigid

body movements into discrete directions. However, in case

of noise reduction achieved by choosing many intermedi-

ate steps between subsequent cell divisions and suppressing

migration, the emerging growth pattern reflect the lattice

symmetry [72,83] (see Fig. 4). On an irregular, unstructured

lattice, cell size of a moving cell is only conserved on the

average. The advantage of unstructured lattice is that the

emerging growth figures do not reflect the lattice symme-

try even in the presence of noise reduction. This has great

advantages if quantities sensitive to lattice artifacts should

be studied by modeling, such as the surface scaling proper-

ties of growing monolayers that by using a type B cellular

automaton model on an unstructured lattice could be shown

by Block et al. [72] to clearly reveal the scaling properties

of Kardar–Parisi–Zhang (KPZ) universality class [88,89].

This model prediction contradicted claims emerging from

interpretations of experimental findings at that time [90],

saying that the surface scaling of growing monolayers and

multicellular spheroids (generally: solid tumors) should be

in Molecular-Beam Epitaxy (MBE) universality class. The

model prediction was subsequently confirmed [91,92] indi-

cating that despite their simplicity the CA models can provide

valid predictions.

Interestingly, introducing �L on a regular lattice reduces

lattice effects [83], and may upon a slight modification of the

above algorithm eliminate them [93].

Below we briefly summarize advantages and disadvan-

tages of type B cellular automaton models from our perspec-

tive. Evaluations on the computation times are done with

regard to a standard PC.
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+ Each cell represented individually.

+ Precise cell position is resolved.

+ Movement (hopping), division and death of cells can

be represented.

+ Permits large-scale simulations, limitations rather

due to large memory requirement than due to simu-

lation time.

+ Permits efficient parameter sensitivity analysis.

◦ Rule based, physics not directly represented (e.g.,

mechanics, adhesion)

◦ Cell size and shape represented but they are a lattice

and not a cell property, in addition, the shape of a

cell is fixed.

− Due to the lattice there is a lower length scale.

− All dynamics processes (migration, division, death,

pushing) are by a jump-type stochastic process.

2.2 Cellular automaton with many cells per lattice site

(type A)

In type A automata multiple cells (Nmax > 1) can occupy

a lattice site. Consequently, each lattice site represents a

spatial compartment much larger than the size of the indi-

vidual cell. Birth, death and migration processes can occur

within each compartment and between neighboring compart-

ments. As with the type B cellular automata, the changes

of the number of cells in a certain state can be formulated

as chemical reactions and turned into a master equation for

the multivariate probability of finding a certain multicellu-

lar configuration. However, the position of a cell cannot be

resolved in this approach, only its compartment is known.

Simulations with type A cellular automata can be speed up

by tracking the number of cells in a certain state instead of

tracking each cell individually. An excluded volume assump-

tion is implemented by only permitting cells to divide within a

compartment or into a neighbor compartment, or to hop into a

neighbor compartment if this compartment is not already full.

Similar to the type B cellular automata, mechanical pushing

is included by defining a maximum length �L > b over

which cells can be pushed, with b > a ≈ V 1/3 denoting the

lattice spacing, V the cell volume [67]. When a cell divides in

a compartment that is not completely filled (i.e., N < Nmax),

the number of cells in that compartment increases by 1. When

the compartment is full, the number of cells in the clos-

est non-filled compartment, within radius �L , increases by

one.

Type A and type B cellular automata can be matched very

well when the compartment size is set to b = �L (Fig. 5).

Also migration rate φ and internal state m as a representation

of the cell cycle can be matched to produce the same outcome

with type A and type B cellular automata models (Fig. 5).

Therefore, a type A cellular automaton can be used as a coarse

grained model of a type B cellular automaton model given

the lattice spacing of the type B cellular automaton is prop-

erly chosen. This is advantageous if model parameters are

calibrated with in vitro experiments (monolayer or multicel-

lular spheroids) in which the cell population sizes do usually

not exceed 300,000–400,000 cells, and this calibrated model

should be used to predict possible growth scenarios of in vivo

tumors with 109−1010 cells. As an example, Fig. 3 shows

such a simulation for a Xenograft [67]. However, growth of

tumors in vivo are largely controlled by the availability of

oxygen, glucose and growth factors. Hence the spatial pro-

files of these molecules have to be equally coarse grained.

Preliminary attempts at developing numerical schemes for

this indicated that for high concentrations of molecules out-

side the tumor, coarse graining schemes yielding to the same

growth and death of tumor cell populations can be found

while for small concentrations of molecules growth and death

of the tumor cells deviated strongly. As a result, the growth

dynamics in the coarse grain type A CA can deviate signif-

icantly from the growth dynamics of the type B CA where

each single cell is represented. These deviations may occur

because at high consumption rates, caused by a large num-

ber of cells in a compartment, the approximation schemes

fail [94].

A way to deal with this problem is to construct a hybrid

lattice which represents the cell population at high resolu-

tion with a type B cellular automaton where strong gradients

occur, and otherwise consider the coarse grained automa-

ton type A. Such a hybrid model is presented in Fig. 6. In

order to maximize the resolution where necessary and coarse

grain where no accuracy is needed, ideally the hybrid model

would perform automated switches of the resolution depend-

ing on some criterion. For the example shown in Fig. 6 the

small compartments have the size of one cell while the large

compartments contain many cells. During the simulation all

compartments which are occupied by an heterogeneous mix

of cells are refined to the single-cell-resolution. Whereas,

when all lattice sites associated to a large compartment are

occupied exclusively by cells of the same type, a group of

lattice sites are represented by a single lattice site on the

coarser scale. This way only those compartments with a het-

erogeneous mix of cells or not completely filled with cells

are resolved at single-cell scale. This algorithm especially

resolves cells individually in border regions as at the tumor-

medium interface.

Below we briefly summarize advantages and disadvan-

tages of type A cellular automaton models from our perspec-

tive. Evaluations on the computation times are done with

regard to a standard PC.

123



Comp. Part. Mech. (2015) 2:401–444 409

Fig. 5 Matching type A and B

cellular automaton models.

a Lin–log plot of growth

kinetics for N 1/3(t) for m = 1,

φ = 0 (φ =phi in the figure

legends). For short times growth

is exponential. b The resulting

growth kinetics N 1/3(t) for

m = 1, φ = 0 in lin–lin plot

shows that N 1/d ∝ R ∝ t for

long times. c Scaling of the

maximum number of cells in a

compartment of a type-A

cellular automaton versus

k = �L − 1 in a type B

automaton. d Growth kinetics

for m = 100, φ = 0. e Growth

kinetics as in (b) but for

φ = 0.1/h. f Growth kinetics

for varying migration rate (In e

and f, the number of cells per

compartment)

+ Each cell represented individually.

+ Movement (hopping), division and death of cells can

be represented.

+ Permits centimeter scale simulations.

+ Permits efficient parameter sensitivity analysis.

◦ Rule based, physics not directly represented (e.g.,

mechanics, adhesion can be represented in limited

way by an energy function but not straightforward).

− Precise cell position within the lattice compartment

is not resolved.

− Cell size and shape is not represented.

− Due to lattice there is a lower length scale.

− All dynamics processes (migration, division, death,

pushing) are by a jump-type stochastic process.

2.3 Lattice gas cellular automata (type D)

LGCA are a special kind of cellular automata. In addition

to the lattice model types discussed above, LGCA mod-
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Fig. 6 Integration of type A and type B cellular automaton in a hybrid

model. In the proliferating rim, individual cell positions a spatially

resolved by a type B automaton, otherwise, a type A automaton is used.

Inspired by octrees, we divide the whole space into large compartments

which themselves can be further sub-divided

els include velocity channels i.e., particles are characterized

by their position and velocity, which are both are discrete.

Frisch, Hasslacher and Pomeau demonstrated in 1986 that

by defining a set of rules for the interaction (in their case col-

lision) and propagation of particles on a regular lattice with

discrete time steps and a small set of velocities, one can gen-

erate dynamics that on large scales reproduce the behavior of

the incompressible Navier Stokes equation [95–97]. A simple

intuitive derivation can be found in Ref. [98]. In the simu-

lations of fluids, the velocity channels represented particle

collisions. Deutsch and co-workers extended the framework

to model growth and migration of cells in multi-cellular envi-

ronments [46,69,99,100].

In our description we very closely follow the line of argu-

ment presented by Hatzikirou and Deutsch in [101], which we

consider as an excellent presentation addressing the under-

lying concepts of LGCA for modeling of tissue organization

and growth.

LGCAs are defined on a regular lattice, which, in two

dimensions, are usually either hexagonal or square lattices.

Each node possesses b velocity channels, where b is the num-

ber of neighbors of a lattice site, and m ∈ 0, 1, 2, . . . rest

channels (Fig. 7). Assuming the coordinate system is fixed

at the center of the node, the rest channel(s) is (are) placed at

(0, 0), and the four velocity channels of a rectangular lattice

site are (with vk > 0) at (1, 0), (0, 1), (−1, 0), (0,−1). A

node’s state is given by η(r) = (η1(r), η2(r), . . . , ηb+m(r)).

The number of particles on a site represent a type of micro-

scopic density (called node density) and can be calculated

by summing up all occupation numbers ηi (r) ∈ 0, 1 at a

node r :

n(r , t) =
b+m
∑

i

ηi (r , t). (4)

The dynamics of an LGCA emerges from applying super-

positions of local probabilistic interactions and deterministic

transport steps. The definition of these steps have to satisfy

Fig. 7 LGCA propagation scheme for a cubic lattice. Shown are nine

lattice squares (called nodes), each with four velocity channels oriented

towards the +x,−x,+y,−y-direction, and a rest channel in the center

of node. The left field of nine lattice sites show the state before, the right

after one propagation step where the cell speed is m̃ = 1. Filled circles

denote occupied channels, empty circles empty channels (redrawn from

Hatzikirou and Deutsch in [101]). For example, the central node on the

left side has two occupied channels, i.e., is occupied by two particles.

The maximum number of particles at one node is 4 + 1 = 5 i.e., sev-

eral particles can occupy the same node in space (as for type A cellular

automata introduced previously)
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the exclusion principle, i.e., each channel can at most be

occupied by one particle (here: cell). Cells can move to a

neighboring lattice site, and divide or die at discrete time

steps with an simultaneous update at all nodes. The temporal

evolution of a state η(r , t) ∈ {0, 1}b+m is determined by the

temporal evolution of the occupation numbers ηi (r , t) for

each i ∈ {1, . . . , m + b}. With probability P(η −→ ηC),

the pre-interaction state ηi (r , t) is replaced by the post-

interaction state ηC
i (r , t) ∈ (0, 1) according to

ηC
i (r , t) = RC

i

(

{η(r , t)|r ∈ Nb(r)}
)

, (5)

ηC(r , t) =
(

RC
i

(

{η(r , t)|r ∈ Nb(r)}
)
)b+m

, (6)

Nb(r) := {r + vi : vi ∈ Nb), i = 1, 2, . . . , b} denotes

a finite list of the node localized at position r on the

lattice, RC
i denotes the interaction rule. This is the time-

independent probability P(η → ηC) for transition from

the pre-interaction to the post-interaction node state. In the

deterministic propagation step, all particles are moved simul-

taneously to nodes in the direction of their velocity i.e., a

particle residing in channel (r , vi ) at time t moves to another

channel (r + m̃vi , vi ) (m̃ ∈ N0) during one time step. This

is represented by

ηi (r + m̃vi , t + τ) = η P̃
i (r , t), (7)

where, m̃ ∈ N0 denotes the particle speed, m̃vi the transloca-

tion of the particle, τ denotes the time step. Index P̃ indicates

that it is a streaming step.

Propagation according to the last equation respects mass

and momentum conservation. As a consequence all particles

(cells) in the same velocity channel move the same number of

m̃ lattice units. Thus, in contrast with the CA models of type

A and B, cells in LGCAs can move in one time step over many

lattice sites. Combining interaction (C) and propagation (P̃)

leads to

ηi (r + m̃vi , t + τ) = ηC P̃
i (r , t). (8)

The change of the occupation number due to the combined

interaction and propagation is

ηi (r + m̃vi , t + τ) − ηi (r , t) = ηC P
i (r , t) − ηi (r , t)

= Ci

(

ηNb(r)(t)
)

, i = 1, . . . , b + m, (9)

with

Ci

(

ηN (r)(t))
)

=

⎧

⎨

⎩

1 creation of a particle in channel (r , vi )

0 no change in channel (r , vi )

−1 annihilation of a particle in channel (r , vi ).

,

(10)

where Ci denotes the change of the occupation number.

So far, the upper outline summarizes local rules applied

on each site of the lattice. However, the dynamics can also

be formalized on scales larger than individual site of the lat-

tice following the following conceptual ideas. The overall

dynamics at this stage can be described by microdynamical

difference equations that include the probabilistic interaction

as well as the deterministic propagation. Ensemble averag-

ing leads to an equation for the single-particle distribution

functions, fi (r , t) = 〈ηi (r , t)〉 which typically contains a

collision term. In a continuum expansion, the difference

equation for the single-particle distribution function can be

turned into a differential equation. The collision term gen-

erally involves higher-order particle distribution functions

hence requiring to solve a hierarchy of coupled equations for

the one, two, three, …particle distribution functions. This is

the BBGKY (Bogolyubov, Born, Green, Kirkwood, Yvon)

hierarchy. Breaking up after the first order, and approximat-

ing the two particle distribution function by the one particle

distribution function leads to the Boltzmann equation from

which by integration over the velocity the density, momen-

tum density and energy density can be calculated. As these

operations can be equally performed for the LGCA, it permits

to define a pressure tensor. The kinetic pressure in the LGCA

is defined as pK = (1/V0)
∑

i v2
i fi , with V0 being the ele-

mentary volume associated to a node, fi the single-particle

distribution function, and vi with i1, . . . , b denotes the veloc-

ity channels [97]. The thermodynamic pressure is defined

by p = (1/(V0β))
(∑

i fi + (1/2)
∑

i f 2
i + · · ·

)

[97] with

β = 1/(kBT ), T being temperature, kB the Boltzmann con-

stant. Hence relations for the kinetic and thermodynamic

pressure can be derived for the LGCA. The local density is

defined as ̺(r , t) =
∑

i fi (r , t). Equivalently, a momentum

density can be defined by summing ̺v =
∑

i m̃vi fi (r , t).

While the rules of classical LGCA are chosen in order to

reproduce classical partial-differential equations describing

fluid dynamics such as the mass conservation and the Navier–

Stokes equation for an incompressible fluid as the momentum

conservation, for cell systems momentum conservation is not

assumed.

Deutsch and co-workers established extended the frame-

work to include birth and death. In a most basic model they

permit cells to move according to a propagation operator,

reorient, and grow and divide. In the simplest case the rules

are chosen such that isolated cells perform a random walk

with transition probability

P(η → η0)(r , t) = 1

Z
δ(n(r , t), n0(r , t)) (11)

with a normalization factor Z =
∑

η0(r ,t)) δ(n(r , t), n0(r , t)).

The index O here denotes re-orientation.
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Fig. 8 Simulation of a growth

process in the LGCA (courtesy

of Hatzikirou and Deutsch

[102]). Shown are the lines of

each cell density at times

t = 50, 100, 150, and the

growth kinetics. The center is

filled with cells

a b

c d

The rule for birth is:

Ri (r , t) = ξi (r , t)(1 − ηi (r , t)), (12)

where ξi are random Boolean variables with
∑b+m

i=1 ξi (r , t) =
1. This rule takes into account that occupied velocity channels

cannot be occupied by a second cell hence mimics contact-

inhibited growth. The corresponding probabilities are:

P(ξi (r , t) = 1) = rM

∑b+m
i=1 ηi (r , t)

b + m
, (13)

with rM being a proportionality constant. Notice that if no

cell is on the node, division cannot occur, and the probability

is proportional to the number of occupied channels.

Death occurs with rate rd = (b+m−C)/(b+m)rM , with

C ≤ b +m being the maximum node occupancy. Results are

shown in Fig. 8. As in the CA-types A and B models above

without a velocity channel, growth is linear.

The above dynamics is fully specified by the following

microdynamical equations, that form a useful starting point

to derive the large-scale behavior (see below):

ηR
i (r , t) = ηi (r , t) + Ri (r , t) (14)

ηR
i (r + mvi , t + τ) =

b+m
∑

j=1

μ j (r , t)ηR
j (r , t). (15)

The first of the two equations refer to the growth operator

R, the second to the redistribution of cells on the velocity

channels, and the propagation to the neighboring nodes. The

growth operator associates a new occupation number for a

given channels by a stochastic growth process. μ j (r , t) ∈
{0, 1} are Boolean random variables selecting only one of

the b + m-terms on the rhs of the equation 15. The random

walk is implemented as a simple reshuffling of cells within

the node channels leading to the probability of choosing a

channel: 〈μ j 〉 = 1/(b + m) for j = 1, . . . , b + m. The

terms Ri (r , t) ∈ {0, 1} for i = 0, 1, . . . , b + m represent

birth/death processes of cells in channel i and are applied to

each channel independently.

By local ensemble averaging, the lattice Boltzmann equa-

tion can be obtained from Eqs. (14), (15):

fi (r + mvi , t + τ) − fi (r , t) =
b+m
∑

j=1

Ωi j f j (r , t)

+
b+m
∑

j=1

(δi j + Ωi j )R̃ j (r , t).

(16)

Here Ωi j = 1/(b + m) − δi j is the transition matrix of the

shuffling process, R̃i = F(̺)/(b + m) the averaged reac-

tion term, that is assumed to be independent of the particle
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direction. F(̺) is the cell reaction term for a single node.

Inserting the upper equations, one obtains for the reaction

term

R̃ j (r , t) = rM fi (r , t)

(

1 − rD

rM

− fi (r , t)

)

. (17)

Using a Chapman–Enskog expansion, the macroscopic

dynamics can be obtained from the upper equation (14, 15)

by using diffusive scaling according to x = ǫr , t̃ = ǫ2t . The

emerging equation for slow growth rates is of the Fisher–KPP

type:

∂̺

∂ t̃
= m̃2

(b + m)τ
∇2̺ + 1

τ
F(̺), (18)

with F(̺) = rM̺(C − ̺(x, t̃)). The mean field equa-

tion shows qualitatively the same behavior as a simulation

with the LGCA. The minimum growth speed for this equa-

tion, well-known and Fisher–KPP equation, is vmin ≥
2 m̃

τ

√
rM

(b+m)
. This qualitatively agrees with the estimate for

the type B automaton made in Ref. [83], for which in case

where the proliferating rim is much larger than the diffusion

length, v ∝ �L/τeff has been found (see above), if �L ∝ m̃

is chosen. I.e., the introduction of the velocity channels indi-

cate the same function as the introduction of the distance over

which dividing cells are able to shift their neighbor cells.

However, to reach quantitative agreement between the

above Fisher–KPP equation and the LGCA, the long tail of

the traveling front needs to be cut, which may occur by intro-

ducing a cut-off. In this case the behavior is as those of the

cellular automaton without velocity channel, for which on

long time scales a stochastic Fisher–KPP equation could be

obtained [83], where an intrinsic multiplicative noise term

cuts off the long small density tail of the traveling front.

Below we briefly summarize advantages and disadvan-

tages of type D cellular automaton models from our perspec-

tive. Evaluations on the computation times are done with

regard to a standard PC.

+ Each cell represented individually (but several cells

are usually on the same lattice site as there are veloc-

ity and rest channels).

+ Movement, division and death of cells can be repre-

sented.

+ Permits large-scale simulations, limitations rather

due to large memory requirement than due to simu-

lation time.

+ Permits efficient parameter sensitivity analysis.

◦ Rule based, physics not directly represented (e.g.,

mechanics, adhesion) (but for certain cases con-

vergence against continuum mechanical equations

could be rigorously shown).

− Precise cell position is usually not resolved (but

number of cells on a lattice site is usually chosen

small).

− Due to the lattice there is a lower length scale.

− Some dynamical processes are by a jump-type sto-

chastic process.

2.4 Cellular automaton with many lattice sites per cell

(type C; cellular Potts models)

The cellular Potts model (CPM) is an energy-based, lattice-

based modeling method for cell-based modeling. It uses an

energy functional generalized from the Potts model to eval-

uate a multi-cellular state, and it is therefore named Cellular

Potts model. The Potts model is a generalization of the cele-

brated and extensively studied Ising model, both are used to

describe phenomena in solid state physics as e.g., ferromag-

nets.

In CPM, one cell occupies many lattice sites. Different

from the CA models discussed before, the CPM explicitly

represents the cell shape which has made the CPM a popular

tool to model morphogenic processes such as cell sorting [53,

103], cancer and tumor growth [104–110], and angiogenesis

[25,111–117].

In the CPM cells are positioned on a 2D or 3D lattice.

Each site x on the lattice is assigned an identifier σ ∈ N0.

All sites with the same, positive identity σ are part of the

same cell, and all remaining lattice sites, with σ = 0, belong

to the medium. Cell migration, cell growth and cell shape

changes are modeled using a Markov chain Monte Carlo

method. The CPM iteratively attempts to change the state

of a randomly chosen lattice site x to that of a randomly

chosen neighboring lattice site x ′. To determine whether such

a copy attempt is successful the change in effective energy

of the configuration (�E) is evaluated using the Metropolis

algorithm: p(σ (x) → σ(x ′)) = min(1, e
−�E

FT ), where FT

denotes an effective fluctuation energy that controls the cell

motility. Each time step, this sampling process is repeated

until the number of copy attempts is equal to the number

of lattice sites. Afterwards, the model parameters may be

updated and non-energy driven process such as cell division

may occur.

The effective energy E summarizes the effects of the mod-

eled cell behavior. The standard effective energy of the CPM

consists of two terms:

E =
∑

(x,x ′)

J (σ (x), σ (x ′))(1 − δ(σ (x), σ (x ′))
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Fig. 9 Simulation of a growth

process in a cellular Potts model

defined on an irregular (a

Voronoi) lattice in d = 2 spatial

dimensions [118]. The found

growth kinetics is the same as

for the CA type A and B models

and the LGCA. Note, that

R ∝ N 1/d

+ λV

∑

σ

(V0 − V (σ ))2 (19)

The first term represents both cell–cell adhesion and cell–

ECM adhesion that is computed for all sets of neighboring

lattice sites (x, x ′) where J (σ (x), σ (x ′)) represents the

energy cost of an interface between two cells. Because only

interfaces at the cell membrane are associated with energy

costs, the Kronecker delta (δ(x, y) = {1, x = y; 0, x = y})
is used such that the contact energy becomes zero for σ(x) =
σ(x ′). The second term is a volume constraint, with cell vol-

ume V (σ ) and target volume V0, and the penalty parameter

λ. For 2D simulations volume should be replaced with area.

In case the cell is assumed to be homogeneous isotropic

elastic, one would expect λV = KV = E/(3(1 − 2ν)) with

E being the Young modulus of the cell, ν being the Pois-

son ratio, and KV the bulk modulus. To model growth, the

target volume V may be updated at each simulation step.

Once the target volume has adopted twice its value after

mitosis, and the ratio of actual volume and target volume

Θ = V0/V overcomes a critical threshold, a cell splits into

two daughter cells. A scenario is shown in Fig. 9 [118]. It can

be shown that the dependency of the growth kinetics on the

model parameters is the same for the CPM as for the lattice

type A and B models. A larger Erlang parameter m leads to

slower growth and, as in the center-based off-lattice models

discussed below, growth is faster if Θ is decreased (Fig. 10).

Non-shear contributions to the elastic energy are controlled

by the bulk modulus. The change of hydrostatic pressure dp

and the volume change dV are related by

dp

dV
= −KV

1

V
, (20)

leading to p = p0−KV log(V/V0), with p0 being the hydro-

static pressure of the cell at volume V0. For small volume

changes, Taylor expansion for small (V − V0)/V0 yields the

approximate pressure

p = p0 − KV
V − V0

V0
, (21)

with KV = E/(3(1 − 2ν)) as defined above, hence the vol-

ume threshold can be related to a pressure. With increasing E

the pressure increment p− p0 necessary to generate the same

volume deviation increases or, vice versa, in order to gener-

ate the same pressure increment for a large Young modulus

E than for a small Young modulus E , the volume difference

(V − V0) must be smaller. With an increasing Young modu-

lus and a fixed Θ the growth speed increases, as also found

for the center-based model [82].
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a b

Fig. 10 Simulation of a growth process in a cellular Potts model defined on an irregular (a Voronoi) lattice in d = 2 spatial dimensions [118]. A

smaller Erlang parameter k and volume threshold Θ accelerates growth (The Erlang parameter is here denoted by k, not by m)

The volume constraint also demonstrates a shortcoming of

the CPM. For incompressible cells, volume changes during

migration are associated with infinite energy increase. How-

ever, a cell in the CPM moves by flipping lattice sites, which,

according to the Metropolis scheme, has probability zero in

case a flip is associated with an infinite energy increase. This

means that an incompressible cell cannot move in the stan-

dard CPM described by Eqs. (19) and the choice of λV with

ν = 0.5. The reason is that cell movement in the standard

CPM is inherently linked to volume changes because the

CPM does not distinguish between the main cell body and

filopodia. The relation to energy and temperature has to be

properly chosen to permit reasonable movement.

Another commonly used term in the effective energy is the

surface area conservation: λS

∑

σ (S0 − S(σ ))2, with surface

area S0 and target surface area S [119]. In d = 2 dimensions it

becomes a line energy. This term is either added as an extra

term, or replaces the volume conservation term. When the

surface area or the perimeter constraint energy contribution

are combined with contact energies (J ) that are permitted

be negative, then the roughness of the cell border can be

controlled and may be linked to experimental observations

[120]. Note that the magnitude of both the surface area con-

servation term and the volume conservation term depend on

the fineness of the lattice. For example, when the number of

lattice sites on a 2D lattice doubles, a deviation of 1 lattice

site yields the same energy while the actual deviation is twice

as small. To fix this issue, both the deviation of the volume

or surface area may be divided by the target volume or target

surface area [25,121].

The effective energy only includes static cell properties

such as size and neighbors. To include dynamic cell behavior,

such as chemotaxis, extra terms may be added to the energy

change �E . The most common mechanism that is included

in this way is chemotaxis [55]:

�Echemotaxis = −χ
(

c(x ′) − c(x)
)

, (22)

where χ denotes the chemotactic sensitivity and c(x) is the

concentration at position x . In Ref. [122], external forces

have been defined for any external potential. To illustrate

modeling external forces in the CPM we set up a model with

a row of three cells and define a potential for right to left on

the rightmost cell. We expect that the cell on the right and the

cell in the middle will elongate because of this force. Figure

11 shows the evolution of the cells and the cell length during

the simulation. As expected, the pushing force towards the

left causes the cells to elongate. After ∼600 steps the cell

the right starts crawling over the middle cell and migrates

further to the left. As a result, the rightmost cell no longer

pushes on the other two cells and they relax. Note that the

exact moment of at which the rightmost cell starts crawling

over its neighbor differs per simulation, therefore we stopped

measuring the cell length after 600 steps.

Recently, several efforts have been made to extend the

CPM with a heterogeneous ECM that interacts with cells

and that is remodeled by the cells. Overall, three different

approaches can be recognized. In the first approach the ECM

is modeled as a density field that affects the behavior or

the cells and is remodeled by the cells. Daub and cowork-

ers [117] extended the CPM with both haptotaxis, migration

towards higher ECM concentrations, and haptokinesis, pref-

erential migration on intermediate levels of ECM, using an

ECM density field. The cells affected the field by depositing

matrix metalloproteinases (MMPs) that degrade the ECM:
∂c(x,t)

∂t
= −δ(σ (x), 0)εcMMP(x, t)c(x, t), with cMMP the

MMP concentration and ε the ECM degradation rate. Both

haptotaxis and haptokinesis affect the dynamics of the cells,

therefore they are added as changes in effective energy. The

energy change due to haptotaxis is describeds as:
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a b

Fig. 11 Cellular Potts simulation of a row of three cells with a push-

ing force on the rightmost cell (μ = 10, V = 2500, λ = 10,

J (cell,cell) = 10, J (cell,medium) = 5). a Evolution of the three cells

in a single simulation. b Evolution if the length of each cell averaged

over 50 simulations (filled areas around the curves reflect the standard

deviation). The cell length is estimated from the cell’s moment of inertia

[123]

�Ehaptotaxis = χ

(
c(x ′)

1 + s c(x ′)
− c(x)

1 + s c(x)

)

, (23)

where χ denotes the sensitivity, c(x) the ECM concentration

(c ∈ [0, 1]), and s the saturation coefficient. For haptokinesis

a reverse Gaussian function is used to model the response of

a cell to the local ECM concentration:

�Ehaptokinesis = ηδ(σ (x), 0)

(

1 − 1

ρ
√

2π
e
− (μ(x ′)−μ̄)2

2ρ2

)

,

(24)

with haptokinesis strength η, and μ and ρ the mean an stan-

dard deviation of the Gaussian function. The second approach

for modeling cell–ECM interactions in the CPM is by includ-

ing immobile objects that represent fibers [105,115,116,

124–126]. The cells adhere to the fibers and thereby the fibers

facilitate migration. However, because the fibers are modeled

as immobile objects, they may also block migration. In some

of the models, cells are also able to degrade the fibers by

overtaking their lattice sites [126]. The third method of mod-

eling cell–ECM interactions is by mechanically linking the

ECM to the cells. For this the ECM is modeled as a 2D com-

pliant substrate using the finite element method (FEM) [25]

and each CPM step is followed by a FEM step that resolves

the ECM deformation. The CPM lattice is placed on top of

the FEM mesh such that one CPM lattice site corresponds

with one FEM node. Each FEM node that is covered by a

cell pulls on all other nodes that are part of the same cell

[25,127], causing a resultant force F i on each node i :

F i = μ

j =i
∑

∀ j :σ( j)=σ(i)

d i j , (25)

with μ the tension per unit length, and d i j the Euclidean

distance between node i and j . Then, during the FEM step,

the substrate deformation is computed according to: K u = F

with stiffness matrix K , displacement u and forces F . The

deformation causes strain stiffening, which is expressed in

the Young’s modulus E(ǫ). Strain stiffening is fed back to

the CPM via durotaxis: the preferential migration of cells

towards areas of higher stiffness:

�Edurotaxis = −g(x, x ′)λdurotaxis

(

h(E(ǫ1))(v1 · vm)

+ h(E(ǫ2))(v2 · vm)
)

(26)

with g(x, x ′) = 1 for extensions and g(x, x ′) = −1 for

retractions, λdurotaxis the magnitude of the response to stiff-

ness, h(E) a sigmoid representing the shape of response of

the cells to the stiffness, ǫ1 and ǫ2, and v1 and v2 the prin-

cipal strains and strain orientation, and vm = x̂ − x ′ is the

unit vector in direction of x − x ′.
As described, cell-based models have been linked to the

ECM in several ways using the CPM. The main reasons

that this has happened with the CPM is that the method

is computationally inexpensive in 2D and quasi-3D. There-

fore, it is possible to perform large-scale parameter sweeps

and sensitivity analyses with CPM-based models [128,129].

Furthermore, open source software CPM modeling is readily

available [130–132] which makes it easy to implement and

simulate models using the CPM. However, there are some

major disadvantages to the CPM. First, whereas the CPM

performs well in 2D and quasi-3D, real 3D simulations take

long and are therefore uncommon. Second, because the CPM

minimizes the effective energy, all cell behavior is highly

linked to cell motility. It is, for example, not possible to

simulate a immobile, flexible cell using the CPM (see also

the discussion above). Finally, some parameters of the CPM

cannot be linked directly to physical parameters. Therefore,

physical parameters measured in experiments cannot always

be used to set model parameters in the CPM. One could

derive the Poisson ratio and Young’s modulus from single-

cell simulations in which the cell is compressed or stretched

[133]. By calibrating the model such that the Poisson ratio
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and Young’s modulus measured in simulations correspond

with those measured in experiments, the single-cell parame-

ters can be estimated. This leaves only the contact energies

between cells as an unknown parameter, which can only be

estimated by calibrating the CPM simulations against exper-

imental observations. Altogether, whereas the CPM offers

a flexible framework for cell-based simulations that include

interactions between cells and the ECM, the method is lim-

ited to simulating motile cells and is mainly applicable for

qualitative modeling. Below we briefly summarize advan-

tages and disadvantages of type C cellular automaton models

(Cellular Potts models) from our perspective. Evaluations on

the computation times are done with regard to a standard PC.

+ Each cell represented individually.

+ Precise cell position is resolved.

+ Cell size and shape statistically represented (if cell

fragments are permitted to dissociate from the cell

body) or directly represented (if dissociation moves

are inhibited).

+ Movement, growth, division and death of cells can

be represented.

+ High cell densities can straightforwardly be handled.

+ Provides a flexible modeling framework shown

by many authors using and having extended the

approach.

◦ Large-scale simulations due to computation time not

accessible, at most around 106 cells can be simu-

lated.

◦ Parameter sensitivity analysis challenging due to

long computation time and as some of the parameters

cannot be associated directly with physically known

quantities.

◦ Physics partially directly represented (e.g., mechan-

ics, adhesion), but partially unphysical couplings of

migration and physical properties can occur (see in

the text: incompressible cells (λV → ∞) do not

move in the standard CPM).

− Due to lattice there is a lower length scale.

− All dynamics processes (migration, division, death,

pushing) are by a jump-type stochastic process.

− A given multicellular configuration has usually a

very large number of possible neighbor configu-

rations, too large to be completely listed. As a

consequence, the dynamics is by Monte-Carlo sam-

pling, which can lead to unnatural distortions of the

time scale.

3 Off-lattice models

In off-lattice models, cells are represented by a single or a

clusters of particles and interactions between them can then

be described by forces or potentials. As in the lattice mod-

els, cells have the ability to grow, migrate, divide, and die.

Position changes can be obtained by solving an equation of

motion for each cell. Alternatively, the dynamics of a system

of cells can be mimicked using energy-based methods using

numerical procedures such as Monte Carlo sampling and the

Metropolis algorithm [61,82,134], which is used also for the

CPM (see previous section). The advantages of force-based

models are a well-defined time scale, and a more intuitive

way of taking into account complex interactions of cells with

other cells or their environment which is why they became

the standard approach. For this reason, we mainly limit our-

selves to force-based models. Energy-based modeling with

CBM are discussed in detail in Ref. [73].

3.1 Center-based models

3.1.1 Basic concepts

In CBM cells are represented by simple geometrical objects

that can be described by one or a small number of centers.

The basic assumption is that each trajectory of a cell in space

can be described by an equation of motion in formal analogy

to physical particles. Usually inertia effects are neglected

as the Reynolds numbers are very small meaning friction

dominates the system [135]. The basic equation considering

forces between cells and between cells and substrate then

reads for cell i

Γ cs
i vi +

∑

j

Γ cc
i j (vi − v j )=

∑

j

F int
i j + F sub

i + F
mig
i . (27)

On the left side, we have the friction forces of cells with

substrate (first term) and among cells (second term), on the

right side of this equation, we find the forces on the cells

emerging from repulsion/adhesion with other cells j , F int
i j ,

as well as with the substrate F sub
i , as well as the cell migration

force F
mig
i . The friction forces involve tensors for the cell–

cell friction (Γ cc
i j ) and cell–substrate friction (Γ cs

i ). The latter

can also capture capillaries or membranes [33]. If friction

coefficients parallel and normal to the movement direction

are different, the friction tensor becomes

Γi j = γ⊥(ui j ⊗ ui j ) + γ||(I − ui j ⊗ ui j ), (28)

with ui j = (r j − r i )/|r j − r i |, where ri , r j denote the posi-

tion of the centers (see Fig. 12) of cell i and object j . (⊗
denotes the dyadic product. If object j denotes another cell,

this would correspond to the superscript “cc”, otherwise to
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a b

Fig. 12 Left Center-based model with cells represented as spheres,

defining the basic contact variables. Right Division of two cells in a

CBM

the superscript ”cs”. For example if cells move on a flat sub-

strate (s), the substrate can be viewed as a sphere with infinite

radius.) Here γ⊥ denotes perpendicular, γ|| parallel friction.

This can be seen after multiplication of the friction tensor

with the cell velocity:

Γi jvi =
(

γ⊥(ui j ⊗ ui j ) + γ||(I − ui j ⊗ ui j )
)

vi

= γ⊥ui j (ui jvi ) + γ||(Ivi − ui j (ui jvi )).

Friction occurring in the perpendicular direction of the move-

ment may be associated with internal friction in particular if

two cells are pushed against each other which leads to defor-

mation and reorganization of the CSK, while friction in the

parallel direction is a description of the dissipative forces

when sliding the cell membranes along each other.

The migration force F
mig
i is usually an active force. In

absence of influences that impose a direction it is common to

assume that the migration force is stochastic, with zero mean

and uncorrelated at different points in time, 〈F
mig
i 〉 = 0,

〈F
mig
i (t)⊗ F

mig
i (t ′)〉 = Aiδ(t −t ′). Here Ai is a d ×d matrix

that may be specific for each individual cell i , d being the

spatial dimension. Using the formal analogy to colloidal par-

ticles in suspension, one obtains for the fluctuation strength

〈F
mig

||;i (t)F
mig

||;i (t ′)〉 = G||;iδ(t − t ′), (29)

〈F
mig

⊥;i (t)F
mig

⊥;i (t
′)〉 = G⊥;iδ(t − t ′), (30)

with F
mig

||;i (t) = (I −ui ⊗ui )F
mig
i , F

mig

⊥;i (t) = (ui ⊗ui )F
mig
i .

G||;i and G⊥;i are scalars. ui is the unit vector pointing

into the direction of the cell movement. In colloidal particle

physics, the autocorrelation amplitude of the noise is con-

trolled by the friction coefficient and the thermal energy kBT ,

kB being the Boltzmann constant, T temperature, according

to G||;i = 4γ||kBT , G⊥;i = 2γ⊥kBT . A formal analogy

would lead to replacing kBT by the membrane fluctuation

strength FT as proposed by Beysens et al. [87]. However,

the mechanisms of cell movement cannot be expected to fol-

low the equipartition theorem of statistical mechanics. Cell

migration is active, depending on the local matrix density and

orientation hence we cannot claim the autocorrelation ampli-

tude matrix A is properly described by the aforementioned

analogy to colloidal particle movement. Instead, by measur-

ing 〈((r i (t + τ) − ri (t)) ⊗ (r i (t + τ) − r i (t))〉 = 2Dτ ,

one might determine the diffusion tensor D of the cell where

again diffusion is not a consequence of collisions with smaller

particles, but a parameter phenomenologically describing the

cells’ spread. For a simple algorithm to simulate a force-

based Brownian motion of a cell in a isotropic medium, see

Appendix 2.

Some authors use the inertia term mi dvi/dt to mimic

the effect of persistence [28] while in principle it can be

directly simulated using a memory term. In this case, Γ cx
i j vk

(x ∈ {c, s}, k ∈ {i, j}) has to be replaced by
∫∞
−∞ Γ cx

i j (t −
t ′)vk(t

′)dt ′, so that if Γ cx
i j (t − t ′) = Γ cx

i j δ(t − t ′), the basic

equation of motion is recovered. Another way is to assume

that the active movement component of a cell has a mem-

ory i.e., a cell has the tendency towards keeping its (active)

migration direction. This can be modeled by replacing the

uncorrelated noise by noise for which the auto-correlation

amplitude decreases over a time period over which the cell

has migrated of a distance of the order of its diameter or

even larger. Sepulveda et al. [136] modeled this by assuming

the active random migration force F
mig
i follows an Ornstein-

Uhlenbeck process modeled by the solution of the equation

(1/β)dF
mig
i /dt = −F

mig
i + f uc

i
were f uc

i
again has zero

mean and is uncorrelated, β is the inverse of the autocorre-

lation time.

Directed cell migration was successfully modeled in

Hoehme et al. [33] considering the closure of a necrotic

lesion after drug induced damage in liver. Firstly, by a chemo-

taxis force Fchem
i = χ∇c was assumed with χ being the

chemotaxis coefficient, and c(r , t) the morphogen concen-

tration assuming a morphogen being secreted by the necrotic

cells. A second assumption was that cells attempt to move

away from cells of the same type, modeled by the term

F
mig
i = (1 − θ(∇ pi f uc

i
)) f uc

i
. Here θ(x) = 1 if x ≥ 0, else

θ(x) = 0, is the Heaviside step function, f uc
i

again uncorre-

lated white noise. pi is a pressure-like measure defined below

(Eq. 36). The effect of this formula is, that it inhibits all active

moves that would increase cell density as for those the Theta-

function becomes one so the migration force becomes zero.

Only active moves leading to a decrease of density can occur.

Hence the expression reinforces cells to move towards empty

spaces.

The cells interact by pairwise potentials having a repul-

sive and adhesive part, and are described by a function of the

geometrical overlap δi j . A number of different approaches

have been used for the interaction force, including linear

springs [34,134,137], a force derived from Lennard–Jones
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like potentials [138], and a Hertz force approximating cells

by isotropic homogeneous elastic bodies that are moderately

deformed if pressed against each other [63,82]. We here

consider the latter approach and extensions based upon it.

Consider two spherical cells i and j which are in each others

neighborhood (see Fig. 12). If the distance di j between the

cells becomes smaller than the sum of their radii, we assume

a Hertzian contact force develops calculated by:

F
rep
i j = 4/3Ê

√

R̂δ3/2. (31)

in which δ is the overlap between the cells and Ê and R̂ are

defined as

Ê =
(

1 − ν2
i

Ei

+
1 − ν2

j

E j

)−1

and R̂ =
(

1

Ri

+ 1

R j

)−1

with Ei and E j being the Young’s moduli, νi and ν j the

Poisson numbers and Ri and R j the radii of the cells i and

j , respectively. Galle et al. [63] and Ramis-Conde et al. [65]

considered adhesion of cells to other cells or an underly-

ing substrate by an additive term in the interaction energy

which is proportional to the Hertzian contact area of the cells

without adhesion and the strength of the adhesion formed by

bonds σ :

Fadh
i j = −πσ R̂, (32)

and named the force “extended Hertz model”. Note that the

total force F int = F rep + Fadh acts in the direction of the

vector connection the centers of the spheres. This simpli-

fied approach is convenient as it permits to give an explicit

analytical expression for the force. However, it neglects that

adhesion is modifying the contact area, and disregards that

the force distribution within the contact area are is inhomo-

geneous. A more realistic adhesive model taking this into

account results from the Johnson–Kendal–Roberts (JKR)

theory, which also takes into account a hysteresis effect if

the cells are separated from each other. In this case the force

is computed by

Fadh
i j = 4Ê

3R̂

[

a(δi j )
]3 −

√

8πσ Ê
[

a(δi j )
]3

. (33)

The contact radius a in Eq. 33 must be obtained (from [139]):

δi j = a2

R̂
−
√

2πσ

Ê
a. (34)

Compared to the JKR model, the modified Hertz model

requires less computational effort, because Eq. 34 needs to

be solved iteratively. On the other hand, the JKR model is a

more realistic adhesion model for solid adhesive soft spheres

for the reasons explained above. A study of multi-cellular

dynamics in monolayers reported an effect of the adhesion

model choice [62].

Once all forces are determined in Eq. 27, we arrive at a lin-

ear problem described by a sparse symmetric matrix, which

can be solved efficiently by a Conjugate Gradient method

[140,141]. Note that the above system of equations of motion

(Eq. 27) does not conserve total momentum. It assumes a sub-

strate on which momentum can be transfered on is a petri dish

in case of growing monolayers, or a stiff but not too dense

ECM. If cells migrate over each other or if the ECM is not

rigid enough, this assumption might be problematic. In the

latter case of a soft ECM long-range communication between

the cells mediated by the ECM could become important and

should be taken into account explicitly. Models taking into

account ECM are briefly discussed below.

In the cycle a cell increases its volume, which can be

described by

dVi

dt
=
∫ Ti

0

αi (Vi , . . .)dt . (35)

with a volume V0;i right after mitosis has occured, Ti the cell

cycle time, and αi (Vi , . . .) the volume growth rate. The latter

one cannot be assumed to be constant over the cell cycle and

maybe altered under the conditions of inhibited growth, and

for example depend on the actual volume Vi and many other

parameters. If αi is a constant, cell volume increase is linear.

If the cell passed a critical volume, critical time point, or, in

case a cell is modeled by a dumb-bells, a critical dumb-bell

axis length, the cell undergoes mitosis, the process during

which a cell splits into two daughter cell bodies, and two

new cells with equal volume are created. During the mitosis

process several internal forces develop in the mother cell,

involving an actin contractile ring at the cell equator [142].

Different models of cell division have been studied [62]. The

interphase adding up the G1, S and G2 phase and mitosis

phase may be described by an increase the radius of a spher-

ical cell, eventually transforming it into a dumbbell during

mitosis. As dumbbells lack spherical symmetry an additional

equation of motion for rotation is required. The equation for

the angular momentum is complex [83], and therefore rota-

tions are often simulated by a Monte-Carlo dynamics using

the Metropolis algorithm [33]). A simplification of the divi-

sion algorithm consists in skipping the transformation phase

and placing two smaller daughter cells in the space origi-

nally filled by the mother cell at the end of the interphase

(e.g., [63,143]). With this algorithm no dumbbells are gener-

ated, hence rotations of to dumb-bell shapes does not occur.

When the two daughter cells are created, the two daughter

cells will be pushed from each other away until mechanically

in equilibrium. The direction in which the cell divides may
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Fig. 13 Growth scenario in expanding monolayers if cell–substrate

adhesion is insufficient to keep the cells in contact with the substrate

(left), hence cells in the interior are pushed out of the basal layer by the

forces exerted by their neighbor cells during growth and division [63]

[62]. Blue cells denote cells with contact to the underlying substrate,

red cells do not contact to the substrate anymore. Right Cells trying

to grow by increasing their size exert forces on their neighbors. Those

can lead to force components normal to the substrate (thick red arrow,

overemphasized). Such a process represents a difficult obstacle to cel-

lular automaton models of types A, B, D, as gradual displacements in

combination with an increasing force component pointing perpendicu-

lar outside the layer are responsible for the macroscopic detachment of

cells. (Color figure online)

be chosen randomly, according to biological principles or

the cells’ environment, or according to stress principles (see

further). However, the simplified algorithm has two major

shortcomings. Firstly, if the space filled by the mother cell is

small already, which is often the case for cells in the interior

of a cell population, the local forces occurring after replac-

ing the mother cell by two spherical daughters can adopt very

large (unphysiological) values leading to unphysiologically

large cell displacements. This might partially be balanced

by intermediately reducing the forces between the daughter

cells. Secondly, cells in contact to the mother cell prior to

replacing the mother cell by its two smaller daughter cells

may loose contact as a consequence of the discontinuous

local configuration change. For a cell at the border of a pop-

ulation this can lead to a detachment of the neighbor cell

from the multicellular aggregate.

In another approach to cell division, cells entering the cell

cycle are immediately represented as dumbbells which grad-

ually grow by increasing their axis from zero length to twice

the radius of the dumbbell spheres, where they separate into

two spheres [84,138]. This algorithm has been found to gen-

erate only minor differences on time scales much larger than

the cell cycle time compared to the algorithm distinguish-

ing between a spherical growth and a dumbbell deformation

phase.

During the cell cycle, cells take several decisions depend-

ing on certain criteria. Commonly used criteria for cell cycle

progression control by contact inhibition on the whole cell

level are cell deformation, volume compression, a force

threshold or a stress threshold, each of which have proven

to qualitatively predict growth limitation in tumor models

[144]. A machinery of molecular factors underly the decision

processes (e.g., [145,146]). Drasdo and co-workers consid-

ered in a number of papers [61,82,147] a mechanism in

which progression of a cell in the cell cycle was possible

only if the distance to any of its neighbor did not become

smaller than a certain threshold value. For a cell in the inte-

rior of a multicellular aggregate, balance of forces usually

leads to small distances of a cell to its neighboring cells, so

a too large overlap is likely to correspond to a too large vol-

ume compression of that cell. Cells at the border can move

and escape the compression which is why border cells were

not limited by this criterion. Contact inhibition of growth,

as well as other growth control mechanisms mark the dif-

ference between normal and abnormal cells. Aggressive cell

lines pile markedly up in monolayer culture i.e., growing on

a flat substrate, as their are able to grow and divide without

contact to the underlying substrate [62,63]. For example, in

the absence of contact inhibition, cells localized in the inte-

rior of the monolayer may above a critical size not be able

anymore to relax their mechanical stress by pushing other

cells towards the monolayer border. Small stochastic differ-

ences in the cells’ distance from the underlying growth plane

may then lead to normal force components, which for some

of the cells are directed out-of-plane (Fig. 13). If those force

components are not balanced by adhesion forces between

substrate and these cells anymore, then these cells can be

pushed out of the layer. CBMs capture this effect very natu-

rally as it emerges out of the force-based dynamics, while in

a cellular automaton model such an effect needs to be coded

explicitly and is otherwise missed out.

The criterion that cell cycle progression is inhibited at

any time in the cycle leaving cells in the interior of a multi-

cellular aggregate arbitrarily long in the cell cycle does not

correspond to biological observation. Rather a number of

checkpoints are reported and generally accepted (e.g., G1,

G2, M-checkpoint). Cells passing G1-checkpoint are com-

mitted to pass the entire cell cycle. Hoehme et al. [33,84]

implemented this by assuming that cell cycle entrance was

possible only after division in a certain time point or small

window in G1 phase mimicking the restriction point. Once

a cell passes the restriction point it progresses until divi-
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Fig. 14 Left Growth of a monolayer for pure pushing forces and

pulling forces emerging if border cells migrate actively into the envi-

ronment. Right Growth of a multicellular spheroid in an environment

of elastic particles to mimic the mechanical resistance of agarose gel

[144]. As in the cellular automaton models, growth is first exponential

turning into linear growth

sion with probability one. This condition gave a very good

quantitative explanation of many observations in growing

multicellular spheroids of EMT6/Ro cells [84]. A similar

choice had been taken by Schaller and Meyer-Hermann

[143]. Schaller and Meyer-Hermann [143] considered cell-

cycle entrance if the local pressure was below a critical value.

Drasdo and Hoehme [144] also compared the consequence

of different cell cycle entrance criteria such as a compression

threshold, a tension threshold (meaning cells enter cell cycle

only if stretched), and different mechanical stress-related cri-

teria, on monolayer growth (Fig. 14).

In Galle et al. [63] a volume-based criterion is used. The

cell compression is computed using the target volume minus

the volume loss from geometrical overlaps of neighboring

cells, Vi (t) = (4/3)π Ri (t)
3 −

∑

j N N i V
cap
i j i.e., the caps

lying in the neighbor cell. The overlap is overestimated if a

cell overlaps simultaneously with two other cells that already

overlap i.e., if three cells share a volume segment.

The different criteria influence the expansion speed and

the cell density profile but seem to reproduce qualitatively

the same dynamics.

There are several possibilities to compute stresses in

CBM. For mechanical stress, one can define several pres-

sure, or pressure-related quantities. Byrne and Drasdo [147]

used the following definition to incorporate contact inhibition

effects in tumor growth:

pi =
∑

j

‖F
rep
i j ui j‖
Ai j

, (36)

with ui j = (r i −r j )/|r i −r j |. F
rep
i j = F

rep
i j ui j are the repul-

sive forces from cells j on cell i due to contacts with cells j

and Ai j is the contact area derived from the contact model.

This measure associates every deformation or compression

of the cell with a (positive) pressure, including cell deforma-

tion occurring as a consequence of adhesion. The measure

was calculated as pressure equivalent in a growing mono-

layer, where cells are constantly under compression hence

the cell-to-cell distance 〈di j 〉 < Ri + R j .

Schaller and Meyer-Hermann [143] considered instead

pi =
∑

j

‖F int
i j ui j‖
Ai j

, (37)

i.e., adhesive and repulsive forces in growing multi-cellular

spheroids. In this case, the pressure would be zero if the total

interaction force between a cell and its neighbors is zero,

so the obtained values are always below those in the former

definition in presence of cell cohesion. However, as the latter

measure was considered in growing cell populations with

all cells permanently under compression, it differs only by a

pressure shift. Defining instead [144]:

pi =
∑

j

F int
i j ui j

Ai j

(38)

takes into account tensions that can occur if a cell stretches

its cell–cell contacts during its attempt to actively migrate

away from the cell aggregate it is attached to, which has

been one of the cases studied in that reference in addition

to the aforementioned case of cells permanently being under

compression. This study was motivated by the experimen-

tal findings of Trepat et al. [18] suggesting that border cells

migrate actively into their environment pulling interior cells

behind. Reference [144] studied if the experimental obser-

vations could be explained if cell cycle entrance could occur

only for cells under negative pressure, here defined such that

the cell contacts are subject to stretch.

For growing monolayers with all cells under compression,

all three measures differ only by moderate shifts of the pres-
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sure curves. In the first and second definition, pi ≥ 0. Using

Eq. 37 has the disadvantage that cells for which are slightly

compressed so that the interaction force is repulsive and cells

for which the interaction force is negative due to adhesion

can have the same pressure value. In the previous definition

given by Eq. 36, the force is by definition always positive

so this problem cannot occur. The disadvantages of all these

measures is that they only give a scalar measure but do not

allow to calculate the entire stress tensor. Moreover, they

cannot easily quantitatively compared to the Cauchy stress

tensor obtained in continuum theories.

An alternative estimation of stress can be obtained by

introducing the concept of virial stress, a well-known concept

in particle-based simulations. It was drawn from theories in

molecular dynamics to compute macroscopic stress originat-

ing from the interaction of many particles [148]. Compared

to the abovementioned definitions, more information can be

extracted using the viral stress formula. The general formu-

lation of virial stress defines the average stress1 in a box of

particles due to contact forces F int
i j with other particles by:

σi = 1

V

∑

j

(

F int
i j ⊗ r i j

)

(39)

where r i j is the vector pointing from the center of cell i to

the contact plane with cell j , and V is the sampling volume.

In principal this volume needs to be large enough to obtain

reliable averages over an ensemble of particles, yet one can

still use it as an estimator for individual cell stresses, by

taking the sampling volume as the volume of the cell. The

hydrodynamic pressure pi on a cell can now be computed

by:

pi = 1

3
tr(σi ). (40)

Equation 39 defines a full stress tensor for the cell, which

will allow to extract more information than just a pressure.

An example and the applicability of this method is further

demonstrated in Appendix 1. From the stress tensor, we can

also derive the principal stress directions {n1, n2, n3} and

eigenvalues {σ1, σ2, σ3} by diagonalization of Eq. 39, yield-

ing important information on how stresses on the cells are

oriented. The algorithm for diagonalization of Eq. 39 is triv-

ial in 2D and not demanding in 3D, using e.g., Cardano’s

method.

1 This formula is not complete as the general formula of viral stress

includes a kinetic term related to the temperature of the molecular

particle system. For a system of cells however, the latter term can be

neglected and the stress corresponds to the Cauchy stress of the micro-

scopic system [149].

3.1.2 Achievements, limitations and practical use

CBM now exist for several decades and despite their sim-

plicity, they have been used with quite large success. Typical

application fields are studies 2D monolayers (Fig. 14),

(small) tumors (Fig. 14), intestinal crypts (Fig. 18), and

liver (e.g., liver lobules, Fig. 15), with cell numbers start-

ing from few and ranging up to 106 [83,150]. Refined

image analysis techniques and available software increas-

ingly permit a quantitative analysis of tissues in 3D at

micro-meter resolution [38,151]. The data infered can subse-

quently be transfered into modeling software such as CellSys

[150], to simulate the tissue organization process of interest

as demonstrated for the example of the regenerating liver

(Fig. 15, [33,152]). The experimental technology improve-

ments regarding confocal microscopy and live microscopy

now provides the necessary data on the histological level to

calibrate agent-based models (see also [81]).

Although the mechanical information that can be extracted

from these models is rather approximate, various biomechan-

ical aspects in monolayers, tumor spheroids and organ tissues

could be explained. For example, Drasdo and Hoehme [82]

have shown that contact inhibition due to mechanical stress

can explain the equal expansion speed at significantly differ-

ent glucose medium concentrations in growing multicellular

spheroids of EMT6/Ro cells. The same mechanism could

explain different growth speeds in expanding one-cell thick

dense monolayers observed by Bru et al. [90], and growth sat-

uration of multicellular spheroids in agarose gel [62,82,144]

observed by Helmlinger et al. [11], and Galle et al. [153].

Recently Delarue et al. [154] confirmed inhibition of prolif-

eration in tumor spheroids by compressive stress.

Bassan et al. [138] simulated tissue rheology by measur-

ing yield stresses, shear viscosities, complex viscosities as

well as the loss tangents as a function of model parameters,

concluding that cell division and apoptosis lead to a vanish-

ing yield stress and fluid-like tissues. Macklin et al. [155]

have addressed ductile carcinoma’s. A number of researcher

has also been focused on intestinal crypts and epithelial tis-

sues, studying e.g., cell organization and the role of basement

membranes, and predicting the behavior of the tissue during

steady state as well as after cell damage [35,37,52,156–163].

An import aspect in cell migration is the interaction with

ECM, as it is responsible for both the support and obstructing

cell movement. For instance, in invasive cancers one observes

that migrating cells breakdown the ECM, forming guidance

tunnels for other cells. In addition, distant cells can feel one

the other’s presence through the modified strain fields that

they cause. In the basic CBM formulation the interaction

with ECM is usually mimicked in an implicit fashion using

friction terms and random motility forces. A 3D migration

model was proposed by Zaman and co-workers [164,165],

based on internally generated forces transmitted into exter-
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Fig. 15 Simulation of a regenerating liver lobule, the smallest func-

tional and anatomical repetitive unit of liver after drug induced damage

in the center of the lobule. This scheme illustrates the general strat-

egy of how liver architectural parameters obtained by image analysis

of confocal micrographs (left) are used together with a quantification

of dynamic processes in the liver (top row regeneration after intoxica-

tion with the drug carbontetrachloride; brown hepatocytes, blue central

necrosis) to construct a dynamic model of the in vivo situation (bottom

row regeneration after intoxication in the model; light rose quiescent

hepatocytes, dark rose proliferating hepatocytes, brown hepatocytes

carrying the enzyme Glutamine sythetase, red sinusoids, central and

portal vein, blue portal artery). Left picture confocal micrographs after

image processing; blue hepatocytes nuclei, white sinusoids [33,152].

(Color figure online)

nal traction forces (and considering a timescale during which

multiple attachment and detachment events are integrated).

They investigated the migration speed as a function of prop-

erties like ligand density of the adhesion receptors and ECM

stiffness, and found configurations where the cells would

optimize their migration speed. A similar approach was used

later, by Rey and García-Aznar [166] to study cell migra-

tion in wound healing. Vermolen and Gefen [167] proposed

a model with cell movement assuming a mechanical stim-

ulus arises from the cells sensing a change in strain energy

density in the ECM. An explicit interaction model of CBM

with ECM fibers has been introduced by Schlueter et al. [66]

in where the cells are able to interact and remodel the fiber

orientation, showing the tendency of a cell to move to stiffer

substrates. Harjanto et al. [168] used an approach where the

cells can degrade, deposit, or pull on local fibers, depending

on the fiber density around each cell. We note that the fibers

themselves in principle are not inert stiff structures but have

their specific dynamics which can be modeled as well using

e.g., Brownian dynamics [169].

To address collective motion of cells, Bassan et al. [170]

proposed a simple flocking-type mechanism, in which cells

tend to align their motility forces with their velocity. Their

model could explain the experimentally observed long-range

alignment of motility forces in highly disordered patterns, as

well as the buildup of tensile stress throughout the tissue.

Also Sepulvada et al. [136] considered a CBM in which cells

move in a stochastic manner and try to adapt their motion to

that of their neighbors. Introducing leader cells, they found

that fingers develop as observed in experiments when leader

cells more actively invade free environment than following

cells and regulate their motion according to their contacts

with following cells.

Several extensions have been proposed to alleviate the lim-

itations of CBM. To model more realistic cell shapes, Palsson

et al. [171,172] and Dallon et al. [173] used ellipsoidal shapes

with axial degrees of freedom resulting in deformability

in three principal directions. Herein the deformability was

controlled by viscoelastic elements. The shape was adapted

according to the forces that act on the cell. However, as the

viscoelastic elements in these models are placed on the three

axes of the ellipsoid, a cells’ deformation depends on the

relative orientation of the axes of the ellipsoids compared to

the direction of the interaction force in the contact region of
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Fig. 16 Cells represented as ellipsoids with fixed major axes can intro-

duce orientation artefacts when in contact with other cells (compare

situation a and b)

the two interacting ellipsoids. This can be seen as follows

(see Fig. 16). Assume two cells that in the moment where

they get into contact have a spheroidal shape, meaning all

axes have the same length. If the cell–cell interaction force

acts along the axes of two interacting ellipsoids, they deform

easily. If on the other hand the cell axes are rotated by 45◦

compared to the direction of the interaction force, they would

not or at most moderately deform (Fig. 16b).

Anisotropy and polarity in cells can be incorporated into

the CBM in a rather simple fashion by assigning a polarity

vector P to each cell. The latter indicates that a cell has a pref-

erential direction, polar adhesion or biased motion [33,66,

137]. Non-adherent neighboring cells can sense each others

presence and move towards each other through mechano-

chemical signals, originating for instance by the formation

of filopodia or cell–cell communication through a medium.

To incorporate such effects in the simulations, one can sim-

ply extend the range of cell–cell interaction force using a

function that represents the intensity of this attraction as a

function of the separation distance. Palsson et al. [172] pro-

posed to characterize this attraction by a Gaussian:

F int
i j

=

⎧

⎨

⎩

−πσ
√

R̂ if di j ≥ Ri + R j

−πσ
√

R̂ exp
(

− (Ri+R j−di j )
2

2b2

)

if Ri +R j <di j ≤dcutoff

(41)

The parameter b represents the spreading of the filopodia

length while the maximal interaction range is dcutoff . Another

possibility are Morse potential functions, which were used

by e.g., Rey et al. [166]. An artifact can occur if the inter-

action range mimicking the filopodia-mediate attraction is

so large that two cells attract each other even if the local cell

configuration does not leave free space for the filopodia to be

stretched out from one to the other cell. In this case, explicit

representation of filopodia even if computationally costly,

may be necessary, as e.g., performed in Ref. [174] who mod-

eled filopodia with a CBM by lines radially stretched from

the cell border in such a way that they may touch but not

intersect with neighbor cells (Fig. 17).

A drawback in CBM based upon pair-wise forces is that

the contact forces and contact area become largely inaccu-

rate when cells become densely packed. To understand this,

consider a cell surrounded by many other cells in a dense

packing as it may occur if neighbor cells grow. The volume

of the central cell can be estimated by local Voronoi tes-

sellation, and the calculation of the volume of the Voronoi

polygon associated with the central cell (for a Voronoi tes-

sellation, see Fig. 1). Consider the case of an incompressible

homogeneous isotropic elastic cell. Incompressibility would

correspond to a Poisson ratio of ν = 0.5. Because the central

cell is incompressible, even in the most dense arrangement

of cells, its volume (let’s denote it by V0) would remain the

same all the time. This is a consequence of the volume con-

trol that generates a multibody interaction of the central cell

Fig. 17 Left Sketch of a center-based cell with filopodia [174]. Right

Comparison of the random migration dynamics with the stochastic

equation of motion using a white noise term (red symbols) or filopodia.

In the simulation, a cell had eight filopodia. Their length was chosen

from a Gaussian distribution, and their orientation chosen randomly

and uncorrelated in time. After each move, the orientation was again

chosen randomly. The force was assumed to be proportional to the

filopodia length but this parameter had no strong influence. A differ-

ence in movement to the standard equation of motion with a noise term

to mimic active motion could be found in presence of other cells, as

filopodia could not stretch if the path was blocked by a neighbor cell.

(Color figure online)
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Fig. 18 Left model of an intestinal crypt using a Voronoi tessellation.

The model assumes periodic boundary conditions in x-direction, and a

hard border at the bottom. Cells dividing in the bottom push other cells

towards the top from where there are shed in the intestinal lumen [34].

Middle modified Voronoi-tessellation to account for isolated and bor-

der cells [61,176]. The configuration emerged from sorting of two cell

types A (triangles) and B with (differential) adhesion energies strongest

between A–A, second strongest between A–B and weakest between

B–B cells. Right Cross section of a crypt in a model [137]. Here, the

one-cell-thick layer of the intestinal crypt has been stabilized by a bend-

ing force. If either the proliferation pressure of the cells dividing in the

bottom of the crypts become too high because of a too high prolifer-

ation rate, or the bending stiffness is reduced by reduction of the cell

layers’ elastic modulus, the layer folds [177]. Such a folding or bend-

ing is very difficult to represent in cellular automaton models while it

emerges naturally out of polar adhesion forces in CBMs

with each of its neighbors. In contrast to this, in simulations

the pairwise interaction forces (e.g., Hertz without adhesion,

JKR in presence of cell–cell adhesion) do not include any

notion of cell volume. Hence, even for the setting ν = 0.5

in the Hertz (or JKR) force models, the cell–cell distances

of the central cell with its neighbors could become so small,

that the volume that can be associated with the central cell

(e.g., by Voronoi tesselation) would become smaller than V0.

One way to account for the volume is adding a force term

that takes into account a volume constraint. In this case the

cell volume may be approximated by a Voronoi tessellation

which, however, generates some other problems that are dis-

cussed in more detail below.

Another, related, point is that in a dense cell packing the

Hertz contact area (or in presence of adhesion the JKR con-

tact area) does not represent a good estimate of the contact

area anymore, as in a dense packing the contact regions of

the central cell with those of the neighbor cells, that are

themselves neighbors of each other, overlap. In this case the

interaction between the neighbors of the central cell leads

to deformations of the neighbor cells, which impact on the

contact area between the neighbors and the central cell. The

contact area may then better be estimated by the geometrical

area in the contact region, calculated again from a Voronoi

tessellation. However, there is no evident smooth consistent

transition between Hertz contact area at cell configurations

with low densities, and geometrical area for cell configura-

tions at high densities. To better see this, consider the case

of no cell–cell adhesion i.e., a Hertz interaction force. The

Hertz interaction area for two cells is AH
i j = π(Ri + R j −

di j )(Ri R j )/(Ri + R j ). The geometrical contact area for two

interacting cells, which is the area the two overlapping cells

have in common, is A
g
i j = π R2

i − (d2
i j + R2

i − R2
j )/(2d2

i j ). In

both cases, di j is the distance of the centers of the two cells i ,

j . The Hertz interaction area is always smaller than the geo-

metrical interaction area. For example in case Ri = R j ≡ R

one finds AH
i j = π(2R − di j )R/2 < A

g
i j = π(R2 − d2

i j )

(for di j < 2R). This has a number of shortcomings. The

Hertz model is expected to be adequate only at sufficiently

low cell deformations, which is not the case in cell config-

urations at high density. The latter cannot be avoided if no

additional forces are added that take into account volume

constraints. Below a certain distance, the geometrical con-

tact area is more adequate but inconsistent with the Hertz

force, as Hertz force and Hertz contact area are inherently

linked. Moreover, the transition between the two areas is only

smooth at di j = Ri + R j , so at point contact. Therefore, the

description of cell–cell interaction forces by Hertz (or JKR)

force at large cell densities is only a crude approximation.

Finally, the Hertz and JKR-force emerge from linear elas-

ticity assuming small deformations which in dense packings

of cells can easily be violated, so that these force models

can only be regarded as crude approximations in dense cell

aggregates also with regard to this aspect.

The Voronoi tessellation approach originally proposed by

Honda et al. [80,175] have been considered also by other

authors in center-based type modeling approaches, as it

allows well approximating the surface and volume of a cell in

dense aggregates, such as epithelial layers of intestinal crypts

[34] (Fig. 18).

However, in some multi-cellular configurations such as

multicellular spheroids or monolayers cells may detach from
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the main tumor body and enter the tumors’ environment

[65,178]. In a Voronoi tessellation the cell shape is con-

structed uniquely from the position of its neighbor cells hence

the concept of an isolated cell within a Voronoi tessellation

does not exist. In reference [83,134] a possible solution to this

problem using a modified Voronoi tessellation was sketched

in which the biological cell shape was constructed as follows.

A circle of radius R was drawn around each cell construction

point (for a center-based cell, this would be the cell center).

Then the Voronoi tessellation was constructed. If for a cell

the Voronoi border was closer to the construction point than

the circle, the biological cell border was associated with the

Voronoi cell border, otherwise the biological cell border was

associated with the circle (Fig. 18). Meyer-Hermann and co-

workers [143,179] explored this approach in more depth, and

in three dimension for growing multi-cellular spheroids. As

long as deformations of the cells remain moderate, the dif-

ference between the Voronoi approach and the presentation

of the cells in isolation by spheres that deform due to Hertz

or JKR force upon compression are moderate, as supported

by very similar simulation results for EMT6/Ro multicellular

spheroids with pairwise JKR-force [83] and Voronoi tessel-

lation with a modified Hertz force [143].

However, volume estimates permit to consider explicitly

compression terms. Using KV = −V (∂p/∂V ), a volume

pairwise force term may be constructed by [180]

Fvol
i j =

(

Ei

3(1−2νi )
log

Vi

V 0
i

+ E j

3(1−2ν j )
log

V j

V 0
j

)

Ai j

r i −r j

|r i − r j |
. (42)

For Vi ≈ V 0
i and V j ≈ V 0

j , log(Vi/V 0
i ) can again be

replaced by (Vi − V 0
i )/Vi . However, the approach has a

shortcoming. The pairwise forces (Hertz and JKR) do already

account for both, compression and deformation. The upper

equation would represent compression hence the compres-

sion part would have to be eliminated from the Hertz (JRK)

model which is not straightforward.

Pathmanaghan et al. [139] also used a Voronoi tessella-

tion approach for a computational study of tissue mechanics.

Despite the general higher realism for mechanics, these algo-

rithms can be computationally expensive and also show some

flaws for tissues under high mechanical stress [139].

In CBM a large part of the computational effort will be

spend in the contact detection and the matrix solving of

Eq. 27. Contact resolution is easily to implement while con-

tact detection (i.e., finding list of neighbors) is relatively

cheap (∼NlogN ) using grid-based methods or tree search

algorithms. Once the forces are computed in Eq. 27 and con-

vergence is found in the Conjugate Gradient algorithm, the

velocities of the cells can be calculated to obtain the positions

of the cells, by using e.g., a simple explicit Euler integration

scheme. The stability of the simulation is then formally be

determined by the timestep �t .

�t ≤ C
γ

k
(43)

where C is a prefactor, k is the stiffness of the system (e.g.,

Young modulus of the cells), and γ is the friction (e.g., cell–

cell friction). Thus, the higher the friction, the lower one can

choose the timestep. In practice, one chooses a fixed timestep

that results in a stable simulation. Alternatively, one may also

opt for an adaptive time stepping scheme [143].

In some cases explicit matrix solving can be avoided

if one considers only friction with a medium [143,181],

which speeds up the computation significantly. The maximal

timestep is limited by the minimal ratio of the damping para-

meters to the contact stiffnesses. Time stepping may put sig-

nificant restrictions to the solvability in a mechanically stiff

system when the time scale of interest is long (e.g., several

days or weeks in tumor simulations), because the number of

time steps may become prohibitively high. To alleviate this,

one can work with rescaled parameters such that the simula-

tion time is shortened but the dynamics remains unaffected.

This can be achieved, for example, if there are two timescales

τ1 and τ2, with the first representing the characteristic

mechanical relaxation of the cellular system and τ2 the divi-

sion time of the cells. In case it holds that τ2 ≫ τ1, then one

can shorten τ2, such that this separation in timescales remains

large yet the simulation time is decreased significantly.

Below we briefly summarize advantages and disadvan-

tages of center-based models (CBMs) from our perspective.

Evaluations on the computation times are done with regard

to a standard PC.

+ Each cell represented individually.

+ Precise cell position is tracked.

+ Movement, division and death of cells can be repre-

sented.

+ Cell position and size can be gradually changed (no

upper length scale).

+ Due to solving an equation of motion, the time scale

is well defined.

+ Equations of motion are intuitive and permit easy

extensions.

+ Physical laws can directly be represented and para-

meterization is only in terms of physically and

bio-kinetic meaningful parameters that can in prin-

ciple be measured.

◦ Cell shape can only be represented statistically.

◦ Large-scale simulations due to computation time not

accessible, at most around 106 cells can be simu-
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lated. Parallelization of the code could solve this

problem but this is non-trivial.

◦ Parameter sensitivity analysis challenging due to

long computation time but as all parameters have a

direct physical interpretation, the parameter ranges

can well be inferred from experiments.

− Large deviations from a spherical shape cannot be

captured.

− In the standard CBMs cell–cell forces are pair-wise

forces which can generate artifacts at high cell den-

sities.

3.2 Deformable cell models and vertex models

3.2.1 Basic concepts

CBM show several disadvantages. Basically their constitu-

tion does not allow to represent arbitrary cell shapes. Also

they cannot give detailed information of the mechanical

signals (tensile, compressive forces, shear forces) that are

transmitted by the ECM via integrin receptors linked with

the cytoplasm and CSK. On the other hand, detailed models

that focus on the mechanics of the CSK as such (e.g., [169])

may be unable to capture the behavior of the whole cell. An

intermediate scale model is thus desirable to bridge this gap.

A number of authors introduced a series of models which

can be categorized as Deformable Cell Models (DCM). Rej-

niak [182] proposed a 2D modeling framework based on

deformable cells represented by connected line segments as

units. The cells were capable of growing, dividing, and adher-

ing to other cells, allowing for the formation of clusters of

cells. The first 3D models did not address such complexity

(only the cell surface is discretized) and were mainly used

to simulate the large deformation mechanics in erythrocytes

[183].

In DCM the cell body is discretized by a number of

nodes which are connected by viscoelastic elements inter-

acting via pairwise potential functions, creating a flexible

scaffolding structure with arbitrary degrees of freedom per

cell. The nodes at the boundary can be used to triangu-

late a cell surface (line segments in 2D), accounting for the

mechanical response of the membrane and cortical CSK (see

Fig. 19a). The forces in DCM originate from both cell–cell

interactions and intracellular interactions due to the vis-

coelastic elements, bending resistance in the membrane, and

global cell properties such as cell volume and surface area

conservation.

A special class called vertex models (VM) are similar to

DCM but the vertices form a polygonal tessellation (usu-

ally Voronoi) for the cells. These models are therefore rather

Fig. 19 a DCM representation of two adhering cells. Each cell has

a nucleus, a coarse central oriented cytoskeleton (CSK), and a mem-

brane/cortex. b Detail of the elements in a cell membrane triangulation

suitable for tightly packed cell ensembles with negligible

intercellular space. The terms that contribute to the mechan-

ics in each cell are the line tension and adhesion along its

common edges with other cells, the contractility of the cor-

tical ring along the cell perimeter, and hydrostatic pressure

related to cell area/volume. Also here one can define rules

that govern cell proliferation, migration and apoptosis. Ana-

lyzing static equilibrium configurations such as the optimal

packing in epithelial cells can be done using energy-based

methods while for dynamical systems one can opt for equa-

tions of motion, similar as in CBM.

Often, the individual elements are represented by classical

linear spring-damper systems. When the elastic and dissi-

pative components are positioned in parallel, one has the

well-known Kelvin–Voight element representing a solid like

behavior. The vector force between two nodes i and j then

reads (see Fig. 19b):

F i j = Fe
i j + Fv

i j = −ks(d i j − d0
i j ) − γ vi j (44)

where Fe
i j and Fv

i j are the elastic and dissipative forces,

ks is the spring stiffness, γ represents the level of dissipa-

tion, d0
i j , d i j are the initial and actual distance vectors, and

vi j is the relative velocity between the nodes respectively.

In some cases however, it is necessary to incorporate non-

linear elastic behavior which better describe the polymeric
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molecular structures [140,184]. A well-known model for this

is the Finitely Extensible Nonlinear Elastic (FENE) force

which behaves soft at low stretch but become very stiff at

high stretches (similar to uncoiling a rope):

Fe
i j = −kFENEdi j

[

1 −
(

di j

dmax

)−2
]−1

, (45)

where kFENE is the stiffness, and dmax is the maximum stretch

of the spring, at which the force will diverge. Van Liedek-

erke et al.[185] implemented a Neo-Hookean incompressible

polymer model for a cell surface:

Fe
i j = kpoly

(

λ − λ−5
)

, (46)

where λ = di j/d0
i j is the stretch ratio. This model takes the

variation of the thickness of the material during stretching

into account.

For a liquid like behavior the basic representation is the

Maxwell model where a spring and damper are in series. The

force equation then reads

Ḟi j

k
+ Fi j

γ
= vi j (47)

This equation contains a derivative of the force, which can

be approximated by Ḟ = (F(t) + F(t − �t))/�t and

involves the storage the force at the previous time step.

Note that the spring-damper elements can be combined or

rearranged [186] to obtain a more complex dynamics with

multiple relaxation times. The surface bending resistance can

be incorporated by computing the angle between two adja-

cent triangles α and β (or line segments in 2D). This defines

an out of plane energy Eb:

Eb = kb(1 − cos(nα, nβ)) (48)

where kb is the bending constant and n is the normal to each

triangle. Using F i = −∂ Eb/∂r i , this can be transformed to

an equivalent quadruplet force system acting on the nodes

of the triangles {F1, F12, F21, F2} (see Fig. 19b), for which

momentum conservation demands that F1 + F12 + F21 +
F2 = 0 [140].

The area and volume constraint forces arise from the lim-

ited compressibility of the membrane/cortex and cytoplasm

of the cell. If we would consider a vesicle as a model (i.e., a

spherical lipid bilayer encompassing a fluid), then additional

forces Farea will arise from the fact that the change of surface

area of the membrane is limited. In addition, one should also

try to keep the changes of the individual area of the trian-

gles as low as possible, because similar to FE simulations,

too strong deformed triangles can lead to mesh artefacts,

instabilities and inaccurate results [184]. The magnitude of

these forces can be tuned introducing an area conservation

constant KA, with KA = Eh where E and h are the appar-

ent Young modulus and thickness of the membrane, and

ǫA = (A− A0)/A0 a strain measure (see Fig. 19). The forces

Fa are then applied in the plane of each triangle in the direc-

tion from the barycenter of the triangle [140]. Note that the

area conservation forces contribute to the membrane/cortex

stiffness in a similar way as the spring forces in Eqs. 44 and

45. However, the latter ones are used to describe the elasticity

cortical CSK, whereas the former one reflects the elasticity

of the lipid bilayer of the cell. The linear spring constant for a

sixfold symmetric triangulated lattice can be related approx-

imatively to the cortex Young modulus Ecor with thickness

h by [185,187]

ks ≈ 2√
3

Ecorh (49)

The bending stiffness of a (thin) cortex is in the same way

approximated by

kb ≈ Ecorh3

12(1 − ν2)
(50)

where ν is the Poisson ratio (=1/3 for an equilateral 2D net-

work of linear springs). For a more a more in depth analysis

relating the spring force parameters to macroscopic con-

stants, we refer to literature [140,184,185,188].

The volume penalty forces are computed from the internal

pressure using the volume change and compressibility KV.

The internal pressure in the cell is given by

p = KVǫV (51)

whereby ǫV is the volume change strain (for small volume

changes, we have ǫV = (V − V0)/V0). The volume V of

the cell can be computed summing up the volumes of the

individual tetrahedra that build up the cell. The forces Fvol

on the nodes are obtained by multiplying the pressure with

the area of the triangle.

Finally, we arrive at the equation of motion for a node i

of a cell in free suspension in its most simple form, taking

all the former terms in account. This equation is formally the

same as Eq. 27:

∑

j

Γ nn
i j (vi − v j ) + Γ ns

i vi =
∑

j

Fe
i j +

∑

quadrupletsβ

Fb
i,β

+
∑

trianglesα

Fa
i,α + Fvol

i .

(52)

with Γ nn and Γ ns the matrices representing node-node

friction and node substrate friction. The latter one can be
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obtained by considering the CBM substrate friction coeffi-

cient divided by the number of nodes at the surface of the

cell.

The solving of this system is formally the same as Eq. 27

where the positions of the cells are replaced by the nodes.

A Conjugate Gradient method will usually solve this system

efficiently. The restrictions to the timestep are similar as in

Eq. 43.

Having the forces at sub cellular scale at hand, one can

now compute triangle-averaged stresses using the concept of

viral stress. For example, the membrane/cortex tension in a

node σi can be calculated by [184]

σi ≈
√

3

N j

∑

j

Fe

di j

+ KAǫA (53)

where Fe is the elastic component of the force between two

nodes, N j is the number of connections of node i (usually 6

-fold connectivity), and the second term is the contribution

due to area conservation. Of course, these formulas need

to be adapted if more detail such as an internal structure

is added. In this regard it is also useful to mention that in

some simulations of cell models without an internal structure

(i.e., only fluid inside) unrealistic buckling instabilities can

appear [189]. Adding an internal structure (CSK) or choosing

a higher bending energy will likely solve this issue.

It is clear that the number of parameters and physical com-

plexity in these model types is larger than in CBM, yet as the

forces can be computed up to subcellular level, discerning a

nucleus, organelles, membranes and internal structure, these

models are candidates for investigation of mechanotransduc-

tion.

3.2.2 Achievements, limitations and practical use

The work of Rejniak and co-workers has treated multi-

cellular spheroids, various cellular patterns in developing

ductal carcinoma in situ, invasive tumors as well as nor-

mal development of epithelial ductal monolayers and their

various mutants [190–193]. Deformable models have also

been extensively used for erythrocytes to increase our insight

in blood flow and related diseases such as malaria, with

some authors using discretization up to the level of the spec-

trin CSK [194], and others using coarse graining models

with realistic mechanical and dynamical behavior, see e.g.,

[184,195–198]. It was also shown that the model parameters

of the viscoelastic elements can be calibrated using optical

tweezer or micro-pipetting experiments.

Models of cells with an internal structure or CSK are still

relatively scarce, yet they are likely to become essential for

addressing the more fundamental questions in cell migration

and mechanotransduction. A basic, coarse representation of

the CSK was proposed in Ingberg [199] who regarded a cell

as a tensegrity structure making the connection with macro-

scopic structure models where forces are transmitted by

flexible cables and stiff struts. In the so called subcellular ele-

ment method (SEM), Sanderius et al. [186,200] approached

the cell as a 3D network using specific pairwise potentials

and springs, to simulate the rheology of a single-cell and

small cell clumps. This model can be regarded the off-lattice

equivalent of the CPM. In both abovementioned methods

however, the cell membrane and cortex was not discerned.

An extended 2D deformable model was proposed by Jamali

et al. [201], where in each cell a certain subcellular detail

was incorporated, including the elastic plasma membrane,

elements that perform the function of the CSK, and elements

representing the cell nucleus. This model allows interaction

and communication with its environment, changing its mor-

phology, and performing basic cellular events such as growth,

division, death, and polarization.

To analyze stress distribution and predict damage in com-

pressed cells and impacted parenchyma tissue, Van Liedek-

erke et al. [185,202] introduced a full Lagrangian particle

model using the continuum smoothed particle hydrody-

namics (SPH) technique, coupled with viscoelastic network

model representing a solid hyperelastic membrane (Fig. 20),

see Sect. 3.2.

Deformable cell models can incorporate models for spe-

cific adhesion (e.g., electrostatic force, depletion forces, van

der Waals attractions) and non-specific adhesion (involving

proteins and adhesion complexes). Often pairwise poten-

tial functions (Van der Waals, Morse) [186,193,201,203]

between nodes are used to mimic the effect of short range

repulsion and long ranged attraction force. Odenthal et al.

[140] on the other hand derived an interaction method based

on the Maugis–Dugdale adhesion theory, using limited num-

ber of scalable parameters. Their model could successfully

reproduce the experimental data of the dynamics of vesi-

cles spreading to a substrate, and predicts a zone of inward

traction stress on the substrate which was later observed

experimentally [204], see Fig. 21c.

For cell migration, the same principals and methods orig-

inating from colloidal physics applied in CBM could be

applied to DCM (see Eq. 29). Only recently attempts to

model cell migration in a mechanistic way have been intro-

duced. Kim et al. [205] integrated focal adhesion dynamics,

cell membrane and nuclear remodeling, actin motor activity,

and lamellipodia protrusion reflecting the 3D spatiotemporal

dynamics of both cell spreading and migration. A compre-

hensive and detailed 2D model for cell migration in ECM

was developed by Tozluoglu et al. [206], who analyzed

the cell migration speed governed by the interplay between

ECM structure, adhesion strength and CSK contractility. The

sprouting mechanism in angiogenesis was investigated by

Bentley et al. [207] who developed an agent-based model
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Fig. 20 Simulation of a deformable cell model (erythrocyte) adher-

ing to an adhesive substrate [140]. As the cell adheres, tensile stresses

develop in the cortex at the free surface of the cell (red color). At

the cell–substrate interface, compressive stresses develop (blue color),

which can in turn deform the substrate. (Color figure online)

addressing both the internal actin-based cortical tension and

filopodia driven migration in single cells, but also the higher,

cell–cell level interactions of multiple adhered cells.

Using VM, a measure of how cell boundaries can be

approximated by VM was thoroughly investigated by Honda

and coworkers [80,175,208,209] who studied how cells

undergo rearrangement. Farhadifar and co-workers [210]

used the approach to study the role of cell mechanics and cell

division in determining network packing geometry in epithe-

lial cells. Hilgenfeldt et al. [211] studied cell geometric order

in an epithelial tissue. Manning et al. [212] deciphered the

contributions of adhesion strength and cortical contractility

in cells to tissue surface tension. Finally, Rudge and Haseloff

[213] applied the vertex dynamics approach to study spatial

mechanical factors and signal transduction in morphogene-

nis of plant tissue. An overview for the VM techniques can

be found in [214].

Until now, deformable cell models have especially been

proven to give accurate insight in cell mechanics on short

timescale (seconds to minutes). The eventual dynamic that

emerges will be dependent on the rheological model that

is incorporated. Lim et al. [215,216] examined several

mechanical models that have been developed to characterize

mechanical responses of living cells when subjected to both

transient and dynamic loads, including cortical shell–liquid

core (or liquid drop) models, the solid models, and power-

law structural damping models. The latter seem to offer a

more realistic description of the CSK dynamics [217]. It is

important to mention that active phenomena involving actin

contractility and CSK remodeling may require other inter-

nal models and parameters compared to those governing in

short times experiments [218]. The choice of experiments for

model calibration is therefore critical and can determine the

type of parameters and mechanical properties.

The accuracy of the mechanics in DCM largely depends

on the number of nodes assigned to each cell [184]. Depend-

ing on the application, a too small number of nodes per cell

can create an unrealistic dynamics [140]. Computationally

these models are quite expensive and the applications will

limit themselves to relatively small cell numbers. The typical

aspects of computational complexity (contact detection algo-

rithms) in center-based models apply to deformable models

as well.

Concluding, deformable cell models have already been

shown to explain a large variety of phenomena in cell

mechanics, especially related to short timescales. The com-

putational effort and increased complexity make these mod-

els less widespread but they have the potential and might even

become necessary to explain and predict certain phenomena

related to cell mechanics and mechanobiology. Despite these

useful developments in various directions, we believe that in

order to investigate mechanotransduction in a quantitative

way, more studies are needed to develop models which can

capture the mechanical interactions between the cell interior

and ECM accurately.

Below we briefly summarize advantages and disadvan-

tages of deformable cell models (DCMs) from our perspec-

tive. Evaluations on the computation times are done with

regard to a standard PC.

+ Each cell represented individually.

+ Precise cell position is tracked.

+ Movement, division and death of cells can be repre-

sented.

+ Cell position and size can be gradually changed (no

upper length scale).

+ Mechanical stresses in the cell can be computed to

subcellular level.

+ Cell shape is explicitly given and complex deforma-

tions can be straightforward represented.

+ Due to solving an equation of motion, the time scale

is well defined.
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◦ Physical laws can partially directly be represented

but parameter calibration must be inferred from

comparison with experiments. As a consequence,

parameter inference is not straightforward.

− Due to the high complexity of the cells, the num-

ber of cells in the simulations is restricted for a

single core (∼1000). In addition, depending on

the parameters that were calibrated for an experi-

ment (e.g., micro-pipetting), simulations over long

timescales may become insurmountable if the maxi-

mum required timestep for a stable simulation is too

low.

− Parameter sensitivity analysis very constrained due

to long computation time, hence parameter inference

is stepwise and very tedious.

4 Hybrid discrete-continuum models

In case one faces large multicellular systems, discrete agent-

based models can become computationally infeasible. Con-

tinuum models do not have this problem as they are not

concerned with individual cells and they have no intrin-

sic scale. Continuum models basically solve the governing

mass and momentum balance PDEs for the tissue dynamics,

including source terms to for cell growth, birth and death, cell

migration, as well as reaction-diffusion PDEs to compute the

concentrations of chemical substances such as oxygen, glu-

cose, chemokines, growth factors or cytokines. Continuum

Models for tumors are often multi-phase mixture descrip-

tions encompassing a tumor cells phase, intercellular fluid

phase, and ECM phase, using Darcy’s law to determine the

dynamics of each phase. It is not our intention to review

these models here, instead we refer the reader to some basic

key literature in this field [71,219,220]. Models that pay

special attention to mechanical interaction with ECM and

surrounding host tissue are generally more recent develop-

ments (see e.g., [221–225]). Continuum models generally

have less parameters and they offer some advantages with

regard to the information that needs to be analyzed. Nev-

ertheless, the constitutive equations that characterize e.g.,

migration dynamics, cell adhesion, and stress-strain in the tis-

sue and ECM will determine the results that will be obtained.

The determination of those equations is a non-trivial task

and in general they should be determined from experi-

ments or might be inferred from agent-based models using

averaging techniques [49,83,149,226–229]. This branch is

usually refered to as multiscale models within the mathe-

matical and engineering community, and has to be distin-

guished from multi-level model which integrate components,

mechanisms and information from different scales in one

model [230].

It is likely however, that if one wants to capture the whole

complexity of tissue dynamics, hybrid models will come into

play. The formulation of hybrid models heavily draws on

the conservation laws (mass, momentum, energy) and the

key to success of the coupling to discrete models is an ade-

quate (possibly on-the-fly) mapping between the constitutive

behavior to the averaged discrete system with respect to

growth kinetics, rheology, etc. [147,224,231–234]. A par-

ticularly appealing approach to bridge the gaps across the

scales is based on the density functional theory (DFT) [229],

which would allow calibration and validation of the cell-scale

parameters and equations to be obtained directly from indi-

vidual microscale measurements, and formulating rigorous

upscaling techniques of the continuum equations at the larger

scales.

Combining continuum and discrete (agent-based) models

can be advantageous, e.g., if large parts in the tissue require

less detail and can be treated with continuum approaches,

while in other parts agent-based models can provide more

detailed information. A coupling scheme was explained in

Kim et al. [235] who proposed a domain decomposition for a

tumor region whereby the active regions (proliferating cells)

are represented by agents while the passive tissues (ECM,

necrotic zone) were modeled by the Finite Element Method

discretization of a PDE governing the behavior of an elas-

tic material. The transfer of forces exerted by the cells to

the mesh at the discrete-continuum interface are resolved by

interpolation functions.

Hybrid approaches have been formulated, for example,

to investigate wound healing [236–238], interaction of cells

(CBM) and the basal membrane and ECM [52], angiogenesis

[233,239], and multicellular spheroids with invasion [233,

235].

In the approach where one regards tissue as deformable

cells immersed in a continuum field (ECM, fluid) [190,192],

the dynamics of the cytoplasm and the medium (inter-

stitial fluid, ECM) in which the cells are embedded is

treated as a continuum and usually computed on an Eulerian

mesh (see Fig. 21a). Interactions of the cell boundary with

the cytoplasm as well as external medium are computed

with the Immersed Boundary Method, a classic scheme for

studying fluid–structure interactions. The interaction calcu-

lation between the Lagrangian and Eulerian points relies

on the smearing out of vector or scalars fields computed in

one single point over the neighboring computational points

lying in a finite domain Ω , by considering the convolution

integral:

F(x) =
∫

Ω

F(x ′)K(x ′ − x)dx ′ (54)
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in where K(x ′ − x) is a symmetric kernel function with the

property
∫

Ω
K(x ′)dx ′ = 1. In practice of course this inte-

gral will be replaced by a summation over all neighboring

particles j :

F(xk) =
∑

j

F(x j )K(xk − x j )V j (55)

where V j is the volume associated with that particle. One can

also define F = M/V , such that, for example if F represents

the mass density ρ, then we have

ρ(xk) =
∑

j

m(x j )K(xk − x j ) (56)

which is an ensemble averaging to derive a continuum field

from discrete variables.

It might be noteworthy that although mesh-based meth-

ods like finite elements (FE) or finite differences (FD) are

well established to solve the PDEs in continuum models, we

notice that in the last decades alternative mesh free methods

are gaining increasing attention. These methods use particles

as computational nodes without underlying mesh or fixed

connectivity. The vector fields and their gradients associated

with a particle are computed using radial kernel functions

rather than shape functions, see Eq. 56. SPH [240] is a mesh

free method originally developed in astronomy and later fluid

problems, while more recently it has also been applied in

microscopic problems [241]. The main advantages are that

no remeshing is required and media with a specific difficul-

ties such as discontinuities or complex architectures can be

dealt with more naturally. In addition these methods natu-

rally allow a coupling with discrete particle models such as

CBM or DCM. Disadvantages of SPH are the requirement a

relatively high number of particles to attain the same accu-

racy as grid-based methods, and the non-trivial boundary

treatment. Based on SPH, Van Liedekerke et al. [185,202]

proposed model to simulate dynamics of impact an damage

in tissue (Fig. 21a). Tanaka et al. [242] and later Hosseini

et al. [196] coupled the SPH Navier–Stokes solver to a 2D

deformable cell model to simulate fluid flow associated with

red blood cells. Van Liedekerke et al. [141] further extended

the SPH method to solve the overdamped (Stokes) equations

for a fluid, thereby drastically reducing the computational

time.

Finally, we would like to emphasize that hybrid models do

not necessarily restrict to the coupling of discrete and con-

tinuum models. In Fig. 21b we present a working simulation

example where a CBM and DCM are coupled using the inter-

action model proposed in [140]. Moreover, one could even

enrich the classical hybrid CBM—continuum model scheme

with a higher detailed model such as DCM, as is schemati-

cally depicted in Fig. 21c.

Fig. 21 a left Deformable cell model as proposed by Rejniak [182].

The cell surface is represented by connected viscoelastic elements

between the freely moving particles, while the continuum fields are

computed on an Eulerian grid. The interaction domain (Ω) between

Lagrangian and Eulerian points is indicated by the grey disc. Right Cell

model as described in Van Liedekerke et al. [202]. Both the cell surface

and the medium are represented by particles. b A snapshot of a sim-

ulation coupling a CBM and DCM. The adhesion model used here is

JKR for the CBM, and the Maugis–Dugdale model for the DCM and

DCM–CBM interactions [140]. The stresses in the cell cortex (Eq. 53)

are represented a colormap. c Schematic view of a proposed three level

hybrid modeling, using DCM, CBM, and a continuum model. (Color

figure online)

5 Available tools and software development for

modeling

While a lot of researchers develop and maintain their

own code for agent-based simulations, several research

groups have released tools for agent-based modeling in

biology. These tools implement the CPM: CompuCell3D
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[131] Morpheus [130], Simmune [243] and Chaste [132,

244]; center-based models: CellSys [150], Chaste [132,244],

EPISIM [245], Timothy [246,247] and Biocellion [248], or

a deformable cell model: VirtualLeaf [249], LBIBCell [250]

and SEM++ [181].

Most of these tools have one or more specific features,

such as multi-scale modeling, usability, or performance.

However, a few of them just provide the first, freely avail-

able, implementation of a specific model. The first of these

is LBIBCell, which provides a framework for modeling cells

as a viscous, Newtonian fluid encapsulated by an elastic

polygon. The interactions between these two components

are resolved with the immersed boundary method [190].

Furthermore, intracellular networks and extracellular con-

centrations can be modeled using reaction diffusion models.

Another framework that provides a unique model imple-

mentation is VirtualLeaf, which implements a vertex-based

model focused at plant development. Intracellular processes

may be modeled using ODEs as well as transport between

cells or between cells and their environment. SEM++
provides a framework for the subcellular element model

[186] with several extensions. These extension include actin

polymerization-based migration, cell–cell mediated pheno-

type determination and subcellular organelles. CellSys and

Chaste are versatile tools for running center-based models.

For CA models types (A, B, D) public codes seems to be

less available for cell-based modeling although they exist for

general applications [101].

All of the tools listed above are multiscale in a sense that

they enable intracellular and/or extracellular signaling. Most

commonly, ODEs are used to model intracellular signaling

and reaction-diffusion equations are used to model extracel-

lular concentrations. Simmune, a CPM framework, strongly

focuses on linking spatial resolved signaling networks to cell-

based models. For this, a network is defined for each lattice

site and the networks are connected via their boundary con-

ditions. In this manner, Simmune provides an efficient way

of combining cell-based models with high resolution spatial

signaling. In both CompuCell3D and EPISIM intracellular

models can be added using SBML [251]. In CompuCell3D

this is achieved via the BionetSolver plugin [252] which can

handle any number of SBML models per cells. In EPISIM the

SBML models are evaluated with Copasi [253]. Morpheus,

one of the CPM frameworks, provides a variety of modeling

formalisms for intracellular modeling, such as ODEs, CAs

and fine state machines.

Several tools provide a basic graphical user interface

(GUI) for parameter modification and/or simulation visual-

ization. A few developers took a step further and developed

much more elaborate GUIs that enable users to create and

extend models with no or minimal programming. In the

CPM framework CompuCell3D simulations are specified in

XML and/or Python scripts. To ease setting up these scripts,

CompuCell3D comes with a specialized editor: Twedit++, in

which users can generate simulation scripts using a wizard

and extend these scripts by adding existing code-snippets.

Morpheus goes even a step further than this. Besides setting

up, running, and visualizing simulations, Morpheus’ GUI

also facilitates batch-processing for parameter sweeps and

sensitivity analysis, and model analysis at run time. A tool

for center-based models that focuses on usability is EPISIM.

This tool employs a graphical modeling system (GMS) to

set up the model and automatically converts that model to

efficient code. To set up such a model EPISIM provides

the Graphical Model Editor to specify an agent-based model

using predefined components and functions from the Func-

tion Library. The model parameters and cell variables can

edited with the Variable-sheet Editor.

Chaste, a tool that implements both the CPM and center-

based models, aims to provide an extensive application

program interface (API) for agent-based modeling. In con-

trast to most of the other tools discussed here, Chaste is

a library that modelers can use to develop their own mod-

els. Combining either the CPM or center-based models with

ODEs and/or PDEs. By utilizing automated testing, the

developers ensure the correctness of the code while it is being

developed. In this manner, the developers provide a tool for

rapidly implementing models in a way that is reliable and

reproducible.

Because biological systems can contain large numbers

of cells, performance is an import issue with agent-based

modeling tools. To improve performance, several tools

are designed to multiple core: CompuCell3D, LBIBCell,

SEM++, CellSys, Biocellion, and Timothy. Recently, two

tools have been developed with a strong focus on per-

formance: Timothy and Biocellion. Timothy is a tool for

center-based modeling, which includes ODE and PDE mod-

els for intracellular and extracellular modeling. To be able to

simulate cell populations of 109 cells, Timothy was designed

to take advantage of a specific supercomputer. Biocellion is a

generic framework for center-based models. Users must sup-

ply the exact code body that governs the agent-based model

as well as models for intracellular and extracellular signal-

ing. Biocellion then distributes this code over the resources

available on the specific platform. As result, Biocellion can

run on a desktop PC with a few cores, or on a supercomputers

with dozens or hundreds of cores.

6 Conclusion

Agent-based models of multicellular systems are becoming

increasingly popular. An important reason for this is that they

provide a natural direct description at the interface between

the whole body of intracellular studies spanning genomics,

transcriptomics, proteomics, metabolomics, lipidomics, and

the study of intracellular signal transduction pathways on
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Fig. 22 Table overview of the

pro’s and cons of the

agent-based models with regard

to the cellular property they

address. We assume the models

are constructed in 3D

one hand, and organ and body physiology on the other hand.

Intracellular mechanisms can readily been integrated into

each individual cell agent, and the collective impact of cell

responses on organ and body physiology be studied. In par-

ticular, computer simulations with agent-based models have

been shown to be useful in analyzing development stages

in cancer or transitions between them, cell-to-cell variabil-

ity during cancer development, selection processes operating

on differences between cell states, as well as transitions from

aggregated population stages (as long as the tumor forms a

single mass) to infiltrative invasion and growth, for example

the epithelial to mesenchymal transition.

Recently, the role of mechanical stimuli in cell responses

have increasingly moved into research focus by physics,

complementing the more molecular mechanistic view of biol-

ogists. This has also raised the question of the pro’s and

contra’s of the current agent-based approaches to biologi-

cal cells. So far still insufficient quantitative comparisons

between the model types and experiments exist to address this

question. No optimal model exists unless one would classify

as optimal a 1:1 in silico copy of the cell, which would be

very computationally intense, and disagree to the often cited

quote by Einstein, adapted: “Everything (a model) should be

as simple as possible, but not simpler”. So the question is

rather how much simplicity is adequate in a certain applica-

tion. We present a simple comparative table overview of the

models and their capabilities with regard to the feature they

can address in the cellular system in Fig. 22.

Fundamentally, two classes can roughly be distinguished:

lattice-based and lattice-free approaches. As reference

throughout the paper, we have considered growing mono-

layers or growing multicellular spheroids as they have been

modeled by almost each of these classes. With respect to this,

all these models predict at least qualitatively similar dynam-

ics.

We distinguished four lattice-based models refered to, in

a wider sense, as cellular automaton models from which we

enumerated types A, B, C according to their spatial resolu-

tion. Type A permits a certain number of cells Nmax > 1

on a lattice site, type B one cell on one lattice site, while in

type C, known as Cellular Potts model, a cell can occupy

many lattice sites simultaneously. In addition we considered

LGCA as fourth class (type D). Different from types A-C,

LGCA introduce the cell velocity as model parameter.

On regular lattices, the position of cells in the lattice can

be described by integers. Operations, searching, etc.. is effi-

cient so that the computation time for CA models is usually

much faster than for their lattice-free counterparts addressing

a comparable spatial resolution. The price to be paid for the

high speed seems to be the possible artifacts in the emerging

multicellular figures. Whether they occur or not depends on

the parameter setting, but in some situations they might not

be readily visible even though they could distort the value of

observables.

Using an unstructured lattices (in our case a Voronoi

diagram, representing the dual graph of a Delaunay trian-

gulation) eliminates these artifacts, at the expense of higher

computing time (Fig. 4).

A fundamental disadvantage of CA types A, B, D is that

the representation of physical laws is rule-based, and that

models on lattices have a lower length scale i.e., displace-

ments smaller than the lattice spacings are not possible. This

can lead to artifacts making the model being non-predictive.

It is for example a huge challenge for the aforementioned

models to properly simulate detachment of cells as a conse-

quence of proliferation pressure in the interior of a monolayer

(Fig. 13). Moreover, folding of tissue layers that are stabilized

by polar adhesion forces as it is observed in intestinal crypts

after irradiation (Fig. 18) or during the invagination of the

blastula in early animal development [134] emerges naturally

in a CBM (center-based model), which belongs to the class of

lattice-free models, but it is very difficult to model properly

with CA types A, B, D, and even for type C may represent

a difficult task. The first reason is that CBMs represent a

direct physical approach while in cellular automaton models

physics has to be implemented in terms of rules such that on

sufficiently large scales the correct mechanics is reproduced.

The second reason is that CBMs, as they are off-lattice mod-
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els, have now upper length scale and therefore permit gradual

displacements.

LGCA (type D) for fluids, for example, can be shown to

behave at large scales as the Navier–Stokes equation. Recent

work by Deutsch and co-workers attempt to infer the large-

scale behavior of LGCA for multicellular organization to

better understand the large scale effect of the microscopic

(cell scale) LGCA rules [99,100,102].

Gradual displacements cannot be modeled by type A, B, D

cellular automaton models which makes it difficult to repre-

sent properly the cell mechanics, at least on spatial scales

comparable to the lattice spacing. In model types A and

B, a shifting length needs to be introduced to mimic push-

ing of cells that may occur if a growing and dividing cell

exerts forces on its neighbor cells to generate the free space

necessary for its division. By formal comparison with the

expansion speed of monolayers, in type D (LGCA) models

the velocity channel may take the function of the shifting

length in model types A and B. Finally, the dynamics in type

A, B, D models is stochastic and at least partially of the hop-

ping type. For types A and B all neighbor configurations of a

given configuration can be calculated and is usually not too

large so that the master equation, that describes the underly-

ing dynamics of the multicellular configuration in the model

types A and B, can be numerically solved. The solution rep-

resents the dynamics of the probability distribution function

for a certain multicellular configuration. For type C (CPM)

and D (LGCA) CA models usually (Monte-Carlo) sampling

methods are used. These have the disadvantage, that they

can distort the time scale, making it difficult to associate an

absolute, precise time scale to the number of Monte-Carlo

steps. This represents one of the limitations of the CPM.

Another limitation is that its physical parameters can cou-

ple in an unnatural way to cell migration. An incompressible

elastic cell for example would not be able to move as moves

are inherently linked to transient cell volume changes by flip-

ping of lattice sites. This limitation might be removed either

by separation between cell body and filopodia, or by flipping

lattice sites only pairwise such that the volume of each cell

remains constant. On the other hand, the modeling frame-

work is very flexible, and complex cell shape changes can be

captured. The latter has been proven successful in simulations

of cell sorting in case of differential cell–cell adhesion [103]

which turned out to provide an obstacle for those models that

do not allow sufficiently large cell deformations. However,

as all lattice-based models intrinsically base upon a stochas-

tic dynamics, they are likely to fail if deterministic effects

largely outrange stochastic contributions.

Off-lattice models have been considered based both on

a Monte-Carlo dynamics and on equations of motion. For

growing monolayers within the CBM approach both meth-

ods have been compared and no significant deviations in

the simulation results have been found [62]. Definition of

an absolute time scale is straightforward when using equa-

tions of motion, while they maintain their realism in absence

of stochastic effects. They can also be easily extended with

complex forces which is usually more intuitive than writing

down the equation for the corresponding energy functions,

although the latter may be a matter of the scientific back-

ground and community.

Within the original concept, in center-based models

(CBMs) the interaction force of a cell with its neighbors is

calculated based upon the pairwise force between the cell and

each of its individual neighbors. CBMs can be completely

parameterized by biophysical and cell-kinetic parameters,

that in principle can all be measured. This is an important

strength as it permits identification of a realistic range for

each model parameter, thereby facilitating simulated sensi-

tivity analyses. Moreover, this makes simulated sensitivity

analyses feasible even in complex tissue organization mod-

els despite the otherwise longer simulation times compared

to cellular automaton models [39]. CBM with a fixed intrin-

sic shape and interacting with pairwise forces only capture

mechanical effects well if the cell shapes do not largely devi-

ate from their intrinsic shape (usually spheres) and if the

local cell density is not too high. The reason for the lat-

ter is that the precise cell shape in CBMs is not known so

forces depending on shape or volume need approximations

and force terms in addition to the pairwise force between

the cell centers. This is prone to inconsistencies, for exam-

ple, if on one hand pairwise Hertz forces are used to mimic

the repulsive force upon compression and deformation, and

an additional volume—force term is added at high cell den-

sities, whereby the volume is approximated from Voronoi

tessellation with a cut-off radius (Fig. 18 [143,176]). The

cut-off radius permits definition of cell shape and volume

for the cell in isolation. Omitting the cut-off as in a pure

Voronoi tessellation model [34], the shape and volume of a

cell cannot be defined anymore as the shape of a cell within

a Voronoi tessellation is solely determined by the position

of the cells’ neighbor cells. The combined approach permits

a reasonable estimate of the cell volume at any cell density

which makes estimating of compression forces feasible at any

density but generates an inconsistency as the Hertz contact

force is inherently linked to a specific area (the Hertz con-

tact area), that is different from the contact area between the

same cells within a Voronoi tessellation. These differences

can lead to significant problems in coherently defining forces

and mechanical stresses which may partially be solved by

sophisticated heuristic corrections but these render the mod-

els complicated and more computing time-intensive [180].

An additional drawback is that the Voronoi polygonal shape

has to be updated at any moment in the simulation coming

at the expense of longer simulation times.

Some authors assume the geometrical shape as approxi-

mation of the entire cell shape and control the cell volume
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by an additional dynamical variable [63], but the approach

suffers from the same type of inconsistency. Hence these

type of models are semi-quantitative in the sense that they

do not permit precise force calculations simultaneously at

small and large cell densities. A possibility to solve this issue

might be by calibrating the interaction forces of center-based

models by higher detailed models (e.g., deformable cell mod-

els, DCMs) which represent cell shape more realistically and

self-consistently.

Deformable cell models represent cell shape explicitly.

This is a fundamental advantage as now cell volume and

contact area can be calculated more accurately. However, at

high resolution, the choice of model mechanisms and the cal-

ibration of parameters is very difficult. The choice of models

and parameters is usually determined by experiments prob-

ing cell mechanical properties at low scale, such as atomic

force microscopy (AFM), pipette aspiration experiments,

and optical stretchers. However, given the cells’ complexity

and the difficulty to infer the individual stress contributions

from membrane, cellular cortex, CSK, cytoplasm, nucleus

and other cell organelles, the degrees of freedom within the

highly parameterized DCMs can usually not be uniquely

removed i.e., several models and parameter combinations

may fit the same experiments. Due to the complexity of the

model, sensitivity analyses are very time consuming. More-

over, in principle every cell type would have to be studied

separately experimentally and then the experiments be used

to calibrate a DCM for that cell type. Another issue is the

computational effort. Because the mechanical timescales of

subcellular properties are much smaller than those associated

with observables as migration, growth and division, one can

simulate only a small number of cells at each CPU. It seems

that distributed computing can bring a solution here. Another

solution may come for hybrid model approaches, so that in

certain tissue parts, CBM may be replaced by a calibrated

CBM. Nevertheless, given the development of experimen-

tal methods to collect information on cells individually and

organized in tissues, DCMs are likely to play an increasingly

important role in modeling and understanding mechanotrans-

duction pathways.

What will be the role of lattice (CA) models in the future?

This is hard to say, but with increasing experimental informa-

tion on the physical cell properties, which are hard to properly

represent in CA models, the future success of CAs will likely

depend on in how far it will be possible to match the micro-

scopic rules and CA parameters with physical observables. In

granular matter, cellular automaton models, originally very

successful, are almost not used anymore.
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Appendix 1: Validation of different stress measures

To illustrate the possibilities in this approach, let us consider

different cases where a cell is in contact with other cells

(see Fig. 23). In the first case, a cell is squeezed between

two other cells along the X axis. Applying Eq. 39, the stress

tensor becomes

σ =

⎛

⎝

σxx 0 0

0 0 0

0 0 0

⎞

⎠ (57)

where σxx = 3 f

2πr2 , from which the pressure p can be

extracted:

p = 1

3
tr(σ ) = f

2πr2
. (58)

Fig. 23 Evolution of virial

stress and pressure as cells are in

contact along the X axis, (X, Y )

axes and (X, Y, Z) axes
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In addition we can define the “equivalent” stress σeq as

σeq

=
√

0.5
[

(σxx − σyy)2+(σyy − σzz)2+(σxx − σzz)2
]

+3
[

σ 2
xy +σ 2

yz +σ 2
xz

]

,

(59)

which only counts the deformation. In case of the line con-

tact this yields σeq = 3 f

2πr2 . In the second case the cell has

also contact along the Y axis, and then we find an increased

pressure p = 1
3
(σxx + σyy) = f

πr2 while σeq remains the

same. However, an additional contact along the Z axis will

yield p = 2 f

πr2 but σeq = 0 so the deformational stress

vanishes because of symmetry. This is the equivalent situ-

ation to a cube compressed equally from all sides. Thus in

agreement with one would expect, the pressure on the cell

can increase with the number of contacts, while the devia-

toric part may even decrease or vanish depending on how

the contacts are distributed along the cell’s surface. This

extra information is an important advantage over the previous

methods. Note however, that this tensor has no off diagonal

components, as no shear forces are taken into account. Note

that if the cells would have isotropic contact area (infinite

contact points), the sum in Eq. 39 can be replaced by an

integral while the force should be replaced by a force den-

sity P(x, y, z) = Per(x, y, z). In this case we retrieve the

pressure:

p = 1

3
tr

(∫

r ⊗ PdS

V

)

= 1

3
· r · 4πr2

4/3πr3
P = P (60)

To test the virial stress implementation, we have per-

formed a study simulating a spheroid with “inert” cells,

exhibiting no growth nor division, which is gradually com-

pressed by a capsule with decreasing radius. The cells have

a Young modulus of 250 Pa and Poisson ration of 0.49, and

do not adhere to each other. We assume that the capsule wall

is rigid. At the point of confluence, the cells start exerting a

total force Fcap =
∑

j F
cap,cell j

j on the capsule which will

increase as the capsule shrinks further. This force is con-

verted to an average pressure Pcap = Fcap/A where A is

the inner surface area of the capsule. Figure 24 indicates that

the maximal directions in the cells at the boundary point

are perpendicular to the capsule wall, while the minimal

stress directions are parallel. In Fig. 24c, we depict a plot of

the average pressure increase versus volume decrease of the

capsule, giving an indication of the differences in stress mea-

sures that can be expected between the average viral stress

〈p〉 =
∑

j p j/N per cell, and the capsule wall pressure Pcap.

It can be seen that the deviations are relatively small for mod-

erate compression. At high compression a discrepancy arises

because the cell overlaps become too high, a problem that is

well known in CBM under compression (see Sect. 3.1). The

Fig. 24 Top Simulation of a spheroid compressed by a capsule. The

arrows indicate the maximal (a) and minimal (b) stress directions.

c Pressure measured during compression of a spheroid for pressure

formulations Eqs. 40 and 38

stress measure Eq. 38 results in a much higher value because

a “local” stresses are computed and summed.

Appendix 2: Numerical estimation of the stochastic

force term in the Langevin equation

To obtain a force-based numerical representation of a Brown-

ian motion for a particle or cell in a low Reynolds number

environment in a isotropic medium, we start from the approx-

imation for the square of the expectation value of the force

vector norm in n dimensions:

〈‖FR‖2〉 ≈ 6(2n)π KBT ηR

�t
, (61)

where R is the cell radius, γ is the friction coefficient, η is

the viscosity of the medium, and�t is the timestep in the

simulation. Using Stokes’ formula, γ = 6πηR, we get

〈‖FR‖〉 ≈
√

(2n)KBT γ

�t
, (62)
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To get the actual force vector, at each time-step in the

simulation, we need to pick a random force unit vector nR,

and scale it in the following way:

FR =
√

2n KBT γ

�t
nR, (63)

Using D = kBT/γ and introducing S = 2nDγ 2 we can

also write

FR =
√

(S/�t)nR, (64)

where D is the diffusion coefficient. The vector nR must

be taken with care to obtain a true random direction (just

normalizing three random numbers will introduce artefacts),

see e.g., [254]. Note finally that for cells the micromotility,

represented by the diffusion coefficient D, and the frictional

resistance γ , cannot be expected to be related by the Einstein

relation (D = KBT/γ ) as a strict KBT equivalent in cells

does not exist. In active cell movement, the equivalent of this

parameter would be controlled by the cell itself as well as by

other influences (e.g., the cells’ environment).
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