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Figure 1: Ellipse traveling through a shallow pool of water (left), formation of a milk crown (center), smoke rising past a sphere (right).

Abstract

We present a method for simulating water and smoke on an unre-
stricted octree data structure exploiting mesh refinement techniques
to capture the small scale visual detail. We propose a new technique
for discretizing the Poisson equation on this octree grid. The result-
ing linear system is symmetric positive definite enabling the use of
fast solution methods such as preconditioned conjugate gradients,
whereas the standard approximation to the Poisson equation on an
octree grid results in a non-symmetric linear system which is more
computationally challenging to invert. The semi-Lagrangian char-
acteristic tracing technique is used to advect the velocity, smoke
density, and even the level set making implementation on an octree
straightforward. In the case of smoke, we have multiple refine-
ment criteria including object boundaries, optical depth, and vortic-
ity concentration. In the case of water, we refine near the interface
as determined by the zero isocontour of the level set function.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation
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1 Introduction
Realistic simulations of smoke and water are among the most de-
sired in the special effects industry, since they provide the direc-
tor with explicit control over the environment enabling the creation
of otherwise impossible content. These phenomena contain highly
complex motions and rich visual detail, especially when they in-
teract with inanimate objects or the actors themselves. Moreover,
a significant portion of the entertainment value and much of the
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believability relies on an adequate representation and presentation
of the small scale visual details such as thin films in water, small
rolling vortices in smoke, droplets and sprays, etc. Thus, it is desir-
able to have both simulation and rendering techniques that can deal
with levels of detail.

Recent improvements in simulation techniques have led to im-
pressive simulations of both smoke and water on uniform grids.
Empowered by the semi-Lagrangian work of [Stam 1999], [Fedkiw
et al. 2001] used vorticity confinement to simulate smoke with vi-
sually rich small scale rolling motions. Similarly using both semi-
Lagrangian methods and hybridized particle and implicit surface
techniques, [Foster and Fedkiw 2001; Enright et al. 2002b] sim-
ulated splashing water with both smooth surfaces and thin sheets.
While these methods have achieved great success, their applica-
tion is limited by the computational hardware (i.e. CPU, RAM, disk
space) required for the simulations. In an attempt to alleviate this,
[Rasmussen et al. 2003] proposed a method that combines inter-
polation and two-dimensional simulation to obtain highly detailed
simulations of large scale smoke-like phenomena. While stunning
results were obtained, this method does not faithfully reproduce
the three-dimensional Navier-Stokes equations and thus is unable
to obtain results for various fully three-dimensional phenomena.
Moreover, water was not addressed.

In order to optimize the use of computational resources, we use
an adaptive mesh or a level of detail approach where more grid
cells are placed in visually interesting regions with rolling smoke or
sheeting water. Although adaptive mesh strategies for incompress-
ible flow are quite common, see e.g. [Ham et al. 2002], implemen-
tations based on recursive structures, such as the octrees we propose
here, are less common. In fact, [Popinet 2003] claims to have the
first octree implementation of incompressible flow, although there
are certainly similar works such as the nested dyadic grids used for
parabolic equations in [Roussel et al. 2003]. We extend the work
of [Popinet 2003] in two ways. First, we extend octrees to free
surface flows allowing the modeling of a liquid interface. Second,
we consider unrestricted octrees whereas [Popinet 2003]’s octrees
were restricted.

Adaptive meshing strategies lead to nonuniform stencils and thus
a nonsymmetric system of linear equations when solving for the
pressure, which is needed to enforce the divergence free condition.
Although [Popinet 2003] solved this nonsymmetric linear system
with a multilevel Poisson solver, [Day et al. 1998] pointed out that
these multigrid approaches can be problematic in the presence of



Figure 2: Simulation of smoke past a sphere. The rightmost two figures are close up views. The effective resolution is 10243 and the
computational time is about 4-5 minutes per frame.

objects with high frequency detail. Moreover, the situation wors-
ens in the presence of interfaces (such as that between water and
air), especially since the faithful coarse mesh representation of wa-
tertight isosurfaces is a difficult research problem in itself, see e.g.
[Lee et al. 2003]. Although multigrid solvers can be efficiently ap-
plied if the density is smeared out across the interface as in [Suss-
man et al. 1999] (resembling a one-phase variable density flow as
in [Almgren et al. 1998]), this damps out the surface wave genera-
tion that relies on horizontal pressure differences caused by stack-
ing different heights of high-density fluid. That is, damping these
high frequency pressure differentials makes multigrid efficient, but
also damps the wave motion leading to visually uninteresting overly
viscous flows.

More recently, [Sussman 2003] departed from a smeared out
density approach and instead solves a free surface problem as in
[Enright et al. 2002b]. Moreover, [Sussman 2003] switches from
multigrid to a preconditioned conjugate gradient (PCG) method
stating that the pressure can be robustly solved for with PCG since
the matrix is symmetric. However, the symmetry requirement lim-
its his work to uniform non-adaptive grids. Our new formulation
alleviates this restriction by providing a symmetric positive definite
discretization of the Poisson equation on an unrestricted octree data
structure allowing fast solvers such as PCG to be applied, even in
the presence of interfaces.

2 Previous Work

[Kass and Miller 1990] solved a linearized form of the three dimen-
sional Navier-Stokes equations, and [Chen and Lobo 1994] solved
the two dimensional Navier-Stokes equations using the pressure to
define a height field. The full three dimensional Navier-Stokes
equations were solved in [Foster and Metaxas 1996; Foster and
Metaxas 1997a; Foster and Metaxas 1997b] for both water and
smoke. Large strides in efficiency were made when [Stam 1999]
introduced the use of semi-Lagrangian numerical techniques, and
[Fedkiw et al. 2001] advocated using vorticity confinement in order
to preserve the small scale structure of the flow. [Foster and Fed-
kiw 2001; Enright et al. 2002b] proposed hybridizing particle and
level set methods for water. The incompressible form of the Navier
Stokes equations has been used and augmented to model fire [Lam-
orlette and Foster 2002; Nguyen et al. 2002], clouds [Miyazaki et al.
2002], particle explosions [Feldman et al. 2003], variable viscosity
[Carlson et al. 2002], bubbles and surface tension [Hong and Kim
2003], splash and foam [Takahashi et al. 2003], etc. [Treuille et al.
2003] proposed a method for control and used it to make letters out
of smoke, and [Stam 2003] solved these equations on surfaces cre-
ating beautiful imagery. The compressible version of these equa-
tions were used to couple fracture to explosions in [Yngve et al.
2000]. There are also other approaches such as SPH methods [Pre-
moze et al. 2003; Müller et al. 2003].

The representation of implicit surfaces on octree data structures
has a long history in the marching cubes community, see the re-
cent papers of [Ju et al. 2002; Ohtake et al. 2003] and the refer-
ences therein. Moreover, [Frisken et al. 2000; Perry and Frisken

2001] popularized the use of signed distance functions on octree
grids. In order to simulate water, we need to solve the partial
differential equations that govern the motion of the signed dis-
tance function. [Strain 1999b] advocated using quadtrees and semi-
Lagrangian methods to solve these equations. Reinitialization for
maintaining the signed distance property was addressed in [Strain
1999a], and extrapolation of velocities was considered in [Strain
2000]. One difficulty with semi-Lagrangian methods for solving
level set equations is that extreme mass loss (and thus visual arti-
facts) usually occurs, however [Enright et al. 2004] recently showed
that the particles in the particle level set method alleviate this diffi-
culty. A quadtree structure for level set evolution was also proposed
in [Sochnikov and Efrima 2003]. However, none of these authors
considered level sets in the context of incompressible flows with
interfaces such as water.

Starting with the seminal works of [Berger and Oliger 1984;
Berger and Colella 1989], adaptive mesh refinement (AMR) typ-
ically utilizes uniform overlapping Cartesian grids of various sizes.
This is because AMR originally focused on compressible flow with
shock waves, and a block structured approach is better able to avoid
spurious shock reflections from changing grid levels (since there are
less of them). However, in the absence of shocks, a more optimal
unrestricted octree approach can be used for incompressible flow.

3 The Octree Data Structure

Figure 3 illustrates our unrestricted octree data structure (see e.g.
[Samet 1989]) with a standard MAC grid arrangement [Harlow and
Welch 1965], except that all the scalars except the pressure are
stored on the nodes or corners of the cell. This is convenient since
interpolations are more difficult with cell centered data (see e.g.
[Strain 1999a]).

Coarsening is performed from the smaller cells to the larger cells,
i.e. from the leaves to the root. When coarsening, nodal values are
either deleted or unchanged, and the new velocity components at
the faces are computed by averaging the old values from that face.
Refinement is performed from the larger cells to the smaller cells.
The value of a new node on an edge is defined as the average of
its two neighbors, and the value of a new node at a face center is
defined as the average of the values on the four corners of that face.
The velocities on the new faces are defined by first computing the
velocities at the nodes, and then averaging back to the face cen-
ters. Nodal velocities are computed by averaging the four values
from the surrounding cell faces as long as the faces are all the same
size. Otherwise, using the coarsest neighboring face as the scale,
we compute temporary coarsened velocities on the other faces to
be used in the averaging.

For all variables, we constrain T-junction nodes on edges to be
linearly interpolated from their neighbors on that edge. Similarly,
T-junction nodes on faces are constrained to be the average of the
four surrounding corner values. See, e.g. [Westermann et al. 1999]
for more details.
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Figure 3: Left: One large cell neighboring four smaller cells. The
u∗i represent the x components of the intermediate velocity u

∗ de-
fined at the cell faces. Right: Zoom of one computational cell. The
velocity components are defined on the cell faces, while the pres-
sure is defined at the center of the cell. The density, temperature
and level set function φ are stored at the nodes.

4 Navier Stokes Equations on Octrees
We use the inviscid, incompressible Navier-Stokes equations for the
conservation of mass and momentum

ut +u ·∇u = −∇p+ f, (1)

∇ ·u = 0, (2)

where u = (u,v,w) is the velocity field, f accounts for the external
forces, and the spatially constant density of the mixture has been
absorbed into the pressure p. Equation 1 is solved in two steps.
First we compute an intermediate velocity u∗ ignoring the pressure
term, and then we compute the velocity update via

u= u∗−∆t∇p (3)

where the pressure is defined as the solution to the Poisson equa-
tion,

∇
2p= ∇ ·u∗/△t. (4)

The external forces are discretized at the cell faces and we post-
pone the details of their discretization to sections 5 and 6. The
convective part of the velocity update is solved using a semi-
Lagrangian stable fluids approach as in [Stam 1999]. First we com-
pute nodal velocities, and then we average these values to the cell
faces (see section 3). The cell face values are used to trace back
characteristics, and trilinear interpolation of nodal values is used to
define the new intermediate value of the velocity component on the
face in question.

4.1 The Divergence Operator

Equation 4 is solved by first evaluating the right hand side at every
cell center in the domain. Then a linear system for the pressure is
constructed and inverted. Consider the discretization of equation
4 for a large cell with dimensions △x, △y and △z neighboring
small cells as depicted in figure 3. Since the discretization is closely
related to the second vector form of Green’s theorem that relates a
volume integral to a surface integral, we first rescale equation 4 by
the volume of the large cell to obtain Vcell△t∇

2p=Vcell∇ ·u∗. The
right hand side now represents the quantity of mass flowing in and
out of the large cell within a time step △t in m3s−1. This can be
further rewritten as

Vcell∇ · (u∗−△t∇p) = 0. (5)

This equation implies that the ∇p term is most naturally evaluated
at the same location as u∗, namely at the cell faces, and that there
is a direct correspondence between the components of ∇p and u∗.
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Figure 4: Discretization of the pressure gradient.

Moreover, substituting equation 3 into equation 5 implies Vcell∇ ·
u= 0 or ∇ ·u= 0 as desired.
Invoking the second vector form of Green’s theorem, one can

write
Vcell∇ ·u∗ = ∑

faces

(u∗face ·n)Aface,

where n is the outward unit normal of the large cell and Aface rep-
resents the area of a cell face. In the case of figure 3, the dis-
cretization of the x component ∂u∗/∂x of the divergence reads
△x△y△z∂u∗/∂x = u∗2A2 + u∗3A3 + u∗4A4 + u∗5A5 − u

∗

1A1, where
the minus sign in front of u∗1A1 accounts for the fact that the unit
normal points to the left. Then ∂u∗/∂x= ((u∗2+u

∗

3+u
∗

4+u
∗

5)/4−
u∗1)/△x. The y and z directions are treated similarly.
Once, the divergence is computed at the cell center, equation 4

is used to construct a linear system of equations for the pressure.
Invoking again the second vector form of Green’s theorem, one can
write

Vcell∇ · (△t∇p) = ∑
faces

((△t∇p)face ·n)Aface. (6)

Therefore, once the pressure gradient is computed at every face, we
can carry out the computation in a manner similar to that of the
velocity divergence above. There exist different choices in the dis-
cretization of (∇p)face, and we seek to discretize the pressure gra-
dient in a fashion that yields a symmetric linear system. Efficient
iterative methods such as PCG (see e.g. [Saad 1996]) can be ap-
plied to symmetric positive definite matrices offering a significant
advantage over methods for nonsymmetric linear systems. More-
over, since data access for the octree is not as convenient as for
regular grids, there is a strong benefit in designing a discretization
that leads to a symmetric linear system.

4.2 The Pressure Gradient

Consider the configuration in figure 4. In the case where two cells
of the same size juxtapose each other, standard central differencing
defines the pressure gradient at the face between them, as is the case
for py = (p10− p1)/△y.
Consider the discretization of the pressure gradient in the x di-

rection at the face between cell 1 and cell 2. A standard approach
is to first compute a weighted average value pa for the pressure, by
interpolating between the pressure values p1 and p10. Then, since
standard differencing of p̂x= (p2− pa)/(.75△x) does not define p̂x
at the cell face but midway between the locations of pa and p2, one
usually resorts to more complex discretizations. A typical choice is
to pass a quadratic interpolant through pa, p2 and p6 and evaluate
its derivative at the cell face, see e.g. [Chen et al. 1997]. However,
this approach yields a nonsymmetric linear system that is slow to
invert. The nonsymmetric nature of the linear system comes from



Figure 5: An ellipsoid slips along through shallow water illustrating our method’s ability to resolve thin sheets. The effective resolution is
5123 and the computational time is about 4-5 minutes per frame.

the non-locality of the discretization, i.e. pa depends on p10 and
the quadratic interpolation would depend on p6. Consequently, the
equation for cell 1 involves both p10 and p6. It is unlikely that the
equation for cell 6 depends on p1, since cell 6 juxtaposes another
cell of the same size, namely cell 2. And even if it did, the coeffi-
cients of dependence would not be symmetric.
Our approach is based on the fact that O(△x) perturbations in

the pressure location still yield consistent approximations as in [Gi-
bou et al. 2002]. Therefore defining px = (p2 − pa)/(.75△x) at
the cell face still yields a convergent approximation, since the lo-
cation of p̂x is perturbed by a small amount proportional to a grid
cell. Moreover, we can avoid the dependence of pa on values other
than p1 by simply setting pa = p1. This corresponds to an O(△x)
perturbation of the location of p1, and therefore still yields a con-
vergent approximation. Thus, our discretization of px is simply
px = (p2− p1)/(.75△x). Moreover, since only p1 and p2 are con-
sidered, one can define px = (p2− p1)/△ where△ can be defined
as the size of the large cell, △x, the size of the small cell, .5△x,
the Euclidean distance between p1 and p2, etc. We have carried
out numerical tests against known analytic solutions to the Poisson
equation demonstrating that all these choices converge. Currently,
we are investigating the impact of different△ definitions on smoke
and water simulations.
In light of equation 6, px contributes to both row 1 and row 2

of the matrix representing the linear system of equations, since it is
located at the cell face between cell 1 and cell 2. More precisely,
the contribution to row 1 occurs through the term

△t pxn1Aface = △t
p2− p1

△
(1)Aface,

since n1, the x component of the outward normal to cell 1, points to
the right (hence n1 = 1). Likewise, the contribution to row 2 occurs
through the term

△t pxn1Aface = △t
p2− p1

△
(−1)Aface,

since n1, the x component of the outward normal to cell 2, points
to the left (hence n1 = −1). Therefore, the coefficient for p2 in
row 1 and the coefficient for p1 for row 2 are identical, namely
△tAface/△. The same procedure is applied to all faces, and the
discretization of the y and z components of the pressure gradient
are carried out in a similar manner. Hence, our discretization yields
a symmetric linear system that can be efficiently inverted with a
PCG method. The preconditioner we use is based on an incomplete

LU Cholesky factorization that we modify to ensure that the row
sum of LU is equal to the row sum of the original matrix (see [Saad
1996]). This yields a significant speed up in the matrix inversion.
The matrix constructed above is negative definite, as is usual

when discretizing equation 4. We simply multiply all equations by
−1 to make it positive definite. We also note that Dirichlet or Neu-
mann boundary conditions do not disrupt the symmetry. In the case
of a Neumann boundary condition, the term (p2 − p1)/△ disap-
pears from both row 1 and row 2. In the case of a Dirichlet boundary
condition, e.g. for p2, the equation for p2 drops out of the system
and all the terms involving p2 are moved to the right hand side of
the linear system.

4.3 Accuracy

We stress that the dominant errors are due to the first order accu-
rate semi-Lagrangian advection scheme. The velocity averaging
is second order accurate and is required in all MAC grid methods
in order to define a full velocity vector at a common location for
the semi-Lagrangian advection. Dropping the Poisson solver from
second to first order accuracy merely puts it on par asymptotically
with the semi-Lagrangian scheme. However, we still solve for a
fully divergence free velocity field to machine precision just as in
a non-adaptive setting. We tested our Poisson solver on many ex-
act solutions and readily obtain several digits of accuracy indicating
that the errors from this part of the algorithm are small. See table 1
for a typical result.

5 Smoke
The external forces due to buoyancy and heat convection are mod-
eled as fbuoy = −αρz+β (T −Tamb)z, where z= (0,0,1), Tamb is
the ambient temperature and α and β are parameters controlling the
influence of the density and the temperature. The density and the
temperature are passively advected with the flow velocity and are
updated with the semi-Lagrangian method using velocities defined
at the nodes (see section 3). Both the density and the temperature
are then averaged to the faces in order to evaluate the forcing term.
The vorticity confinement force is calculated as follows. First

we define velocities at the centers of cells by using area weighted
averaging of face values. Then all the derivatives needed to com-
pute the vorticity, ω = ∇×u, are computed on cell faces using the
same method used to compute pressure derivatives. Area weighted
averaging is used (again) to define all these derivatives at the cell
center, and then we compute the vorticity and its magnitude (at



L1error order L∞error order

4.083×10−2 −− 6.332×10−2 −−
8.713×10−3 2.22 2.203×10−2 1.523
2.952×10−3 1.56 1.292×10−2 .770
9.980×10−4 1.56 7.745×10−3 .739
4.010×10−4 1.31 4.249×10−3 .866
1.820×10−4 1.14 2.287×10−3 .894

Table 1: Poisson solver accuracy on an unrestricted octree grid.

the cell center). Next, the gradients of the vorticity are computed
at the cell faces, and averaged back to the cell center to define
N = ∇|ω|/|∇|ω||. Finally, the unscaled force can be computed at
the cell centers as N×ω . Cell face values of this term are obtained
by averaging the values from the two cells that contain the face.
Then this term is scaled by the diagonal of the face h and a tunable
parameter ε .
Inside an object, we set the temperature to the object temperature

and the density to zero. For velocity, we clip the component normal
to the object so that it is guaranteed to be separating. Furthermore,
we apply Neumann boundary conditions to the cell faces that in-
tersect the object when solving for the pressure. This keeps these
velocities fixed.
In the case of smoke, we utilize three different refinement crite-

ria. First, we refine near objects since their interactions with smoke
will introduce small scales features that enhance believability. Sec-
ond, we refine near concentrations of high vorticity. Third, we re-
fine in a band of density values (for example .1< ρ < .3). This last
criteria prunes out both the low densities that cannot be seen as well
as the high densities interior to the smoke which are self-occluded.

6 Water
We use the particle level set method of [Enright et al. 2002a] with
φ ≤ 0 designating the water and φ > 0 representing the air. When
solving for the pressure, one only needs to consider cells in the
water. Dirichlet boundary conditions of pI = pair+σκ are set in the
air cells bordering the water, where σ is a surface tension coefficient
and κ = ∇ · (∇φ/|∇φ |) is the local interface curvature. We note
that [Hong and Kim 2003] considered surface tension in the case of
bubbles, but not for films. κ is computed by averaging nodal values
of φ to the cell center, computing derivatives of φ on the cell faces,
averaging these back to the cell center, using these cell centered
values to obtain the normal, computing derivatives of the normal
on the cell faces, averaging these values back to the cell center,
and finally using these cell centered values to obtain the curvature.
The only external force we account for is gravity via u+= △tg.
The interaction with objects is similar to that of smoke. We apply
adaptive refinement to a band about the interface (focusing more
heavily on the water side), noting that the signed distance property
of φ makes this straightforward.
Recently, [Enright et al. 2004] showed that the particle level set

method relies on particles for accuracy and the level set for connec-
tivity. Moreover, they showed that one could use a simple semi-
Lagrangian method on the level set with no significant accuracy
penalty as long as the particles are evolved with at least second
order Runge-Kutta. Thus, we update φ with the semi-Lagrangian
method using velocities defined at the nodes (see section 3). The
particles are advected using second order Runge-Kutta and trilin-
early interpolated nodal velocities.
We use the fast marching method [Tsitsiklis 1995; Sethian 1996]

to maintain the signed distance property of φ . First, the signed
distance is computed at all the nodes around the interface, and they
are marked as updated. The nodes adjacent to the updated nodes
are tagged trial. Then we compute potential values of φ at all trial
nodes using only updated nodes. The smallest of these is tagged

Figure 6: Formation of a milk crown demonstrating the effect of
surface tension. We take σ = 0 (left) and σ = .0005 (right). The
effective resolution is 5123 and the computational time is about 4-5
minutes per frame.

as updated, and all its non-updated neighbors are tagged trial. This
process is repeated to fill in a band of values near the interface.
For many grid nodes there are neighboring values of φ in all six
directions, but at T-junctions there are directions where φ is missing
some of its neighbors. Since we coarsen as we move away from
the interface, these directions will generally not contribute to the
potential value of φ . Thus, we trivially ignore them.
Velocity extrapolation is carried out by first defining nodal veloc-

ities, extrapolating them, and then computing the face velocities. If
we perform this algorithm as in [Enright et al. 2002a], we will oc-
casionally encounter grid points that have no neighboring values of
velocity and cannot be updated. While this is rare (but not impos-
sible) for uniform grids, T-junctions exacerbate their occurrence on
octree grids. When this happens, we skip over these nodes until one
of their neighbors is updated (and then we update them in the usual
manner).

7 Conclusions
Our new symmetric formulation reduces the pressure solver to ap-
proximately 25% of the total simulation time requiring only about
20 iterations to converge to an accuracy of machine precision. This
leaves little room for improvement and even a zero cost pressure
solver would only make the code 25% faster. On the other hand,
nonsymmetric formulations requiring BiCGSTAB or GMRES and
nonoptimal preconditioners easily lead to an order of magnitude
slowdown, or in the worst case scenario problems with robustly
finding a solution at all. The symmetric formulation enables a full
octree discretization of the equations that govern both the flow of
smoke and water. Moreover, we achieved reasonable computational
costs on grids as fine as 10243 allowing us to capture fine scale
rolling motion in smoke and thin films for water.
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