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ABSTRACT

Aims. Accurate predictions of cosmic microwave background (CMB) anisotropies and polarization are required for analyzing future
CMB data sets, which ultimately require accurately simulated lensed maps.
Methods. We present a fast, arbitrarily accurate method to simulate the effect of gravitational lensing of the CMB anisotropies and
polarization fields by large-scale structures on arbitrarily spaced grid points over a unit sphere using a non-equispaced fast Fourier
transform (NFFT).
Results. The angular power spectrum of the simulated lensed CMB map, particularly the B-mode of polarization, agrees extremely
well with analytical predictions. The analytical derivation of CMB-lensed spectra is based on non-trivial, partially resummed per-
turbative expansions of the correlation functions, for which our simulations therefore provide an accurate numerical validation. We
demonstrate the efficiency and accuracy of the method and exhibit their dependence on the algorithm parameters. Lensed CMB maps
simulated in this method are a useful tool for the analysis and interpretation of upcoming CMB experiments, such as PLANCK and
ACT. Our code is available on request.
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1. Introduction

Weak lensing effects on the cosmic microwave background
(CMB) temperature and polarization anisotropies has been pro-
posed as a probe of the total matter distribution in large-scale
structures (LSS) between us and the surface of last scatter-
ing (Blanchard & Schneider 1987; Seljak 1996; Zaldarriaga
& Seljak 1998; Hu & Tegmark 1999; Hu 1999; Zaldarriaga
& Seljak 1999; Guzik et al. 2000; Van Waerbeke et al. 2000;
Benabed et al. 2001; Hu 2000; Kesden et al. 2002; Hirata &
Seljak 2003a,b; Kesden et al. 2003; Hirata et al. 2004; Lewis
2005; Challinor & Lewis 2005; Lewis & Challinor 2006; Smith
et al. 2007). Although sensitive to the cumulative distribution
of matter, it is quite complementary to other probes of the mat-
ter distribution of the LSS. It does not suffer from bias effects
(such as e.g. galaxy redshift surveys, Lyman-α forest), or incor-
rect determination of the redshift sources (e.g., as cosmic shear
measurements on galaxies). In addition, because of the high red-
shift of the source (last scattering surface) and the lensing ef-
ficiency function, weak lensing of CMB anisotropies is mostly
sensitive to large-scale structures that remain (mainly) in the lin-
ear regime, which makes it a very useful tool for cosmology, in
particular for constraining the properties of neutrinos (Perotto
et al. 2006; Lesgourgues et al. 2006).

Unlike shear measurements of galaxies, where the (reduced)
shear field is directly sampled by measurement of galaxy ellip-
ticities, measuring weak lensing effects on the CMB is com-
plicated by the intrinsic stochasticity of the source. However,
theoretical arguments lead us to think that CMB anisotropies
are highly Gaussian (Guth 1981; Linde 1982; Albrecht &
Steinhardt 1982), which has been confirmed on the data, at
large scales, using different non-Gaussianity estimators (prob-
ability distribution function, bispectrum, wavelet skewness and
kurtosis, Minkowski functionals). These properties of the CMB

anisotropies can be used to help disentangle the stochastic prop-
erties of the (unlensed) CMB anisotropies from the stochastic
properties of the lens (i.e., the LSS) since the lensing effect in-
duces small specific non-Gaussian features in the CMB maps.
In particular, it correlates the anisotropies locally with their gra-
dient (Seljak 1996; Cooray et al. 2000; Cooray & Hu 2001b,a,
2002), which led to the development of specific estimators of the
lensing potential field and its power spectrum (Hu & Okamoto
2002; Hirata & Seljak 2003a,b; Okamoto & Hu 2003).

Weak lensing of the CMB anisotropies by LSS was measured
in WMAP data (Smith et al. 2007) by its cross-correlation with a
high-redshift radio galaxy catalog. Although only marginally de-
tectable in WMAP data because of its noise level, CMB lensing
should be measured with a high signal-to-noise ratio by Planck
with temperature anisotropies alone (Cooray & Hu 2002; Hu &
Okamoto 2004) without needing to rely on any external data set.
However, to carry out this measurement on realistic CMB data,
the impact of instrumental (anisotropic beams, missing data,
correlated noise) and astrophysical (e.g., Galaxy contamination,
point sources, etc.) systematic effects on the CMB lensing esti-
mators must be studied with great care.

The power spectra (temperature and polarization) can be
computed, using a simple Taylor expansion at large scales (Hu
2000), or a more clever resummation scheme at smaller scales
where the displacement field amplitude is comparable to the
wavelength of the anisotropies (Challinor & Lewis 2005). For
smaller scales, or to investigate the different systematics de-
scribed above, the development of fast, accurate methods for
simulating the lensed CMB maps are needed.

This simulation comes in two distinct parts. On the one hand,
an accurate simulation of the large-scale structure induced lens-
ing deflection field is needed. On the other hand, one needs
a method to apply this deflection field to an unlensed, simu-
lated CMB. We do not consider the first part of this program,
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because approximating the lensing effect with a single lens plane
in the so-called Born approximation (Hu 2000) has been shown
to provide an excellent approximation, both for temperature and
polarization anisotropies. In this case, the simulation of lensed
CMB maps reduces to an accurate resampling of the unlensed
anisotropies at displaced positions. To solve this last problem,
several technical solutions were implemented. In the publicly
distributed Lenspix code1, different possibilities are available,
namely

– brute-force resampling by direct resummation of spherical
harmonics at displaced positions (being slow, but very accu-
rate, this option should be considered as the “benchmark” for
all other resampling methods);

– resampling on locally Cartesian grids with subsequent poly-
nomial interpolation.

For the second option, an interesting speed-up was proposed by
Hirata et al. (Hirata et al. 2004) by noting that a band-limited sig-
nal in spherical harmonics can be recast as a band-limited signal
in regular Fourier modes on (θ, ϕ), thus allowing a fast resam-
pling of the signal on a cartesian (θ, ϕ) grid using 2-d fast Fourier
transforms (FFT hereafter). This idea was implemented by Das
& Bode (2008) in their simulation of gravitational lensing of the
CMB temperature field over a large area of the sky.

In this paper, we investigate a development of Hirata’s idea
(Hirata et al. 2004; Das & Bode 2008), where the oversampling
plus polynomial interpolation is replaced by an approximate (but
arbitrarily accurate) FFT resampling at irregularly spaced grid
points2.

The remainder of this paper is organized as follows. In
Sect. 2 we briefly describe the resampling technique (hereafter
NFFT), and the weak lensing of primary CMB fields in Sect. 3.
We also demonstrate how the remapping of CMB fields onto
the surface of the unit sphere is equivalent to the remapping of
the same field on the surface of a 2-d torus. Section 4 describes
the simulation procedure for lensed CMB fields, which applies
NFFT to the surface of a 2-d torus. Finally, we summarize our
results in Sect. 5.

2. Non-equispaced fast Fourier transform (NFFT)

The fast Fourier transform for non-equispaced grid points
(NFFT) is a generalization of FFT (Kunis & Potts 2008;
Fourmont 2003). The essential idea is that the reproducing ker-
nel of the standard FFT3 is approximated by using a window
function of specific properties. We assume that we know a func-
tion f by means of N evaluations fk in the frequency domain.
According to NFFT, the Fourier transform of that function eval-
uated at M non-equispaced grid points in the spatial domain can
be written as,

f̂ (x j) =
1
√

2π

∑

m∈Z
φ̂(σx j − m)

×
N/2−1
∑

k=−N/2

exp

[

−2πim k

σN

]

fk

φ(2π k/σN)

j = 1, 2, 3, . . . ,M. (1)

1 http://cosmologist.info/lenspix
2 http://www-user.tu-chemnitz.de/~potts/nfft
3 http://www.fftw.org

Here the window function φ(ξ) has compact support [−α, α], and
its Fourier transform φ̂(x) assumes small values outside some in-
terval [−K,K]. The parameter σ is the oversampling factor and
it is required to avoid the aliasing error. A good choice of σ is 2,
although σ = 3/2 is sufficient to achieve high accuracy. We also
note that α has to be chosen slightly smaller than π (2 − 2/σ).
Since the evaluation of the summation over k requires an eq-
uispaced FFT of length σN, φ(ξ) must be well localized in
k-space to avoid the aliasing error with minimal computational
cost. On the other hand, the summation over m can be evalu-
ated with minimum truncation error if the window function is
well localized in the spatial domain. Hence, the efficient evalua-

tion of f̂ (x) on irregularly spaced grid points requires a window
function that is well localized in both space and frequency do-
main. It has a computational complexity O (σN log N + K M

)

,
where K is the number of terms considered in the spatial ap-
proximation, M is the number of real space samples, and N
is the number of Fourier modes. Among a number of window
functions (Gaussian, B-spline, sinc-power, Kaiser-Bessel), the
Kaiser-Bessel function is found to provide the most accurate
results. It has been shown that for a fixed oversampling factor
σ > 1, the approximation error decays exponentially with K
(Kunis & Potts 2008; Fourmont 2003).

3. Weak lensing of CMB

The CMB radiation field is characterized completely by its tem-
perature anisotropy, T (θ, ϕ), and polarization, P(θ, ϕ), in every
direction of the sky. Since temperature anisotropy is a spin-0
field on the sphere, it can be conveniently expanded in terms of
spin-0 spherical harmonics,

T (θ, ϕ) =

lmax
∑

l=0

l
∑

m=−l

Tlm Ylm(θ, ϕ). (2)

The polarization field can be described by the Stokes parame-
ters, Q(θ, ϕ) and U(θ, ϕ), with respect to a particular choice of
coordinate system on the sky. One can conveniently combine
the Stokes parameters into a single complex quantity represent-
ing the polarization, P(θ, ϕ) = (Q + iU) (θ, ϕ). Because of its
transformation properties under rotations, the polarization P is a
spin-2 field on the sphere. One may thus expand P(θ, ϕ) in terms
of spin-2 spherical harmonics, 2Ylm(θ, ϕ) (Zaldarriaga & Seljak
1997; Newman & Penrose 1966; Goldberg et al. 1967; Thorne
1980) as

P(θ, ϕ) = (Q + i U)(θ, ϕ)

=

lmax
∑

l=0

l
∑

m=−l

2Plm 2Ylm(θ, ϕ). (3)

In the above equation, 2Plm = −(Elm + i Blm), where Elm and Blm

are the electric and magnetic modes of the polarization field in
harmonic space.

Weak lensing induces a deflection field d(θ, ϕ), i.e., a map-
ping between the direction of a given light ray on the last scat-
tering surface and the direction in which we observe it. Since the
deflection field is a vector field on the sphere, it can be decom-
posed into gradient-free and curl-free components in the most
general form as

da(θ, ϕ) = ∇aΦ(θ, ϕ) + ǫ b
a ∇bχ(θ, ϕ) a, b ∈ (θ, φ), (4)

where Φ(θ, ϕ) and χ(θ, ϕ) are two scalar fields on the sphere, and
ǫa b is the covariant antisymmetric tensor of rank 2 on the unit
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sphere. In terms of null basis vectors (m, m̄) defining a diad on
the unit sphere, ǫa b can be expressed as

ǫa b = i(mam̄b − m̄amb) (5)

ma =
(

eθa + ie
φ
a

)

/
√

2 m̄a =
(

eθa − ie
φ
a

)

/
√

2 (6)

eθ · eθ = 1 eφ · eφ = 1 eθ · eφ = 0 m · m̄ = 1. (7)

The gradient-free component can be ignored because it is negli-
gible in most cases (Cooray & Hu 2002) and is exactly zero for
the Born approximation that adopt here, as this term is generated
only by the lens-lens couplings. In the Born approximation, the
lensing deflection is calculated along the unlensed line of sight,
so the lensed map is a local function of the deflection vector
da(θ, ϕ) = ∇aΦ(θ, ϕ), whereΦ(θ, ϕ) is the lensing potential. This
projected Φ(θ, ϕ) potential is related to the three-dimensional
(3-d) gravitational potential Ψ(D, D(D, θ, ϕ)) in terms of

Φ(θ, ϕ) = −2

∫ Ds

0

dD
DA (Ds − D)

DA (D) DA (Ds)
Ψ(D, D(D, θ, ϕ)) (8)

where D is the comoving coordinate distance along the line of
sight, DA is the comoving angular diameter distance associated
with D, and Ds is the comoving coordinate distance to the last
scattering surface.

As for the CMB temperature anisotropy, the lensing potential
transforms like a spin-zero field on the sphere. Hence, it may also
be expanded in terms of spin-0 spherical harmonics as

Φ(θ, ϕ) =

lmax
∑

l=0

l
∑

m=−l

Φlm Ylm(θ, ϕ). (9)

Since the deflection field d(θ, ϕ) is a vector field on the sphere,
it can be expanded in term of spin-1 spherical harmonics,

da(θ, ϕ) = ∇aΦ(θ, ϕ)

=

lmax
∑

l=0

l
∑

m=−l

Φlm

√

l(l + 1)

2

× [(−1)Ylm(θ, ϕ) ma − 1Ylm(θ, ϕ) ma

]

. (10)

NFFT in 2 dimensions can be applied on the 2-d torus, and we
have thus rewritten Eqs. (2)–(10) into a form suitable for sim-
ulating unlensed CMB maps at irregularly spaced grid points
using NFFT (see Appendix B). This is possible because a band-
limited function on a unit sphere can be rewritten as a band-
limited function on a 2-d torus. To achieve this, we exploited the
relation of spin-weighted spherical harmonics to Wigner rotation
matrices (A.3) and the factorization of Wigner rotation matrices
into two separate rotations (A.5).

To compute lensed CMB fields at a particular position on
the sphere, it is enough to compute the unlensed CMB at some
other position on the sphere determined by the identities of the
spherical triangle (see Appendix C). The most popular pixeliza-
tion scheme used in CMB analysis is the HEALPix4 pixelization
(Górski et al. 2005), which is an irregular grid on the surface of
the unit sphere in (θ, φ) coordinates. Since gravitational lensing
remaps the CMB signal, the modified angular coordinates due to
lensing will not, in general, correspond to any other pixel center
of the HEALPix grid, even if the unlensed CMB is defined over
HEALPix grid points. Hence, to compute the lensed CMB field

4 http://healpix.jpl.nasa.gov

on HEALPix grid points, we should be able to resample the un-
lensed CMB at arbitrary positions on the sphere. Since remap-
ping on a sphere can be recast into remapping on a 2-d torus
(see Appendix A), we have used NFFT to compute lensed CMB
anisotropies at HEALPix grid points.

4. Simulation of lensed CMB map

4.1. How to simulate a lensed map

We have seen in the last section that, for the Born approximation,
gravitational lensing of the CMB anisotropies results in a simple
resampling of the unlensed anisotropies (with an extra rotation in
the case of polarization lensing, see Appendix C). We summarize
here the main steps of the simulation procedure of lensed CMB
maps, which are to

– generate a realization of the (unlensed) CMB harmonic
coefficients (both temperature and polarization) from their
(unlensed) power spectra;

– generate in the same way the harmonic coefficients of
the lensing potential, or alternatively extract them from an
N-body simulation (Carbone et al. 2008, 2009);

– transform the harmonic coefficients of the unlensed CMB
fields into their 2-d torus Fourier counterparts using
Eqs. (B.5), (B.6), and derive the Fourier coefficients of the
displacement field from the harmonic coefficients of the lens-
ing potential using Eq. (B.8);

– sample the displacement field at HEALPix centers (us-
ing Eq. (B.4) and NFFT), apply this displacement field to
HEALPix pixel centers to obtain displaced positions on
the sphere (using Eqs. (C.3) and (C.4)), and compute the
additional rotation needed for the polarized fields (using
Eqs. (C.5)–(C.7));

– resample the temperature and polarization fields at the dis-
placed positions using Eqs. (B.1), (B.2) and NFFT, and ap-
ply the extra rotation to the polarized fields, to provide us
with the simulated lensed CMB fields, sampled at HEALPix
pixel centers.

We designed the simulated displacement fields as the gradients
of Gaussian potential fields, neglecting non-linearities produced
by the growth of structures and rotation induced by departure
from the Born approximation. This enables us to compare our
lensed power spectrum estimates to the CAMB5 predictions, for
which analytical estimates exist. However, our method is valid
for any given displacement field, hence we could relax the Born
approximation if needed.

4.2. Validation of the method on a known case: unlensed
maps

To test the part of the algorithm that computes temperature or
polarization fields at arbitrary real-space sampled positions from
their harmonic coefficients, by means of 2-d torus Fourier modes
and NFFT transforms, we test the method on unlensed temper-
ature or polarization fields, sampled at HEALPix centers. This
is a valid test of the method because HEALPix pixel centers are
irregularly distributed in (θ, ϕ) coordinates. In addition, we can
directly compare the output of the method with a direct resum-
mation of the spherical harmonics decomposition of the fields
at HEALPix centers by using the fast spherical harmonics trans-
forms of the HEALPix package, which serve as a reference.

5 http://camb.info
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Fig. 1. Top: a realization of unlensed CMB temperature anisotropies
map (nside = 1024) that we have obtained using NFFT (oversampling
factor σ = 2, convolution length K = 4). Bottom: difference of unlensed
CMB maps (nside = 1024) obtained using NFFT and HEALPix from
the same harmonic coefficients. Note the different scales between top
and bottom panels.

Table 1. Variation in the typical orders of magnitude of error norms
with the convolution length K for an unlensed CMB map simulated
using NFFT.

Oversampling Convolution nside lmax Maximum rms
factor length error error
(σ) (K) (E∞) (E2)

2 4 1024 2048 ∼10−8 ∼10−8

2 6 1024 2048 ∼10−11 ∼10−12

2 8 1024 2048 ∼10−11 ∼10−13

E2 and E∞ are the quadratic norm and maximum(relative) norm, respec-
tively.

In Fig. 1, we show an (unlensed) realization of the CMB
temperature anisotropies obtained using our method, as well as
a map of the difference between our method and the HEALPix
reference map. Note the difference in the color scales. To quan-
tify more precisely the accuracy of our method, we computed
two kinds of error statistics

EX
∞ =

max j

∣

∣

∣XNFFT(θ j, φ j) − XHEALPix(θ j, φ j)
∣

∣

∣

max j

∣

∣

∣XHEALPix(θ j, φ j)
∣

∣

∣

EX
2 =

√

√

√

√

√

∑Npix

j=1

∣

∣

∣XNFFT(θ j, φ j) − XHEALPix(θ j, φ j)
∣

∣

∣

2

∑Npix

j=1

∣

∣

∣XHEALPix(θ j, φ j)
∣

∣

∣

2

where X represents T , Q, U, dθ or dφ.

For field X EX
∞ is the maximum (relative) error, while EX

2
is the relative root mean square error. Tables 1 and 2 provide
the value of these statistics for unlensed CMB temperature only.
Values of these error norms for the displacement field and the
unlensed CMB polarization fields are of the same order of mag-
nitude.

To achieve this accuracy, we used the Kaiser-Bessel window
(Kunis & Potts 2008; Fourmont 2003) as the NFFT interpolat-
ing function. Since the full precomputation of the window func-
tion at each node in spatial and frequency domains requires a

Fig. 2. Top: a realization of lensed CMB map (nside = 1024). Middle:
a realization of the amplitude of the deflection field (nside = 1024).
Bottom: difference of lensed and unlensed CMB maps (nside = 1024).
These maps are obtained using NFFT for the oversampling factor
(σ = 2 and Convolution length K = 4.

Table 2. Variation in the typical orders of magnitude of error norms
with the oversampling factor σ for an unlensed CMB map simulated
using NFFT.

Oversampling Convolution nside lmax Maximum rms
factor length error error
(σ) (K) (E∞) (E2)

2 4 1024 2048 ∼10−8 ∼10−8

3 4 1024 2048 ∼10−9 ∼10−9

4 4 1024 2048 ∼10−9 ∼10−9

E2 and E∞ are the quadratic norm and maximum(relative) norm, respec-
tively.

large amount of memory space, we used a tensor product form
for the multivariate window function, which requires only unidi-
mensional precomputations. This method uses less memory at
the price of some extra multiplications (Kunis & Potts 2008;
Fourmont 2003). The accuracy (Kunis & Potts 2008; Fourmont
2003) of our simulation can be improved by increasing both the
oversampling factor and the convolution length, at the price of
extra memory consumption and CPU time (see Tables 1 and 2).

4.3. Simulation of lensed maps

We applied our simulation algorithm of lensed CMB maps (both
temperature and polarization), described in Sect. 4.1, to 1000 in-
dependent realizations with HEALPix resolution nside = 1024,
and a maximum multipole lmax = 2048. In Fig. 2, we show one

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912679&pdf_id=1
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Fig. 3. Top left: a small portion of a simulated unlensed CMB temper-
ature anisotropy map. Top right: a small portion of the corresponding
lensed CMB temperature anisotropy map. Bottom left: a small portion
of the amplitude of the simulated deflection field map. Bottom right: a
small portion of the difference of simulated lensed and unlensed CMB
maps. These maps are obtained using NFFT for the oversampling factor
σ = 2 and convolution length K = 4.

Table 3. Variation in CPU time and memory requirements with resolu-
tion to simulate CMB maps (unlensed and lensed, oversampling factor
σ = 2, convolution length K = 4) using NFFT.

nside lmax CPU Memory
time requirement

256 512 1 min 12 s 491 MB
512 1024 6 min 8 s 1.9 GB

1024 2048 32 min 7.6 GB

such realization of a lensed CMB temperature field, as well as
the difference between the lensed and unlensed fields.

Since weak lensing of CMB is a tiny effect on small angu-
lar scales, we show a realization of a small portion of the un-
lensed CMB temperature anisotropies, lensed CMB temperature
anisotropies, amplitude of deflection field and, the difference of
lensed and unlensed CMB temperature anisotropies in Fig. 3 to
illustrate the lensing effect more clearly. Although unlensed and
lensed CMB temperature anisotropies are indistinguishable to
the naked eye, the correlation between the deflection field and
the difference between the lensed and unlensed CMB tempera-
ture anisotropies is clearly visible.

Table 3 shows the typical CPU time and memory required to
simulate a single realization of unlensed and lensed CMB tem-
perature and polarization, at different resolutions. These timings
correspond to an AMD880 CPU running at 2.4 GHz. Storage of
the window function at the grid points in both the spatial and
frequency domain before computing the Fourier transform con-
sumes a fair amount of memory, which ultimately increases the
overall memory requirement for the simulation of lensed CMB
maps (Kunis & Potts 2008; Fourmont 2003).

Tables 4 and 5 show the same, but with varying convolu-
tion lengths and oversampling factors. Increase in the convo-
lution length not only increases the computational cost of the

Table 4. Variation in the CPU time and memory requirements with
the convolution length K to simulate a CMB map (both unlensed and
lensed, with nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)

2 4 32 min 7.6 GB
2 6 45 min 8.4 GB
2 8 60 min 9.1 GB

Table 5. Variation in CPU time and memory requirements with the over-
sampling factor σ for simulating a realization CMB map (both unlensed
and lensed, nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)

2 4 32 min 7.6 GB
3 4 38 min 10 GB
4 4 47 min 13 GB

interpolation part of NFFT, but also increases the cost of the
precomputation of window function and memory requirement
since one has to compute and store the window function at a
larger number of grid points in the spatial domain before apply-
ing NFFT (Kunis & Potts 2008; Fourmont 2003). On the other
hand, increasing the oversampling factor only impacts the mem-
ory and CPU requirements of the (oversampled) FFT part of the
algorithm.

On the same plots, Fig. 4 shows the theoretical power spectra
CXY

l
, where XY represents TT, EE, T E and BB respectively, for

the lensed and unlensed cases, as predicted by CAMB (Challinor
& Lewis 2005). In the cosmological model, we decided to in-
clude no primordial tensors, hence CBB

l
is entirely due to lensing.

An accurate recovery of this power spectrum from lensed
polarization maps is therefore a powerful test of our simulation
method. In Fig. 5, we show, on top of the lensed theoretical
spectra (lines), the average empirical power spectra computed
from 1000 simulations (circles). We can see that the agreement
is excellent, which is remarkable for CBB

l
as explained above.

We have ignored the lensed angular power spectrum beyond the
multipole l = 1700 in the comparison, because the accurate com-
putation of the average empirical power spectra for the multi-
poles l > 1700 requires lensed CMB maps simulated from the
power spectra of unlensed CMB and a lensing potential beyond
the multipole lmax = 2048, which is the maximum multipole we
used in the simulations. It is worth noting here that theoretical
predictions for the B-mode power spectra induced from lensing,
as computed in CAMB, are based on non-trivial, partially re-
summed expansions of correlation functions (Challinor & Lewis
2005). Figure 5 clearly shows very good agreement between the
power spectra predicted from CAMB and measured from our
simulations, therefore validating a posteriori the theoretical pre-
dictions.

To obtain a more quantitative view of the accuracy of the
method, we show in Fig. 6 the relative difference between the
average empirical power spectra computed on the 1000 simula-
tions and the theoretical spectra from CAMB, both for the un-
lensed (red solid) and lensed (green dashed) cases. In each plot,
we also show the theoretical root-mean-square deviation of the
averaged empirical spectra, computed by neglecting the small
lensing-induced non-Gaussianity in the lensed cases. Note that
this corresponds to a very small underestimation of the scatter

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912679&pdf_id=3
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Fig. 4. Red solid line is the theoretical angu-
lar power spectrum of unlensed CMB fields,
Green dashed line is the theoretical angular
power spectrum of lensed CMB fields, for
the same underlying cosmological model
with no tensors.
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Fig. 5. Green solid line is the theoretical an-
gular power spectrum Cl,th of lensed CMB,
Magenta circles are the average angu-
lar power spectrum Cl,simul recovered from
1000 realizations of lensed CMB maps
(nside = 1024 and lmax = 2048).
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Fig. 6. Fractional difference of aver-
age angular power spectrum recovered
from 1000 realizations of CMB maps
(nside = 1024 and lmax = 2048) and their
corresponding theoretical angular power
spectra. Blue lines are for unlensed maps
and magenta lines are for lensed maps. Red
dashed lines show the theoretical cosmic
variance for unlensed power spectrum.
Green dashed lines show the theoretical
cosmic variance for lensed power spectrum.

Table 6. Reduced χ2 statistics of the recovered unlensed angular power
spectrum.

Angular Value of

power χ2 P
(

∞ > Z2
XY
≥ z2

XY

)

spectrum statistics
(

CXY
l,simul

)

(z2
XY )

CT T
l,simul

0.9574 92%

CEE
l,simul

0.9879 65%

CT E
l,simul

0.9901 62%

(Smith et al. 2006; Rocher et al. 2007). Taking into account that
the averaged power spectra are nearly Gaussian distributed (due
to the central limit theorem), we can assess the presence of pos-
sible biases in the recovered spectra by computing the reduced
χ2 statistics:

Z2
XY =

Nrlz

(lmax − 1)

lmax
∑

l=2

(2l + 1)(CXY
l,simul

−CXY
l,th

)2

[

(CXY
l,th

)2 +CXX
l,th

CYY
l,th

] , (11)

here Nrlz is the number of independent realizations of angular
power spectra under consideration.

Tables 6 and 7 show that the probability of the reduced
χ2 statistics (Z2

XY
) having values greater than their estimated val-

ues (z2
XY

) is quite large for both unlensed and lensed power spec-
trum. This strengthens our claim about the unbiased nature of
the simulation of unlensed and lensed CMB maps using NFFT.

Table 7. Reduced χ2 statistics for the recovered lensed angular power
spectrum.

Angular Value of

power χ2 P
(

∞ > Z2
XY
≥ z2

XY

)

spectrum statistics
(

CXY
l,simul

)

(z2
XY )

CT T
l,simul

1.0030 46%

CEE
l,simul

0.9922 59%

CBB
l,simul

0.9922 59%

CT E
l,simul

0.9928 58%

5. Summary

Accurate predictions of the expected CMB anisotropies are re-
quired when analyzing future CMB data sets, which ultimately
require accurately simulated lensed maps. The most popular pix-
elization used to analyze full-sky CMB maps is the HEALPix
pixelization. To simulate lensed CMB anisotropies at HEALPix
grid points, we must compute unlensed CMB anisotropies at ir-
regularly spaced grid points over the sphere, determined by the
deflection field and remapping equations. Since remapping on
a sphere can be recast into remapping on a 2-d torus, we have
used the NFFT library to compute lensed CMB anisotropies
at HEALPix grid points and experimented with different set-
tings of the accuracy parameters. We have found that for a
nside = 1024 map a 10−8 accuracy is easily reached when
setting the (σ,K) parameters to (2, 4). Our current implemen-
tation of the method consists of a 32 min computation on a
classical PC configuration. This can probably be improved by

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912679&pdf_id=6
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parallelizing the algorithm (see Appendix D). Furthermore, the
average angular power spectra Cl, simul recovered from 1000 re-
alizations of lensed and unlensed CMB maps are also found
to be consistent with the corresponding theoretical ones, Cl, th.
The agreement between our numerical power spectra estimates
and the CAMB predictions is both a validation of our numeri-
cal method, and of the CAMB estimates based on partially re-
summed perturbative calculations.

These simulations will be a useful tool for the analysis and
interpretation of upcoming CMB experiments such as Planck
and ACT. However, they are not the only possible use of this
technique. The simulation of the lensing deflection field can be
improved by replacing the simple Born approximation with ray-
tracing in dark matter N-nody simulations (Carbone et al. 2008,
2009). Ray-tracing is affected by similar problems as the sim-
ulation of the lens effect on CMB maps, i.e., difficulties in ac-
curately resampling a vector field on the sphere. Current state-
of-the-art ray-tracing algorithms, such as (Teyssier et al. 2009),
could be made more accurate by using the technique described
here.

Appendix A: Spin s functions on a sphere

and 2-d torus

Spin s square-integrable functions s f (θ, ϕ) on a unit sphere are
conveniently expanded in spin-weighted spherical harmonics

sYlm(θ, ϕ) of same spin (Zaldarriaga & Seljak 1997; Newman &
Penrose 1966; Goldberg et al. 1967)

s f (θ, ϕ) =

lmax
∑

l=0

l
∑

m=−l

s flm sYlm(θ, ϕ) (A.1)

with the inverse transform,

s flm =

∫

Ω

dΩ s f (θ, ϕ) sY
∗
lm(θ, ϕ). (A.2)

These harmonics, with l ∈ N, m ∈ Z and max (|m|, |s|) ≤ l, form
an orthonormal basis for the decomposition of spin s square-
integrable functions on the sphere. They are explicitly given
in a factorized form in terms of the Wigner rotation matrices
Dl

m m′ (ϕ, θ, ρ),

sYlm(θ, ϕ) = (−1)s

√

2 l + 1

4π
D∗ l

m (−s)(ϕ, θ, 0). (A.3)

With our assumed conventions for the Euler angles (Edmonds
1957; Varshalovich et al. 1988), we have,

Dl
m m′ (ϕ, θ, ρ) = e−i mϕ dl

m m′ (θ) e−i m′ ρ. (A.4)

These rotation matrices (A.4) basically characterize the rota-
tion of spin-weighted spherical harmonics. The decomposition
shown in Eq. (A.4) is exploited by factoring the rotation matri-
ces into two separate rotation matrices as (Wiaux et al. 2006;
McEwen et al. 2007),

Dl
m m′ (ϕ, θ, ρ) =

∑

m′′

Dl
m m′′

(

ϕ − π
2
,−π

2
, θ

)

× Dl
m′′ m′

(

0,
π

2
, ρ +

π

2

)

· (A.5)

Expressing the Wigner rotation matrices in Eq. (A.4) in the
above manner of Eq. (A.5), Eq. (A.1) can be rewritten as

s f (θ, ϕ) =

lmax
∑

m=−lmax

lmax
∑

m′=−lmax

s fm m′ e
i(m ϕ+m′ θ) (A.6)

where

s fm m′ =

lmax
∑

l=max(|m|,|m′ |,|s|)
(−1)s

√

2 l + 1

4π
s flm

× dl
m′ m

(

π

2

)

dl
m′ (−s)

(

π

2

)

exp

[

−i(m + s)
π

2

]

· (A.7)

The advantage of writing the rotation matrices in this manner is
that now the Euler angles only occur in complex exponentials
and we only need to evaluate dm m′ (θ) at θ = π

2
(McEwen et al.

2007; Edmonds 1957; Varshalovich et al. 1988; Risbo 1996;
Challinor et al. 2000; Wandelt & Górski 2001).

Computation of s f (θ, ϕ) using Eq. (A.6) may not be the most
efficient way, but the presence of exponentials may be exploited
such that techniques of fast Fourier transform either on irregu-
lar or regular grid may be used for rapid computation of double
summations simultaneously. In both cases, the domain of spin s
function s f (θ, ϕ) must be extended from the sphere, (θ, ϕ) ∈
[0, π]×[0, 2π] to the 2-dimensional torus, (θ, ϕ) ∈ [0, 2π]×[0, 2π]
using the symmetry sYlm(2π − θ, π + ϕ) = (−1)s

sYlm(θ, ϕ) of
spin-weighted spherical harmonics, so that Eq. (A.6) becomes
a complex-to-complex Fourier transform over a 2-dimensional
torus. The computation of s fm m′ for (|m|, |m′|) ≤ lmax, involves
performing a 1-dimensional summation over a 2-dimensional
grid, hence it is of order O(l3max).

Appendix B: Unlensed CMB fields on 2-d torus

Factoring the rotation matrices in two separate rotation ma-
trices (A.4) and extending the domain of CMB, lensing
potential and defection fields from sphere to 2-d torus,
Eqs. (2), (3), (9), (10) can be rewritten as

T (θ, ϕ) =

lmax
∑

m=−lmax

lmax
∑

m′=−lmax

Tm m′ ei(m ϕ+m′ θ), (B.1)

P(θ, ϕ) =

lmax
∑

m=−lmax

lmax
∑

m′=−lmax

Pm m′ ei(m ϕ+m′ θ), (B.2)

Φ(θ, ϕ) =

lmax
∑

m=−lmax

lmax
∑

m′=−lmax

Φm m′ ei(m ϕ+m′ θ), (B.3)

(

dθ + i dϕ
)

(θ, ϕ) =

lmax
∑

m=−lmax

lmax
∑

m′=−lmax

Gm m′ ei(m ϕ+m′ θ), (B.4)

and the corresponding Fourier modes are given by,

Tm m′ =

lmax
∑

l=max(|m|,|m′|)

√

2 l + 1

4π
Tlm

× dl
m′ m

(

π

2

)

dl
m′ 0

(

π

2

)

exp

[

−im
π

2

]

(B.5)

Pm m′ =

lmax
∑

l=max(|m|,|m′|,2)

√

2 l + 1

4π
(Elm + i Blm)

× dl
m′ m

(

π

2

)

dl
m′ (−2)

(

π

2

)

exp

[

−im
π

2

]

(B.6)
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Φm m′ =

lmax
∑

l=max(|m|,|m′|)

√

2 l + 1

4π
Φlm

× dl
m′ m

(

π

2

)

dl
m′ 0

(

π

2

)

exp

[

−im
π

2

]

(B.7)

Gm m′ =

lmax
∑

l=max(|m|,|m′|,1)

(−i)

√

l (l + 1) (2 l + 1)

4π
Φlm

× dl
m′ m

(

π

2

)

dl
m′ (−1)

(

π

2

)

exp

[

−im
π

2

]

· (B.8)

The extra factor of
√

l (l + 1) appears at the right-hand side of
Eq. (B.8) because the deflection field is the gradient of the scalar
potential field.

Appendix C: Lensed CMB fields on 2-d torus

Using the identities of the spherical triangle, lensed temperature
anisotropies and polarization in a particular direction (θ, ϕ) are
given by unlensed temperature anisotropies and polarization in
another direction at the last scattering surface.

T̃ (θ, ϕ) = T (θ′, ϕ′) (C.1)

P̃(θ, ϕ) = exp
[−2i(γ − α)

]

P(θ′, ϕ′). (C.2)

The angular coordinates corresponding to the modified direction
of the photon path (θ′, ϕ′) due to lensing are determined by the
deflection field d(θ, ϕ),

cos θ′ = cos d cos θ − sin d sin θ cosα (C.3)

sin(ϕ′ − ϕ) =
sinα sin(d)

sin θ′
· (C.4)

The extra factor exp
[−2i(γ − α)

]

, which appears in the case of

the polarization (C.2), is there to rotate the basis vectors
(

eθ
′
, eφ

′)

at (θ′, φ′) to match them with the basis vectors
(

eθ, eφ
)

at (θ, ϕ),

such that

A = tan(γ) =
dφ

d sin d cot θ + dθ cos d
(C.5)

cos
[

2(α − γ)] =
2
(

dθ + A dφ
)2

d2(1 + A2)
− 1 (C.6)

sin
[

2(α − γ)] =
2
(

dθ + A dφ
) (

dφ − A dθ
)

d2(1 + A2)
· (C.7)

The Euler angles α, β, and γ are defined as,

Dl
s s′(α, β,−γ) =

l
∑

m=−l

4π

2 l + 1
sY
∗
lm(θ, ϕ) s′Ylm(θ′, ϕ′) (C.8)

β (0 ≤ β ≤ π) determines the angle between the directions (θ, ϕ)
and (θ′, ϕ′). The angle α (0 ≤ α ≤ 2π) is that required to ro-
tate the basis vector eθ in a right-handed sense about n̂ onto
the tangent (at n̂ ) to the geodesic connecting n̂ and n̂′, and
γ (0 ≤ γ ≤ 2π) is defined in the same manner as α but at n̂′.

Appendix D: Parallelization of the algorithm

Significant speed improvements should be achieved by paral-
lelizing the code. We review here the main parts of the code,
and indicate possible ways of parallelizing them. We recall that

the code is divided into two distinct parts. The first part com-
putes the 2-d Fourier modes, starting from the spherical har-
monic coefficients. This involves computing the Wigner coeffi-
cients dℓ

m,m′(π/2), multiplying them with the spherical harmonic
coefficients, and summing over the ℓ index. To reduce memory
allocation, the summation over ℓ is computed on the fly in the
outermost loop, together with the ℓ-recurrence of the Wigner co-
efficients. For each new ℓ, the (m,m′) double recurrence is com-
puted, its structure being local enough (using a modified ver-
sion of the algorithm of Risbo 1996) for it to be parallelized at
high ℓ with small copies of boundary conditions. Another possi-
bility would be to use the algorithm of Trapani & Navaza (2006),
where the m recurrence is decoupled from the m′ one, and can
therefore be easily parallelized for each ℓ (see their Fig. 2).

The second is the FFT on irregular grid points, where we
used the external library NFFT. Here the computation is di-
vided into three parts: (i) precomputation of the window func-
tion around each real space node; (ii) diagonal correction of the
Fourier modes and regular FFT; and (iii) discrete convolution
for each node. Part (i) can be trivially parallelized since cal-
culations are independent for each node. Part (ii) can also be
easily parallelized using independent 1-d FFT calculation first
along each line, and then along each column of the mode ma-
trix (this scheme was already implemented into the FFTW li-
brary). Finally, part (iii) can also be parallelized by spatial do-
main decomposition of the nodes, with minor overlapping copies
accounting for the support (K) of the truncated window. We note
that in principle two different domain decompositions occur for
the parallelization of the regular FFT and the parallelization of
the operations on nodes (i.e., window function precomputation,
discrete convolution). This could lead to important communica-
tion overheads and/or strong load imbalance in the case of very
clustered nodes; in the case of weak lensing applications how-
ever, because of the small amplitude of the displacement field
and the regularity of the HEALPix pixels, we do not expect this
to be a major issue.
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