
Simulating Wireless and Mobile Networks in OMNeT++
The MiXiM Vision

A. Köpke, M. Swigulski,
K. Wessel, D. Willkomm
Technische Universität Berlin

Berlin, Germany
{koepke, swigulski,
wessel, willkomm}
@tkn.tu-berlin.de

P.T. Klein Haneveld
T.E.V. Parker

∗

O.W. Visser
∗

TU Delft
Delft, the Netherlands
{P.T.KleinHaneveld,

T.E.V.Parker,
O.W.Visser}@tudelft.nl

H.S. Lichte, S. Valentin
University of Paderborn
Paderborn, Germany
{hermann.lichte,
stefanv}@upb.de

ABSTRACT
Wireless communication has attracted considerable interest in the
research community, and many wireless networks are evaluated us-
ing discrete event simulators like OMNeT++. Although OMNeT++
provides a powerful and clear simulation framework, it lacks of
direct support and a concise modeling chain for wireless commu-
nication. Both is provided by MiXiM. MiXiM joins and extends
several existing simulation frameworks developed for wireless and
mobile simulations in OMNeT++. It provides detailed models of
the wireless channel (fading, etc.), wireless connectivity, mobility
models, models for obstacles and many communication protocols
especially at the Medium Access Control (MAC) level. Further,
it provides a user-friendly graphical representation of wireless and
mobile networks in OMNeT++, supporting debugging and defin-
ing even complex wireless scenarios. Though still in development,
MiXiM already is a powerful tool for performance analysis of wire-
less networks. Its extensive functionality and clear concept may
motivate researches to contribute to this open-source project [4].

1. INTRODUCTION
Discrete event simulators like OMNeT++ [22] are a standard tool

to study protocols for wired and wireless networks. In contrast to
the wired channel, the wireless channel has a complex influence
on protocol performance and it requires in-depth knowledge of the
effects before a researcher can determine the right level of detail
necessary to make a sound performance analysis. If he needs a
very detailed model, an implementation from scratch is a tedious
and error prone task, but this implementation might be useful for
other researchers as well. We therefore present MiXiM [4], a mixed
simulator combining various simulation frameworks developed for
wireless and mobile simulations in OMNeT++. It provides detailed
models and protocols, as well as a supporting infrastructure. These

∗supported by the Commission of the European Union (Project
No. 013790, FP6 IST Programme, RELATE)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ Workshop ’08 Marseille, France
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

can be divided into five groups:

Environment models In a simulation, only relevant parts of the
real world should be reflected, such as obstacles that hinder
wireless communication.

Connectivity and mobility When nodes move, their influence on
other nodes in the network varies. The simulator has to track
these changes and provide an adequate graphical representa-
tion.

Reception and collision For wireless simulations, movements of
objects and nodes have an influence on the reception of a
message. The reception handling is responsible for modeling
how a transmitted signal changes on its way to the receivers,
taking transmissions of other senders into account.

Experiment support The experimentation support is necessary to
help the researcher to compare the results with an ideal state,
help him to find a suitable template for his implementation
and support different evaluation methods.

Protocol library Last but not least, a rich protocol library enables
researchers to compare their ideas with already implemented
ones.

MiXiM provides these solutions by combining the approaches of
several existing simulation frameworks into one: the mobility sup-
port, connection management, and general structure is taken from
the Mobility Framework (MF) [5]; the radio propagation models
are taken from the CHannel SIMulator (ChSim) [21]; and the proto-
col library is taken from the MAC simulator [3], the Positif frame-
work [6], and from the Mobility Framework.

Using the experience gathered while writing each of these sim-
ulators, MiXiM introduces unique extensions like full 3D support,
models for walls and obstacles that influence the mobility and the
attenuation of radio signals, different frequencies and transmis-
sion media (radio waves, ultrasound), full multi-channel support
in space and frequency, enabling Orthogonal Frequency Division
Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO)
simulations, and more MAC protocols, including IEEE 802.15.4.

MiXiM is envisioned to support the simulation of networks with
more than 1000 nodes, hence it has a low memory consumption and
its modular structure allows the adaptation of the level of detail and
thus the execution time. A graphical configuration interface helps
to choose the right modules, stack them in layers, and assign values
to their parameters.

Sim

ConnectionManager_ISM_2_4_GHZConnectionManager_GSM ObjectManagerworld

ISMNode0

ISMNode1

ISMNode2

ISMNode3

HybridNode0

GSMNode1

GSMNode2

GSMNode0

GSMAccessPoint
ObjectWall

ObjectHouse

Figure 1: Simulation network

This paper is structured as follows: After a general overview
of the simulator in Section 2, we describe the models present in
MiXiM in Section 3. However, these models can not always be
implemented directly, and the implementation Section 4 introduces
the base abstractions needed to program them. The protocol library
uses these abstractions to actually build a number of protocols,
which are shortly described in Section 5. After this we conclude
our work and give an outlook on the future of MiXiM in Section 6.

2. GENERAL STRUCTURE
In this section we describe the general structure of the MiXiM

framework and its constituent components.

2.1 Simulation modules
Figure 1 shows an example MiXiM network. The environmen-

tal model is contained in the world utility module, which is mainly
used to collect global parameters like the dimensions of the network
(playground), whether it is 2D or 3D, etc. Furthermore, MiXiM
uses objects to model the environment of a simulation. Figure 1
shows a house (ObjectHouse) and wall (ObjectWall) as exam-
ples. Objects influence the radio propagation of signals and the
mobility of other objects and nodes. A wall, for example, cannot
be crossed by a pedestrian. The ObjectManager is responsible for
managing objects, providing services to the rest of the simulation
including calculating which objects interfere within a given line-of-
sight between two nodes. Details on the environmental modeling
are described in Section 3.1.

The ConnectionManager module is responsible for dynami-
cally managing the connections between interfering nodes. It knows
the position of all nodes and can query object positions from the
ObjectManager. In general, MiXiM supports multiple connection
managers, responsible for different frequency ranges such as radio
waves and ultra sound. Details on connection modeling are given in
Section 3.2. The ConnectionManager implementation of MiXiM
is detailed in Section 4.2.2.

Finally, a network also contains nodes, i.e. entities desiring to
communicate with each other. In MiXiM, different kinds of nodes
can be specified, such as Access Points (APs) and terminals. Addi-
tionally, a node can have different communication capabilities, e.g.
bluetooth and ultrasound.

BaseNode

utility

arp

battery

mobility

appl

net

nic

(a) Node structure

BaseNic

mac

phy

(b) NIC structure

Figure 2: Node and NIC structure

2.2 Node modules
An example of a node module can be seen in Figure 2(a). On

the left side, the standard layers according to the IP model can
be found, namely, the application layer (appl), the network layer
(netw), the MAC layer (mac), and the physical layer (phy). The
physical layer is the place to take care of the reception and colli-
sion handling and is described in Section 4.3 in detail. Adjacent
layers are connected by two pairs of OMNeT++ “gates”. The first
pair is used for passing up and down data messages as in the real
world, including control messages between nodes. The second pair
is used to exchange control messages between the layers, to sup-
port control communication. Examples are the request of the MAC
layer to the physical layer to perform carrier sensing, or the indica-
tion of the physical layer to the MAC layer that the transmission of
a message is over.

Note that the physical and MAC layer are grouped into a Net-
work Interface Card (NIC) module (Figure 2(b)). Physical and
MAC layer design is usually tightly coupled and very specific for
different communication techniques (e.g. bluetooth, GSM). We thus
decided also to couple the modeling tightly. Although there is only
one NIC shown in Figure 2(a), a node can have several NICs. In
MiXiM, thus, a laptop with different NICs, like bluetooth, GSM,
and IEEE 802.11 can be modeled.

The mobility module is responsible for the movements of a
node or an object. Details on mobility modeling and the core im-
plementation in MiXiM can be found in Sections 3.1 and 4.2, re-
spectively. Different mobility models implemented in MiXiM are
described in Section 5.3. The battery module is used for energy
related issues. For a sensor node, e.g., the battery drainage due to
communication and processing can be simulated. The arp module
handles the Address Resolution Protocol (ARP), i.e. the translation
between network and MAC addresses.

The utility module is derived from the blackboard module in-
troduced in the Mobility Framework [10]. It has two main tasks:
Firstly, it provides a general interface for collecting statistical data
of a simulation. Using the utility module for statistical data collec-
tion only has minimal impact on the performance of the simulation
and leaves full flexibility for different analysis methods. Secondly,
the utility module maintains parameters that need to be accessed
by more than one module within a node. One example is the po-
sition of a node, which is calculated and updated by the mobility
module, but also needed by the physical layer and potentially the
localization module. Details on the utility module can be found in
Section 4.1.

2.3 Base framework and protocol library
Logically, MiXiM can be divided into two parts: the base frame-

work and the protocol library. The base framework provides the
general functionality needed for almost any wireless simulation,
such as connection management, mobility, and wireless channel
modeling. Details on the implementation concepts of the base MiX-
iM framework can be found in Section 4. The protocol library com-
plements the base framework with a rich set of standard protocols,
including mobility models, and is detailed in Section 5.

In order to have clearly defined interfaces between the base frame-
work and the protocol library, MiXiM provides a base module for
each OMNeT++ module described above. Following this concept
makes it easy to implement new protocols for MiXiM while facili-
tating re-usability.

3. MIXIM BASE MODELS
Simulating wireless communication systems requires a suitable

abstraction of the environment, the radio channels, and the physical
layer. For these parts of the scenario, MiXiM provides a model-
ing framework. In this section, we discuss the basic modeling ap-
proaches, the assumptions behind these approaches, and implemen-
tation relevant aspects such as model abstraction level and model
support for trading off accuracy and calculation complexity.

3.1 Environmental model
Simulations are usually carried out on a limited area, a play-

ground, on which nodes and objects are placed. Nodes represent
the wireless devices with their protocol stack and are modeled as
isotropic radiators not having any physical dimension. An object,
in contrast, is anything with a physical dimension that resides in
the propagation environment and can possibly attenuate a wireless
signal. Both, objects and nodes may be mobile. Nodes may even
be combined with objects, e.g. to model a sensor node mounted on
a car. In the following, we use the term entity to refer to both, nodes
and objects.

Depending on the scenario to investigate, the limited area of the
playground may cause undesired border effects, which can – in the
worst case – dominate the simulation results. In order to avoid such
effects, the playground may be modeled as the surface of a torus.
Wrapping the edges of a rectangular area (i.e. connecting the top
edge with the bottom edge as well as the left edge with the right
edge) results in a torus, where an entity leaving the playground on
one side would reappear on the other side. The same applies for
wireless connectivity between nodes.

The mobility of objects is a time-continuous process, which raises
a trade-off between accuracy and computational complexity. In
MiXiM, the level of accuracy (and, thus, the computational com-
plexity) of modeling mobility can be chosen by the user. MiXiM
provides a user-defined update interval for mobility modeling.
This parameter specifies how often the position of an object is
updated. Additionally, the position information of an entity con-
tains the start time, start position, direction, and speed of the entity.
Thus, intermediate positions can be easily interpolated if needed.

Mobility also requires to handle collisions with entities and to
handle border crossing of the playground. MiXiM provides four
different strategies for handling collisions and border crossing. First,
a collision may simply raise an error. Second, a new position may
be randomly chosen upon collision and the entity is placed there
afterwards, as long as this position does not coincide with another
entity. Third, the entity may be reflected in an angle that it had
when it collided. The last strategy only applies to the borders of
the playground: When modeled as a torus, wrapping causes the
entity to re-enter the playground on the opposite side.

-15 dB

a

s

b

Figure 3: An object within the line-of-sight between two nodes
s and b yields a weaker received signal than that of a non-
obstructed pair s and a at the same distance.

The shadowing effect of objects that reside in the propagation
environment results in different received signal strengths at equal
distances as shown in Figure 3. These variations can be described
by a stochastic model (e.g. log-normal shadowing), which must be
adapted to the characteristics of the environment that is to be sim-
ulated. Unfortunately, such a model is too generic and cannot ad-
equately describe particular settings, e.g. nodes placed around a
building.

As a solution, MiXiM provides the ObjectManager as a cen-
tral authority for managing objects in the propagation environment.
Objects are characterized by dimensions, position, angle of rota-
tion (optionally), and frequency-dependent attenuation factors. An
object that obstructs the line-of-sight between any pair of intercon-
nected nodes causes additional signal losses during transmission
as shown in Figure 3. Since entities can be mobile, intersections
of the line-of-sight of two nodes with one or more objects must
be determined at runtime. For any intersection with an object, its
frequency-dependent attenuation factor is added up to yield the ad-
ditional attenuation caused by the objects.

3.2 Connection modeling
In contrast to wired simulations, connectivity modeling is a chal-

lenging task in wireless simulations. In wired simulations, two
nodes are connected by wires, which can be easily modeled (e.g.
in OMNeT++ by connections). In wireless simulations, however,
the “channel” between two nodes is the air, which is a broadcast
medium and cannot be easily represented by one connection. In
MiXiM we decided to divide the modeling into two parts. The first
part is the wireless channel and its attenuation property, which is
described in detail in Section 3.3. The second part is the connectiv-
ity between nodes, which is described in the following.

Theoretically, a signal sent out by one node affects all other
nodes in the simulation (if operating in the same frequency range).
However, the signal is attenuated, so that the received power at
nodes very far away from the sending node may be so low that it
is negligible. In order to reduce the computational complexity in
MiXiM, nodes are connected only when they are within the max-

imal interference distance. The maximal interference dis-
tance is a conservative bound on the maximal distance at which
a node can still possibly disturb the communication of a neigh-
bor. Please note that the maximal interference distance does not
specify the maximal distance at which messages can be (correctly)
received. A MiXiM connection is probably better defined by its
complement: All nodes that are not connected, definitely do not in-
terfere with each other. Following this concept, a node that wants
to receive a message from a communication peer, also receives all
(interfering) signals and can, thus, decide on the interference level
and resulting bit errors.

The presence of objects in the propagation environment also im-
pacts the maximal interference distance. Objects may shield two
nodes from each other as shown in Figure 4 because the additional

a b c d

(a) Free space

a b c d

(b) Obstructed

Figure 4: The presence of an object within the line-of-sight be-
tween two pairs of connected nodes, a,b and c,d, decreases the
maximal interference distance of node c.

attenuation that they imply reduces the maximal interference dis-
tance. Thus, objects may cause two nodes to be disconnected, in-
creasing the probability of the hidden node problem.

3.3 Wireless channel models
MiXiM’s channel models express radio propagation effects as

time variant factors of the instantaneous Signal-to-Noise Ratio (SNR)
γ of the received signal1. Although such SNR-based models ab-
stract the exact signal behavior, e.g. the current phase shift, they
enable the separate calculation of channel effects and, thus, ad-
justing the required accuracy by selecting the modeled effects and
time-scale. On this SNR-level, MiXiM already includes the fol-
lowing widely accepted channel models for path-loss, shadowing,
large and small-scale fading [8, 20].

Small-scale fading, i.e. determining the variation of a wireless
channel at small time scale, is caused by mobility in the propa-
gation environment. We model small-scale fading using the typ-
ical “Jakes-like” method [8] with the “land mobile” Autocorrela-
tion Function (ACF) (Table 2.1 in [20]). This model is parameter-
ized by a maximum Doppler shift according to carrier frequency
fc and velocity v of the fastest moving object in the propagation
environment, e.g. a moving user. This fading model is based on
an Non-Line Of Sight (NLOS) assumption modeled by Rayleigh-
distributed signal amplitudes resulting in an exponentially distributed
instantaneous SNR γi, j for the channel from user i to user j. The
model supports frequency-selective fading (as occurring in wide
band systems, e.g. WLANs), which is parameterized by the mean
delay spread and can be easily extended to further dimensions of
the signal, e.g. spatial fading for multi antenna systems. While
the model as such supports reciprocal channels and correlation be-
tween multiple signal dimensions, in typical scenarios, the instanta-
neous SNR is assumed to be independent and identically distributed
(i.i.d.) for different channels (i, j). This means, first, that all users
are sufficiently separated in space and, second, that the channels
are non-reciprocal, i.e. γi, j 6= γ j,i.

The resulting i.i.d. autocorrelated Rayleigh fading model reflects
a typical channel scenario found in office or urban environments
with many small stationary and uniformly distributed scatterers and
moving users. With moving users, naturally, the distance to the des-
tination d may change over time. Therefore, path loss, i.e. model-
ing the attenuation of signals during propagation, becomes time se-
lective – an effect also known as large-scale fading. Here, standard
methods are employed incorporating path loss as an environment-
dependent negative exponent (−α) of the time-selective distance
d(t) between the communicating terminals.

Finally, the effect shadowing abstracts many physical effects such
as reflection, diffraction, scattering, and absorption. Typically, shad-
owing is modeled by i.i.d. log-normal attenuation reflecting urban
environments.

To implement shadowing and fading a block model has to be
1Unless noted otherwise, we employ linear SNR values.

used requiring that γi, j stays constant during a so-called block time.
This interval typically refers to a Physical layer (PHY) interleaver
block or to the minimal coherence time of the channel. Therewith,
each of these blocks experiences a quasi-static channel while the
ACF defines whether consecutive blocks fade independently.

Although the above models are widely-used, they are of course
not suitable for any situation. For example, a Nakagami-type am-
plitude distribution may be preferred for scenarios with a LOS com-
ponent, or a different ACF may be chosen to model an open-space
scattering environment. Nonetheless, due to their clear separation,
in MiXiM, all these components can be exchanged easily and can
be used to derive further model variants. A standalone implemen-
tation of these models for OMNeT++ is available in [21].

3.4 Physical layer models
At the physical layer, essentially the used modulation and For-

ward Error Correction (FEC) coding and decoding functions define
the bit error rate and throughput of a system. As for the effects of
wireless channels, the effect of these functions can be modeled at
SNR-level.

At this level, FEC introduces a so-called coding gain at the re-
ceiver, which can be expressed by a factor g to the SNR of the
detected signal. This coding gain depends on the used code, its
rate Rc, and the employed decoding algorithm [19]. While an un-
coded transmission is expressed by g = 1, typical channel codes
provide coding gains larger than 2 (Table 8.2-15 in [19]). For a sin-
gle channel observed at the receiver, this simply results in γ̂ = γ ·g
for the SNR after decoding. This SNR value is then compared to
an SNR threshold (thγ) to model transmission errors in the decider
(Section 4.3.4) and a transmission error is assumed at the receiver
if γ̂ < thγ . Typically, the SNR threshold thγ calibrates the system to
stay below a given Packet Error Rate (PER) bound, e.g. as defined
in the standard of the communication system [15]. It is selected
a-priori depending on the receiver sensitivity for the chosen mod-
ulation scheme as given in the transceiver data sheet or approxi-
mated [19]. By selecting thresholds and coding gain independently
per terminal, terminals employing different PHY parameters can be
modeled. Furthermore, by varying thresholds and coding gain over
time, rate adaptation is supported.

In addition to systems detecting a bit from a single channel, this
SNR-based model easily extends to diversity receivers where sev-
eral channels are joined before the bit detection is made. Such
systems exploit differently faded channels and employ a filter, e.g.
Maximum Ratio Combining (MRC) [19], to combine the signals
received from L channels to a single signal used for bit detec-
tion. On SNR-level this signal combining can be modeled as γ̂ =
∑

L
l=1 γl · gl defining the instantaneous SNR reached after combin-

ing and decoding. For each employed channel l, a different code or
modulation may be chosen by defining an independent coding gain
gl or threshold thγ,l . This combining model can be used to model
diversity receivers combining signals in different dimensions, e.g.
OFDM subcarriers, or multi-antenna systems. Using this diversity
receiver model for simulating cooperative multi-antenna relaying
networks is described in [14] in more detail.

4. MIXIM BASE IMPLEMENTATION
In this section we introduce the base implementation concepts of

the MiXiM framework. Specifically, we give details on the util-
ity module concept, the mobility and connection management, the
channel implementation, and some basics about the physical layer
implementation. Furthermore, a timer abstraction is introduced as
an optional way to use timers in a simulation.

4.1 Utility module
The purpose of simulation is to gain insight in the function and

performance of a protocol or system. To this end, the experimenter
needs to collect data, like estimated node locations, throughput or
delay. When the protocol is finished, another researcher may want
to use the code and compare it with other protocols under different
circumstances. Often he needs to collect similar data as the first
researcher. It is hence desirable that the performance instrumenta-
tion remains in the protocol code, but it should have a negligible
impact if it is not needed. Furthermore, the instrumentation code
should be independent from the analysis tool used to gain insight.
One researcher may prefer to write trace files for offline analysis;
another researcher may use Akaroa [11] to simulate until a certain
confidence level is reached; and yet another researcher may prefer
to calculate all results online.

The blackboard contained within the utility module provides
a general solution for this problem. The instrumented module (“pub-
lisher”) publishes the observed parameter on the blackboard. The
meaning of a parameter is encoded in its class, as standard for ob-
ject oriented languages. The blackboard then informs all parties
that are interested in this particular parameter (“subscribers”). Of-
ten, the publishing module is the instrumented protocol, while the
subscriber is usually a module that performs statistical analysis.
This allows each researcher to plug in his preferred statistical anal-
ysis method. At the same time, the overhead for the instrumentation
(publishing) is a simple function call that has a constant execution
time for each parameter. Of course, the execution time increase if
more subscribers are interested in this particular parameter.

The same concept is used for parameters, which need to be ac-
cessed or updated from multiple modules within a node. The pub-
lisher can publish the parameter as described above. Every sub-
scriber will get a notification about the change and can take appro-
priate action. Details on the publish-subscribe interface used can be
found in [10] and the Mobility Framework manual [5]. The util-
ity module can also keep local copies of parameters published on
the blackboard. This way, the utility module complements the
push interaction of the blackboard with a pull interaction for appro-
priate parameters.

4.2 Mobility and connectivity
Mobility and connectivity management is one of the main tasks

of the MiXiM base framework. It is crucial for a simulation to
be able to provide a given level of accuracy and at the same time
keeping the computational complexity at a reasonable level.

We decided to handle mobility in a distributed manner. It is han-
dled locally by a mobility module in every entity. Decisions how
and where to move neither affect other entities nor do they require
global knowledge. Connectivity management is handled centrally
by the ConnectionManager. In order to set up and tear down
connections, the distances between nodes have to be calculated,
for which the global knowledge of the positions of all nodes is re-
quired.

4.2.1 Mobility module
Each entity has a mobility sub-module, responsible for the

movements of the node or object. As already mentioned, the accu-
racy (and with this the computational complexity) of the mobility
can be adjusted using the update interval parameter.

The BaseMobility module is responsible for the graphical rep-
resentation of an entity. Every time the position is changed, it up-
dates the graphical representation. It also publishes the new po-
sition on the utility module of the node, so that other modules
get informed. One of the modules that needs to get informed about

changes in the position of a node is the physical layer which is re-
sponsible for updating the position with the ConnectionManager.
Another functionality implemented in the BaseMobility module
is the border handling as described in Section 3.1.

The only task left to be implemented for specific mobility models
is the actual movement pattern of the nodes. Some of the models
available in MiXiM are described in Section 5.3.

4.2.2 Connection management
The ConnectionManager module is responsible for establish-

ing connections between nodes that are within the maximal inter-
ference distance of each other and tearing down these connections
once they exceed this distance. The loss of connectivity can be due
to mobility (i.e. the nodes move too far apart) or due to a change in
transmission power or a crashed node etc.

An important factor influencing the maximal interference dis-
tance is the attenuation caused by objects within the line-of-sight
of two nodes as shown in Figure 4. As already introduced in Sec-
tion 3.1, each object has a frequency dependent attenuation factor.
All objects have to register with the ObjectManager (the central
authority for managing objects in the simulation). The object man-
ager implements a line segment intersection algorithm that checks
whether a line connecting two points in the propagation environ-
ment intersects with the borders of one or more objects. The addi-
tional attenuation is then determined by adding up the frequency-
dependent attenuation factors of the objects intersecting the line.
The connection manager uses this value for adjusting the maxi-
mal interference distance of two nodes and, thus, the presence of
objects may cause two nodes to be disconnected. Since MiXiM
supports multiple frequency ranges by means of multiple connec-
tion managers, objects can be defined with attenuation factors per
connection manager.

MiXiM provides two possibilities how to establish communica-
tion channels between nodes. The first version – mainly for visual-
ization and debugging – uses OMNeT++ connections. While this
approach is not very memory efficient (6 gates are needed for every
connection), it enables the user to visualize the network for debug-
ging reasons. The other option is to use the sendDirect function
of OMNeT++, only requiring one gate per NIC. This option is es-
pecially useful for running the simulation in command line mode
without visualization. To further speed up connection updating, the
connection manager implements a grid based approach. The play-
ground is divided into quadrants with the edge length set to the
maximal interference distance. When a node changes its position,
the connection manager only has to update the connections of this
node to all other nodes within its own and neighboring quadrants.
Depending on the size and density of the network, this can result
in a significant performance improvement. For details please refer
to [10].

As previously mentioned, it is possible to have multiple connec-
tion managers in MiXiM. This enables the simulation of different
orthogonal spectrum ranges while reducing the memory consump-
tion and computational complexity. In Figure 1, e.g., a GSM net-
work and a WLAN network are presented. The assumption is that
the two spectral ranges are sufficiently separated, so that we can
assume that GSM communication does not effect WLAN commu-
nication going on at the same time. As can be seen in Figure 1, it is
also possible to have hybrid nodes, i.e. nodes having both a GSM
and a WLAN NIC. It is the responsibility of the NIC (and not the
node) to register with the desired connection manager. Only reg-
istered NICs will be connected by the respective connection man-
agers.

Figure 5: Physical layer class graph

4.3 Physical layer
The physical layer is the core part of a wireless node in MiXiM.

It is responsible for message sending and receiving, collision de-
tection, and bit error calculation. Additionally, it is responsible for
applying the channel models used in the simulation.

The MiXiM physical layer is divided into three parts, which
are described in detail in the following sub-sections. The Base-

PhyLayer itself provides the interfaces to the MAC layer and the
physical layers of other nodes. The AnalogueModels are responsi-
ble for simulating the attenuation (like shadowing, fading and path
loss) of a received signal. Finally, the Decider is responsible for
evaluation (classification as noise or signal) and demodulation (bit
error calculation) of the received messages. To provide a clear in-
terface and to avoid memory overhead we have designed the ana-
logue models and the decider as pure C++ classes instead of sep-
arate OMNeT++ modules. The class graph of a physical layer of
MiXiM is shown in Figure 5.

4.3.1 The signal concept
The signal strength of a message sent from one node to another

is influenced by the environment it travels through. As shown in
Section 3.3, this can be modeled with attenuation factors caused
by path loss, shadowing and fading. Furthermore, a message can
be sent using multiple frequencies (e.g. OFDM) and using multiple
antennas (MIMO). Adding up all those possibilities, a message can
have varying sending power, attenuation, and bit-rate (modeling
modulation and coding) in time, space and frequency.

In MiXiM we decided to create the signal class to model this
complex process. Each message has an attached signal object rep-
resenting sending power, attenuation, and bit-rate in the three di-
mensions time, frequency, and space. An example for the sending
power (TX) is shown in Figure 6. In order to send a message, a
node has to specify the sending power and bit-rate in the appro-
priate dimensions. The receiving node then adds the attenuation.
Based on the whole signal, bit errors can be calculated.

4.3.2 BasePhyLayer
Apart from message sending and receiving, the BasePhyLayer

acts as an interface between physical layer messages (AirFrames)
and the AnalogueModel and the Decider. For maximal modular-
ity and flexibility, different analogue models and deciders can be
plugged into the physical layer.

When receiving a message, the physical layer first passes the
message to the analogue model, which calculates the attenuation
part of the signal. The physical layer is then responsible for simu-
lating the propagation and transmission delay of the message. The
message is passed at least twice to the decider: at the beginning and
at the end of the message. However, the decider can also request

Figure 6: Example signal for sending power (TX)

to get the message at arbitrary times in-between. Finally, after the
decider calculates the bit errors, the message has to be handed to
the MAC layer.

Additionally, the physical layer stores all messages in the Chan-
nelInfo class. The ChannelInfo class is a service provider that
keeps track of all AirFrames on the channel. ChannelInfo pro-
vides a function that returns all AirFrames intersecting with a
given time interval. The decider uses this function in order to
calculate the SNR of a given message. AirFrames are disposed
by ChannelInfo once all other time-intersecting AirFrames are
completely received.

4.3.3 Analogue models
The real receiving power of a received message is a function

f : Rn → R from time, frequency and space to receiving power.
Since we do not have attenuation in OMNeT++, MiXiM has to
simulate features like path loss, shadowing and fading.

Each of these attenuation sources can be represented by another
function ai : Rn → R from time, frequency and space to attenua-
tion. The attenuation of a signal is calculated by implementations
of fading, shadowing and path-loss models. Note that an arbitrary
number of analogue models can be plugged into the physical layer.
Each analogue model is basically a filter class for signals.

Summing up the attenuation of all analogue models gives the
attenuation part of the signal, which is calculated at the start of
the reception of a message. Together with the sending power of
a received packet the decider can later on calculate the SNR and,
thus, bit errors.

4.3.4 Decider
There are three main tasks to the Decider. First of all, the de-

cider has to classify incoming messages into receivable messages
or noise. Second, at the end of receiving a receivable message, the
decider has to calculate the bit errors for the message. Third, it has
to provide information about the current state of the channel.

There are several possible models determining how and when a
physical layer decides whether a message can be received or is just
noise. The MiXiM decider supports all of these models. Upon the
start of the reception of a message, the physical layer passes the
message to the decider. The decider can then either decide right
away whether to treat the message as noise or not, and / or it can
request the physical layer to resubmit the packet after a certain time.

This concept even enables the decider to revise its decision (e.g. if
a second, much stronger message arrived in the meantime).

The latest time that the decider can request the message from the
physical layer is at the end of the receiving process of the message.
This is also the time when the decider has to calculate the bit er-
rors for the message. In order to do so, it requests all intersecting
messages from the ChannelInfo in order to calculate the SNR for
the message. It then can either make a simple binary decision (re-
ceived correctly or not) or it can calculate bit errors and positions,
depending on the complexity of the particular decider model.

The last task of the decider is to provide information about the
channel state. This channel state is needed at the MAC layer, e.g.
for Carrier Sense Multiple Access (CSMA) protocols. The MAC
layer can request the decider to sense the channel for a certain
amount of time. The decider then returns whether the channel is
currently idle or busy.

4.4 Timer
MiXiM provides a number of timer modules for use by proto-

cols, allowing for simple use of timers without having to know
about the underlying systems, and providing common functionality
for creation and destruction of timers with minimal user interven-
tion. Currently, MiXiM provides three types of timers: (1) Simple
one-shot Timer that fire once n seconds after they are started. (2)
RepeatTimer, i.e. timers that fire every n seconds. (3) Frame-
Timer, which are like RepeatTimer, but all of the separate timers
on different nodes are guaranteed to fire at about the same time
(typically within a few milliseconds of each other).

In addition, OMNeT++ objects can be “attached” to timers to al-
low for storing arbitrary timer-related information. These are sup-
port modules, which can be included by any MiXiM modules that
require their functionality, but do not slow down modules that do
not require their functions.

5. MIXIM PROTOCOL LIBRARY
MiXiM allows every module in the simulation to be replaced

by another module, adding or overriding functionality to the base
implementation. For some of these modules there is already a wide
choice of implemented protocols available.

5.1 MAC protocols
A Medium Access Control (MAC) protocol is designed to make

decisions about the sharing of a medium for communication be-
tween nodes of a system. For wireless systems, that shared medium
is the air. A MAC protocol needs to decide when a node should
send out messages, such that the messages do not interfere with
messages of other nodes. Additionally – especially for low power
devices – the MAC protocol should determine at what times the
radio can be switched off to avoid listening to the medium (which
consumes power) when no other nodes are sending.

Support for such MAC protocols, especially designed for low
power sensor networks, is based upon the MAC Simulator [3] de-
veloped by the TU Delft, originally for work with the T-MAC pro-
tocol [9]. Inherited from the MAC Simulator, MiXiM provides a
wide variety of different MAC protocols encompassing a signif-
icant proportion of the current design space for sensor network
MACs. There are two base classes for building sensor network
specific MAC protocols:

BaseMACLayer - basic MiXiM-style layering interface, provid-
ing en/decapsulation of packets, but no other functionality.

EyesMACLayer - provides a number of support functions for sen-
sor network MACs, including support functions for low-power

listening [18] and Sift-inspired [12] carrier-sense period choos-
ing, as well as generating statistical information about MAC
protocol performance.

The MAC Simulator was unable to simulate motion of nodes, or
a detailed radio model, but now these functionalities are provided
by MiXiM and can be used to further explore the effect on MAC
protocols. We further intend to implement our more recent work
with the λMAC framework [16] for MiXiM, which will also help
with easing MAC protocol implementation.

MiXiM also already implements standard MAC protocols for
wireless Local Area Networks (LANs) and Personal Area Networks
(PANs). The IEEE 802.11b/g family, as well as the IEEE 802.15.4
standard are ported from the Mobility Framework to MiXiM.

The base structure of MiXiM also makes it very easy to imple-
ment new MAC protocols. For instance, the “FrameTimer” support
modules can be used to easily implement Time Division Multiple
Access (TDMA) based or hybrid protocols (e.g. T-MAC).

5.2 Network layer protocols
MiXiM supports networking protocols for a wide variety of traf-

fic paradigms (source-to-sink; any-to-any; local neighborhood; etc),
and these are further supported by the other simulation modules,
e.g. localization data (Section 5.4) for geographic routing, motion
data derived from the mobility module (Section 4.2.1) for decisions
regarding when to update routes, or network-wide timers (Section 4.4)
for synchronized protocols. MiXiM is currently being used to test
the Ley Line Routing protocol [7].

5.3 Mobility models
There is already a rich library of mobility modules implemented

for MiXiM, which includes simple modules like “constant speed
mobility” and “circle mobility”, but also modules that parse AN-
Sim [1] trace files and BonnMotion [2] files. It is also very easy
to create new mobility modules, by sub-classing from the BaseMo-
bility class. The BaseMobility class provides all the function-
ality needed for mobility handling in MiXiM – only the specific
mobility pattern has to be implemented in order to create a new
mobility module.

5.4 Localization
Localization (i.e. determining position information of the cur-

rent node) is a service provided by the optional localization layer.
Optional means that it is not included in the standard software pro-
tocol stack, but must be added to the node module explicitly. Thus,
simulations that do not use localization do not have a negative per-
formance impact from the overhead of a localization protocol. This
optional nature allows the placement of the localization layer be-
neath the network layer, such that geographic routing algorithms
can use the localization layer for position information.

Support for existing localization algorithms is ported from the
Positif [6] localization framework developed at the TU Delft. Posi-
tif targets static wireless networks and contains the algorithms dis-
cussed in [13] as well as a statistics based algorithm [17]. Positif
gathers and outputs statistics on the performance of the algorithms
and comes with a range of analysis tools to visualize the output.
The advantages of running Positif algorithms on MiXiM are: they
can be tested with different NICs and the influence of objects on
the algorithms can be analyzed. Furthermore, the experiments are
more scalable since MiXiM uses the more scalable handleMes-

sage compared to activity used in Positif. As Positif algorithms
require a specific interface, a new base layer called PositifLayer

was developed specifically for Positif algorithms. Consequently,
there are two base layer to build localization algorithms on:

BaseLocalization - the base layer following MiXiM conventions.
It simply forwards messages from upper and lower layers and
maintains a list of anchors and unknown neighbors. Algo-
rithms based on BaseLocalization can take advantage of
the full potential of MiXiM.

PositifLayer - an interface layer between the Positif algorithms
and the MiXiM simulation framework. Algorithms based on
PositifLayer can use the Positif analysis tools, but support
only static networks.

The combination of localization with the mobile abilities of MiX-
iM enables a wide range of simulation scenarios, such as initializ-
ing a static network with a mobile anchor, or motion detection and
object tracking with either static or mobile anchors; all in combi-
nation with the range of other protocols that MiXiM offers.

The BaseLocalization layer aims to provide basic function-
ality for a wide class of localization algorithms. The localization
layer includes position information in the header of messages from
upper layers, such that algorithms can be developed that have lit-
tle or no message overhead. Several algorithms implemented on
BaseLocalization are available.

6. CONCLUSION
In this paper we introduce MiXiM to the OMNeT++ commu-

nity – a powerful simulation framework and concise modeling chain
for mobile and wireless networks.

Although MiXiM is still in development, it already provides a
solid base of models and implementations for simulating wireless
and mobile networks, including models for mobile environments,
nodes and objects, radio propagation models for multiple signal di-
mensions, physical layer models for modulation, coding and diver-
sity receivers as well as an extensive library of MAC protocols and
localization algorithms. Furthermore, most of the work done in the
predecessors of MiXiM is being integrated. Thus, MiXiM profits
from the rich experience gathered from writing wireless simulation
frameworks for OMNeT++. MiXiM’s modular design and pioneer-
ing concepts such as the signal functionality enable the straightfor-
ward definition of complex scenarios as well as the easy integration
of new models and protocol implementations.

It is, therefore, our hope that MiXiM’s clear structure and its ex-
tensive modeling base motivates researchers to contribute to this
open-source project hosted at http:\\mixim.sf.net. Joining
forces in the MiXiM simulator will quickly provide a powerful
simulation framework and performance analysis tool to the wire-
less R&D community.

7. REFERENCES
[1] ANSim - Ad-Hoc network simulation. [online]. Available:

http://www.ansim.info/.
[2] BonnMotion. [online]. Available:

www.cs.uni-bonn.de/IV/BonnMotion/.
[3] MAC simulator. [online]. Available:

http://www.consensus.tudelft.nl/software.html.
[4] MiXiM simulator for wireless and mobile networks using

OMNeT++. [online]. Available:
http://mixim.sourceforge.net/.

[5] Mobility framework (MF) for simulating wireless and
mobile networks using OMNeT++. [online]. Available:
http://mobility-fw.sourceforge.net/.

[6] Positif localization simulation framework. [online].
Available: http://www.consensus.tudelft.nl/software.html.

[7] M. Ali, T. Parker, A. Dunkels, K. Langendoen, and P. Levis.
L2R: Routing in Low Power and Lossy Networks with
Constant State. [online]. Available: http://rl2n.com/.

[8] J. Cavers. Mobile Channel Characteristics. Kluwer
Academic, 2000.

[9] T. van Dam and K. Langendoen. An Adaptive
Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In 1st ACM Conf. on Embedded Networked
Sensor Systems (SenSys 2003), pages 171–180, Los Angeles,
CA, USA, Nov. 2003.

[10] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and
H. Karl. A Mobility Framework for OMNeT++. 3rd
International OMNeT++ Workshop, at Budapest University
of Technology and Economics, Department of
Telecommunications Budapest, Hungary, Jan. 2003.

[11] G. C. Ewing, K. Pawlikowski, and D. McNickle. Akaroa2:
Exploiting Network Computing by Distributing Stochastic
Simulation. In Proc. European Simulation Multicoference
ESM’99, pages 175–181. International Society for Computer
Simulation, June 1999.

[12] K. Jamieson, H. Balakrishnan, and Y. Tay. Sift: A MAC
Protocol for Event-Driven Wireless Sensor Networks. In 3rd
European Workshop on Wireless Sensor Networks
(EWSN’06), pages 260–275, Zurich, Switzerland, Feb. 2006.

[13] K. Langendoen and N. Reijers. Distributed Localization in
Wireless Sensor Networks: A Quantitative Comparison.
Computer Networks, 43(4):500–518, 2003.

[14] H. S. Lichte and S. Valentin. Implementing MAC protocols
for cooperative relaying: A compiler-assisted approach. In
Proc. Int. Conf. on Simulation Tools and Techniques for
Commun., Networks and Systems (SIMUTools), 2008.
submitted for review.

[15] B. O’Hara and A. Petrick. IEEE 802.11 Handbook: A
designers companion. IEEE Press, 1999.

[16] T. Parker, M. Bezemer, and K. Langendoen. The λMAC
framework: redefining MAC protocols. PDS Technical
Report PDS-2007-004, Delft University of Technology, Sept.
2007.

[17] T. Parker and K. Langendoen. Refined Statistic-based
Localisation for Ad-Hoc Sensor Networks. In IEEE
Workshop on Wireless Ad Hoc and Sensor Networks
(associated with Globecom 2004), Dallas, TX, Nov. 2004.

[18] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In 2nd ACM Conf. on
Embedded Networked Sensor Systems (SenSys 2004), pages
95–107, Baltimore, MD, USA, 2004.

[19] J. G. Proakis. Digital Communications. McGraw-Hill, 4
edition, 2000.

[20] M. K. Simon and M.-S. Alouini. Digital Communications
over Fading Channels. John Wiley & Sons, Inc., 2 edition,
2004.

[21] S. Valentin. ChSim – a wireless channel simulator for
OMNeT++. TKN Simulation Workshop 2006, Technical
University of Berlin, Germany, Sept. 2006. Available at
project website: http://wwwcs.upb.de/cs/chsim.

[22] A. Varga. OMNeT++ Discrete Event Simulation System.
Available: http://www.omnetpp.org/doc/manual/usman.html.

