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Computationally efficient simulations of grazing-incidence X-ray diffraction

(GIXD) are discussed, with particular attention given to textured thin

polycrystalline films on supporting substrates. A computer program has been

developed for simulating scattering from thin films exhibiting varying degrees of

preferred orientation. One emphasized common case is that of a ‘fibre’

symmetry axis perpendicular to the sample plane, resulting from crystallites

having one well defined crystal facet towards the substrate, but no preferred in-

plane orientation. Peak splitting caused by additional scattering from the totally

substrate-reflected beam (two-beam approximation) and refraction effects are

also included in the program, together with the geometrical intensity corrections

associated with GIXDmeasurements. To achieve ‘user friendliness’ for scientists

less familiar with diffraction, the mathematically simplest possible descriptions

are sought whenever feasible. The practical use of the program is demonstrated

for a selected thin-film example, perylene, which is of relevance for organic

electronics.

1. Introduction

X-ray diffraction is the most important technique for investi-

gations of periodic structures at the nano-scale. Despite the

steady progress of scanning probe techniques, there is a wealth

of information that can exclusively or most conveniently be

obtained by diffraction. This includes the unit-cell parameters,

crystalline structure, crystallinity and sample anisotropy. For

instance, in the rapidly evolving field of organic electronics,

future success depends crucially on the ability to characterize

molecular structures in organic thin films (Sirringhaus et al.,

1999; Kuzmenko et al., 2001; Samuelsen et al., 2003; Breiby et

al., 2005). Whereas a single crystal exhibits a ‘perfect’ three-

dimensional lattice, powders and films tend to exhibit varying

degrees of order and preferred orientation. Powder and

single-crystal diffraction techniques have reached an

impressive degree of sophistication and automation during

recent years, with a corresponding rich amount of literature

and available software. Computer tools for analysing the in-

between cases, ranging from oriented powders to nonperfect

single crystals, have proven more difficult to develop. Apart

from the computer programs ROD (Vlieg, 2000) for optimi-

zation of surface structures and IsGISAXS (Lazzari, 2002) for

grazing-incidence small-angle scattering, no simulation

programs are available, in particular not for grazing-incidence

wide-angle scattering.

In the common case of a sample with crystallites having a

(high) degree of (uniaxial) preferred orientation about one

axis, an intermediate case of a ‘two-dimensional powder’ with

cylindrical symmetry exists. This geometry is particularly

relevant for thin-film materials, which tend to have crystalline

domains with one crystallographic direction perpendicular to

the substrate, but little or no orientation of the crystallites in

the plane of the substrate. This symmetry also applies to fibres

and to single-molecular-layer Langmuir films (Als-Nielsen et

al., 1994; Kaganer et al., 1999; Kuzmenko et al., 2001). Liquid

crystals and polymer films often exhibit broad in-plane

orientation distributions. Anisotropy is a nuisance in the

analysis of powder diffraction data, but for organic films with

few Bragg reflections, it is a crucial source of structural

information.

The specialized method of grazing-incidence X-ray

diffraction (GIXD) has become well established for investi-

gating the structure of films, surfaces and interfaces (Feiden-

hans’l, 1989; Dosch, 1992; Als-Nielsen & McMorrow, 2001).

The salient feature of GIXD is to enable studies of thin films

on substrates, despite the strongly penetrating nature of hard

X-rays (photon energy > 8 keV). X-rays can be assigned an

index of refraction n = 1 � �n + i�n, where �n is of the order of

10�6, and the imaginary term with �n ’ 10�8 accounts for

absorption. �n and �n can be calculated from the wavelength,

material stoichiometry and density. When the incoming beam

hits the sample surface at a grazing-incidence angle smaller

than the critical angle for total reflection �c (typically near

0.2�), the beam is totally reflected and only the rapidly

decaying evanescent beam penetrates in towards the sample
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interior. The signal from the bulk is thus strongly suppressed,

effectively enhancing the signal-to-noise ratio for scattering

from the surface layers. The penetration depth � into the

sample is of the order of 100 Å for a typical wavelength of

1.5 Å and an angle of incidence �i near �c (cf. Feidenhans’l,

1989). When thin organic films on Si (or glass) substrates are

studied, there are two critical angles, the critical angle of the

film being smaller than that of the substrate. It is then possible

to choose an incidence angle �i for which thin films of, say,

1–300 nm are fully penetrated by the beam, and the effective

scattering volume is limited by the film thickness. Note that,

for reasons of symmetry, in addition the exit angle must be

larger than �c (Dosch, 1992).

In this article we shall review the kinematical framework

necessary for simulating grazing-incidence wide-angle X-ray

scattering, mainly with applications to organic thin films in

mind. Particular attention is given to the degree of preferred

orientation and the special case of two-dimensional powder

symmetry.

To ease the reading, we now briefly present the applied

simulation algorithm, which is a ‘forward’ approach in the

sense that we start at the incoming beam and ‘track’ the X-rays

through the sample and towards the detector. Especially for

weakly scattering samples giving few reflections, combined

with two-dimensional (area) detector devices, this is intuitively

a faster approach than to calculate ‘backwards’ from every

pixel of the detector. The algorithm is a compromise between

‘user friendliness’ and computational efficiency for simulating

samples with varying degrees of cylindrical symmetry. Poly-

crystalline samples are modelled by adding the scattering

contributions from a single crystal that sequentially assumes

all the orientations of the crystalline domains of the actual

sample. The scattering from disparate crystallites is assumed

to be incoherent, and thus intensities rather than amplitudes

are added.

The algorithm is as follows.

(1) For a specified crystallite orientation and lattice plane

(hkl), the reciprocal-lattice vector Ghkl is calculated. Note that

Ghkl is generally different from the scattering vector Q.

(2) Calculate whether the Laue diffraction condition Q =

Ghkl can be fulfilled by rotating Ghkl (or, equivalently, the

crystallite) about the sample plane normal. If it can, the

corresponding scattering sample orientation and the resulting

diffraction peak position are obtained.

(3) The peak intensity is calculated, accounting for

geometrical correction factors, form and structure factors, and

sample volume. If there is preferred orientation, the intensity

is modified by a, typically Gaussian, function of the difference

between the actual and the scattering crystallite orientations.

The organization of this article follows these points closely,

with the subsequent three sections dedicated one-to-one to

the steps of the algorithm. A two-beam model which accounts

also for the totally substrate-reflected beam is described.

Finally, the formalism is applied to a selected example from

organic electronics.

The presented framework has been implemented in the

computer program SimDiffraction with a graphical user

interface, which can be obtained by contacting the first author.

This article provides the basis for understanding and effi-

ciently using the program. To the best of our knowledge,

similar packages for simulating GIXD of polycrystalline films

do not yet exist.

2. Scattering geometry

The conventional ‘2S+2D’ geometry with a monochromatic

beam is employed here, as it is frequently used for GIXD

applied to thin films (Renaud et al., 1995; Vlieg, 1997; Evans-

Lutterodt & Tang, 1995; Kuzmenko et al., 2001; Bunk &

Nielsen, 2004). This geometry has two angles defining the

sample orientation (’ about the sample normal, and the

incidence angle �i), and two detector angles, � (in-plane) and �

(out-of-plane). The scattering angle 2� is determined by the

two detector angles � (vertical) and � (horizontal), as illu-

strated in Fig. 1, with cos2� = cos� cos�. The detector is at a

distance L, ‘the camera length’, from the sample rotation axes.

In addition to the angles and dimensions of the instrument,

the orientation of the individual crystallites must be para-

meterized. To this end, several right-handed orthogonal

coordinate systems sharing the same origin are employed (cf.

Table 1), related to each other by standard rotation matrices;

for example, for rotation by an angle � about the x axis,

Rxð�Þ ¼

1 0 0

0 cos � sin �

0 � sin � cos �

0

@

1

A: ð1Þ

To parameterize the experimental setup, we use a laboratory

coordinate system (xlab, ylab, zlab), ylab being in the (horizontal)

beam direction and zlab in the vertical. An associated reci-

procal space coordinate system (Qx,lab, Qy,lab, Qz,lab), being

collinear with (xlab, ylab, zlab) but having units of Å
�1, is used in

the later considerations.

It is expedient to consider also a sample coordinate system

(xs, ys, zs), with an associated reciprocal lattice (Qx, Qy, Qz),

which is related to the laboratory system by two rotations

Rx(�i) � Rz(’). The first rotation, by ’, is the sample rotation

angle about the film normal; the second accounts for the

incidence angle �i. In the sample coordinate system, the

surface angles �i, �f and  are defined as in Fig. 1(c). Because

of the substrate, a sample horizon is introduced in the GIXD

geometry, i.e. measurements cannot be performed for �f < 0.

Note also that because the incidence angle is assumed fixed,

the only specular point that can be reached is with �i = �f = �/2

(and  = � = 0). There is thus a region of Q space that cannot

be explored using GIXD, as illustrated in Fig. 2.

At the lowest level of the hierarchy, each crystallite is in

principle assigned an orthogonal coordinate system (xc, yc, zc),
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Table 1
The hierarchy of coordinate systems.

Real space Reciprocal space

Crystallite (xc, yc, zc) –
Sample (xs, ys, zs) (Qx, Qy, Qz)
Laboratory (xlab, ylab, zlab) (Qx,lab, Qy,lab, Qz,lab)



employing the ‘Protein Data Bank (PDB) convention’, which

defines a along xc, and the ab plane to contain yc. The reci-

procal vector c* will then be parallel to zc. Thus, knowing the

unit-cell parameters a, b, c, �, � and �, the unit-cell vectors are

obtained by a = (a, 0, 0), b = (bcos�, bsin�, 0) and c by cx =

ccos�, cy = (ccos� � cxcos�)/sin�, cz = (c2 � cx
2 � cy

2)1/2. The

reciprocal-lattice vectors a*, b*, c* are calculated using the

well known standard formulae. Any point in the reciprocal

lattice associated with the crystallite can now be indexed byG0

= ha* + kb* + lc*, where h, k, l are Miller indices (Als-Nielsen

& McMorrow, 2001).

In order to relate the ith crystallite coordinate system to the

sample coordinate system, we use the product of two opera-

tions,Wi � R. The matrix R defines the easy axis, which can be

considered the average of all crystallite orientations. R is

taken to be the product of three successive rotations by angles

�x, �y and �z, thus fully specifying the crystallite orientation in

three dimensions. The first rotation by an angle �y is about the

ys axis, followed by �x about the xs axis and finally �z about the

zs axis. A single 3 � 3 orientation matrix is obtained by taking

R(�x, �y, �z) � Rz(�z) � Rx(�x) � Ry(�y). As R defines the

dominant (average) orientation, coined the ‘Frank director’ in

the special case of liquid crystals, it is natural to define GD �

RG0.

Wi denotes orientational deviations of the ith crystallite

from the predominant orientation, as will be described in

more detail in x4.1. For modelling polycrystalline systems with

a distribution of orientations, we employ a set of values for the

orientational deviations, {Wi}. Intuitively, for a single crystal

there is only one domain, and thus {W} = 1. In summary, the

reflection having indices hkl is modelled by a set of vectors

{Ghkl} in the sample coordinate system by

Ghkl

� �

¼ Wi
� �

Rð�z; �y; �xÞG0ðh; k; lÞ ¼ Wi
� �

GD: ð2Þ

For simplicity of notation, the remainder of this article refers

to a single vector Ghkl, which can be understood as any of the

vectors contained in the set in (2).

3. Diffraction from oriented
powders

The scattering vector is defined byQ �

kf � ki, where ki and kf denote the in-

and outgoing wavevectors, respectively.

In the laboratory coordinate system, ki
= kŷylab. For elastic scattering, k � |ki| =

|kf| = 2�/	, and Q = |Q| = 2ksin�. The

Laue conditions for diffraction from

lattice plane (hkl) state that Q should

be equal to the reciprocal-lattice vector

Ghkl. This condition is elegantly visua-

lized by the Ewald construction in

reciprocal space. When a reciprocal-

lattice point intersects the Ewald

sphere, diffraction takes place

(Warren, 1969). The cylindrical

symmetry of films with random in-

plane orientation of crystallites implies

no ’ dependence; the lattice point Ghkl
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Figure 1
Sketch of the geometry of a grazing-incidence diffraction setup with a
point detector, seen in (a) side view and (b) top view. Note that the
drawings are not to scale. The rotation ’ is about the sample normal. The
scattering vector Q is generally not parallel to the sample normal n. (c)
Definition of the ‘surface angles’, �i being the incidence angle, �f the exit
angle and  the in-plane angle.

Figure 2
The diffraction condition for samples having cylindrical symmetry. Ghkl is the reciprocal-lattice
vector to the plane (hkl) of a given oriented crystallite. Rotating this vector Ghkl about the sample
normal defines a ‘ring’ in reciprocal space, with radius Gr and height Gz. If this ‘ring’ intersects the
Ewald sphere, the diffraction condition is fulfilled at two angles, ’

ð1Þ
E and ’

ð2Þ
E = 180� � ’

ð1Þ
E , taken as

the angles between the Qx,lab axis and the intersection points between the ‘ring’ and the Ewald
sphere. At these intersection points, |kf| = |ki|, and kf = ki + G. The angle !|| is used to model samples
with in-plane anisotropy, as it gives a measure of the orientational difference between the actual
crystallite orientation and the diffraction condition. (a) Perspective drawing for �i = 0. (b) View
along Qx,lab for �i 6¼ 0.



in reciprocal space is transformed into a ‘ring’ of radiusGr and

‘height’ Gz. For samples with a tendency of in-plane orienta-

tion, the density along this ring is a function of ’. Even in the

case of full fibre symmetry it is crucial to know the orientation

of the unit cell in terms of Wi � R, as these parameters control

the radius Gr and height Gz of the ring. We transform Ghkl to

cylindrical coordinates (Gr, ’, Gz) by taking

Gr ¼ ðG2
x þG2

yÞ
1=2
; Gz ¼ Gz; G ¼ ðG2

r þG2
zÞ

1=2
;

Gx ¼ Gr cos ’; Gy ¼ �Gr sin ’:
ð3Þ

Here, G ffi |Ghkl|, and the angle ’ in the xy plane is defined to

be zero on the Qx,lab axis and positive clockwise.

The diffraction condition for a system with cylindrical

symmetry is that the above-mentioned Ghkl ‘ring’ intersects

the Ewald sphere, thus fulfilling the Laue condition for a given

(hkl) lattice plane. Dropping the hkl subscript for clarity, we

letGE denote a vector that fulfils the diffraction condition. It is

clear from Fig. 2 that, by symmetry, there are two intersection

points between the ring and the Ewald sphere. We let ’
ð1Þ
E and

’
ð2Þ
E denote the angles between the Qx,lab axis and these

intersection points. The second solution ’
ð2Þ
E = 180� � ’

ð1Þ
E

corresponds to GE,x !�GE,x. Clearly, in the special case that

the hkl ring barely touches the Ewald sphere, there will be just

one solution at ’E = 90�. Our way to proceed is thus to

calculate the angle ’E of the intersection point (cf. Fig. 2). To

this end, the Ewald sphere is parameterized by

Q2
x;lab þ ðQy;lab þ kÞ

2
þQ2

z;lab ¼ k2: ð4Þ

By applying a rotational transformation Rx(�i) as in (1) and

(2), one obtains Ghkl = hGrcos’, �Grsin’cos�i � Gzsin�i,

�Grsin’sin�i + Gzcos�ii. By inserting these components into

(4), it is straightforward to show that

sin ’E ¼
1

2k

G2

Gr

1

cos �i
�
Gz

Gr

tan �i: ð5Þ

This equation yields solutions for ’E
(1) in the interval (0, 90�),

as it should. Having obtained ’E, the components GE,x, GE,y

and GE,z are readily calculated from (3). For an in-plane

reflection (GE,z ’ 0, G ’ Gr) and a grazing-incidence angle �i
’ 0, GE,y has a particularly simple solution; GE,y = �G2/2k,

and the standard expression Q = 2ksin’E is retrieved when

noting that Q = G and that ’E is then the Bragg angle.

4. Intensity calculations

Several factors determine the observable intensity Ihkl of a

Bragg reflection in GIXD geometry; it can be expressed by a

slight modification of the general expression found, for

example, in the book by Als-Nielsen & McMorrow (2001):

IhklðQÞ ¼
P

fWig

�

�0 r
2
0 Ncð	

3=vcÞ�Pð�; �ÞLð�; �Þ

� Veffð�; �Þ FðQÞ
�

�

�

�

2�

: ð6Þ

Here, �0 denotes the incoming flux, r0 = 2.82 � 10�15 m is the

classical electron radius and the sum is over all orientations

{Wi}; Nc denotes the total number of unit cells and vc the unit-

cell volume. The Lorentz L(�, �) and polarization P(�, �)

factors have been treated in detail by Smilgies (2002) and will

not be repeated here. Some comments on the effective volume

Veff are given below, and separate sections are devoted to the

corrections for preferred orientation � and also to refraction.

The structure factor F(Q), the key quantity for the crys-

tallographer, can be calculated from the atomic form factors

(also called scattering factors) fj (Wilson, 1995) and the rela-

tive atomic positions rj = (xj, yj, zj), as described in standard

textbooks:

FðQÞ ¼
P

j

fjðQÞ exp 2�iðhxj þ kyj þ lzjÞ
� �

expð�MjÞ: ð7Þ

Mj is the Debye–Waller factor. The atomic form factors f(Q)

for the elements can be found tabulated on the Web (e.g.

http://www.cxro.lbl.gov) or in references such as International

Tables for X-ray Crystallography (Wilson, 1995). Except near

absorption edges, a Cromer–Mann expansion describes the

atomic form factor as a function of energy quite well (Cromer

& Mann, 1968), and this approach is implemented in the

software described here, with parameters as listed by Wilson

(1995).

The (lateral) geometrical variation of Veff as a function of

the detector angles (�, �) is treated for a collimated point

detector by Smilgies (2002). When using a two-dimensional

detector, however, the scattering from the whole beam foot-

print reaches the detector, and Veff is thus a constant. Because

the effective scattering volume Veff of thin films is highly

restricted (‘truncated’) in the direction perpendicular to the

film substrate, the resulting diffraction image is modified by

the fact that a limited number of unit-cell repetitions are

available. The truncation of the crystallites leads to a contin-

uous intensity profile connecting Bragg points in the Qz

direction, i.e. perpendicular to the surface plane. These so-

called crystal truncation rods (CTRs) (Robinson, 1986;

Feidenhans’l, 1989; Als-Nielsen & McMorrow, 2001; Smilgies

et al., 2005) can also be observed for well ordered organic thin

films (Gidalevitz et al., 1997; Breiby et al., 2005). The modifi-

cation of the scattering pattern by CTRs can be considered as

introducing a convolution by the Fourier transform of the

(thin film) sample geometry.

4.1. Preferred orientation

� in (6) is a correction for preferred orientation, which is

vital for this study. The total scattering from all crystallite

orientations is calculated as the incoherent sum of scattering

from all orientations {Wi} in (2), appropriately weighted to

account for preferred orientation as described by an orienta-

tional distribution function (ODF). As this is in fact a way of

estimating an integral over all orientations, it is clear that the

form of {Wi} should be chosen in an efficient way for sampling

the ODF, while keeping the computational burden reasonably

low. A compromise must thus be found between angular step

lengths and numerical accuracy. In principle, for an isotropic

powder sample, {Wi} should cover all orientations, and the

weighting should be uniform. Of course, because there are

much more efficient ways of simulating a powder, we will not
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discuss further this special case. For samples with a

pronounced degree of preferred orientation, there is no need

to spend time performing calculations for orientations

contributing negligibly to the scattered intensity. We remind

the reader that the ‘main’ (or average) crystallite orientation is

described by W = 1.

For fully specifying the orientation of a rigid body, three

rotations are needed. Still, it is often seen that only two

rotations are employed, since for uniaxial samples, the

orientation about the unique axis of the crystallites (the axis

that exhibits preferred orientation) is implicitly assumed to be

isotropic. Empirically, in thin-film samples with preferred

orientation, the crystallites tend to orient with one crystal

plane parallel to the substrate, and if special treatments have

been applied to the substrate, there may also be preferred in-

plane orientation. Thus, it is often convenient to consider

orientation angles !? and !||, describing the angular devia-

tions of the crystallites from the average orientation with

respect to (i) the sample normal and (ii) an in-plane axis of

preferred orientation, respectively. Azimuth offset angles !||,

describing the (azimuthal) crystallite orientations about the

sample plane normal (‘in-plane’), are obtained from

!jj
ð1Þ;ð2Þ ¼ ’E

ð1Þ;ð2Þ � ’0: ð8Þ

For each crystallite orientation, there are two !|| values,

because of the two intersection points of the Ewald sphere (cf.

Fig. 2a). The angle ’0 is obtained by ’0 = �arctan(Ghkl,y/

Ghkl,x). !|| is thus the in-plane difference angle between the

orientation that gives diffraction (’E) and the actual orienta-

tion (’0) (see Fig. 2). In short, !|| describes by which angle

from its present position the sample must be rotated about the

sample plane normal to fulfil the diffraction condition (if at all

possible). For samples with full two-dimensional powder

(cylinder) symmetry, the intensity is independent of !||.

Similarly, for the out-of-plane anisotropy we use the angle !?,

which is the polar angle (‘out-of-plane’) difference between

the actual orientation and the easy axis, obtained by

!? ¼ 
E � 
0: ð9Þ

The angle 
0 ffi arccos(GD,z /GD) is a polar angle in reciprocal

space, obtained for the average orientation GD (cf. x2).

Accordingly, 
E ffi arccos(GE,z /GE) is the polar angle corre-

sponding to the actual intersection with the Ewald sphere. For

samples not exhibiting out-of-plane orientation, all values of

!? are assigned equal weight. Note that the use of only two

angles, the polar !? and the azimuthal !||, is sufficient to

describe a wide range of different ODFs, but it still poses a

limitation on the ODFs that can be described. For example,

this geometry does not cover the case of cylindrical symmetry

with the cylinder axis being in-plane, which is relevant, for

example, for certain liquid crystals with the Frank director

parallel to the substrate. However, in the present context, this

omission is made to simplify the description of the geometry.

4.1.1. Biaxial model. As the simplest conceivable model for

biaxial samples, we suggest the product of two Gaussian

functions,

� Wjj;W?

� �

¼
1

N
exp

�!2
jj

W2
jj

 !

exp
�!2

?

W2
?

� 	

: ð10Þ

The parameters W|| and W? control the in-plane and out-of-

plane degree of orientation, respectively, and N is a normal-

ization factor. Note that because we prefer to distinguish

explicitly between hkl and �hh �kk�ll, this distribution function does

not have the 180� periodicity sometimes seen, for example, in

the Maier–Saupe distribution (Breiby & Samuelsen, 2003). In

the case of isotropic samples, W|| and W? ! 1, giving � = 1.

If approaching a single crystal, W|| and W? ! 0. Cylinder

(uniaxial) symmetry about a preferred vertical axis is obtained

by W|| ! 1. For samples with moderate biaxial orientation,

W|| ’ W? ’ 5–30�. Clearly, equation (10) can be replaced by

other ODFs depending on the problem in hand, or it can be

combined with, for example, mirroring about symmetry axes.

The associated crystallite orientations {Wi} of equation (2)

are calculated from a ‘distribution angle’ !?
i , which denotes a

rotation of the ith crystallite that keeps GD on its current

meridian (thus only changing the polar angle). For the simu-

lations, {!?} is provided by the user, and for a choice of, for

example, {!?} = {�5�, �4�, . . . , 5�}, the orientation distribu-

tion function (ODF) is probed at 11 points around the

dominant orientation GD. Clearly, the range of {!?} should be

chosen to be sufficiently wide to cover the tails of the ODF,

and the spacing should be sufficiently close to obtain a reliable

estimate of the intensity.

4.1.2. Kratky model. Since it is a common description for

uniaxial orientation, we continue with a brief presentation of

our implementation of the classical Kratky (1933) model,

which describes the alignment of rigid rods (crystallites) in an

affine matrix stretched by an elongation ratio 	K. According to

this model, the unique axis of a crystallite (in polymers usually

the chain axis) orients at an angle !? with respect to the

dominant orientationGD according to anODF f(!?), given by

f ð!?Þ ¼
1

4�

	3K

	3K � 	3K � 1
� �

cos2 !?

� �3=2
: ð11Þ

On average, the crystallites orienting with a certain !? assume

all possible rotation angles about the unique axis, all of which

contribute equally to the scattered intensity. Thus, in the

Kratky model, the following parameters are taken as input to

the simulation algorithm: the elongation ratio 	K governing

the distribution width, the set of angles {!?} and an angular

step length for the full rotation of each crystallite about its

unique axis.

In the important limit of a high degree of cylindrical

symmetry (biaxial model: W? ! 0, W|| ! 1; Kratky model:

	K ! 1), the two presented models give the same result.

4.2. Refraction

Refraction effects are governed by Snell’s law, n0cos�0 =

n1cos�1, where subscripts 0 and 1 denote different materials

and the angles �0 and �1 are defined with respect to the

interface (rather than the interface normal). Because n

decreases with increasing electron density, total reflection
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occurs below a (small) critical angle �c = 21/2(1 � n1/n0)
1/2

when for instance going from a vacuum towards a solid surface

(Als-Nielsen & McMorrow, 2001). In the common case of n0 =

1 (vacuum), the expression for �c simplifies to (2�1)
1/2. Albeit

frequently neglected, the effects of refraction on the peak

positions and intensities can be substantial, especially when

dealing with grazing-incidence small-angle X-ray scattering

(GISAXS). GISAXS data are sometimes modelled in a ‘quasi-

kinematical’ (Naudon, 1995) approach by a product of three

factors: the molecular form factor Fmol(Q) (which gives

features at lower Q than is usually observed in wide-angle

X-ray scattering), the structure factor F(Q) and the Vineyard

(1982) factor T(Qz) observed for small exit angles near �c.

Much more advanced GISAXS descriptions have since been

developed (Sinha et al., 1988; Busch et al., 2006), resulting in

the well known IsGISAXS computer program of Lazzari

(2002).

A notable effect of refraction is to reduce the incidence

angle �i to an effective incidence angle �i,eff (cf. Fig. 3). Except

for in-plane reflections, the outgoing beam generally has an

exit angle �f � �c, and the refraction of this beam is therefore

less pronounced. Experimentally, the most obvious effect of

refraction is thus a shift of the peaks towards higherQz (Toney

& Brennan, 1989).

Another effect pertinent to GIXD is that for �i,eff < �c, the

beam reflected totally off the substrate will contribute to the

total scattering also when traversing the film on its way ‘up’

towards the film–air interface. (For �i,eff > �c, a weaker beam,

as governed by the Fresnel equations, will be reflected.) As a

result, for samples with well resolved Bragg peaks, a peak

splitting can often be observed with an angular separation

corresponding to essentially 2�i,eff (cf. Fig. 3). This ‘secondary’

beam can be included in the simulations by adding the scat-

tering pattern arising from calculations with an incidence

angle of ��i,eff. As can be seen from (5), changing �i,eff !

��i,eff gives a negligible change of ’E, and thus of GE and kf,

for small �i,eff. Because the formalism presented in this article

assumes that kin is parallel to ylab, k
0
f is rotated by 2�i,eff before

its associated detector angles � 0 and �0 are calculated, as

described later. Even though the two-beam approach

described here is a simplification compared with the four

contributions often considered in GISAXS (Sinha et al., 1988),

the validity of the two-beam approximation has been recently

investigated by Lee et al. (2005) and Busch et al. (2006) and

seems to hold in most cases. More rigorous models would also

include effects such as surface roughness and standing waves,

but the presented formalism gives good predictions for many

purposes.

5. Point-detector scans

The preceding discussion has concerned simulating diffraction

images, as recorded using a CCD detector or other two-

dimensional imaging device. For completeness, we add a few

considerations about simulating scans performed with a point

detector. In the SimDiffraction computer program, this is

carried out in a slightly different way. The reciprocal-space

lattice (containing nodes with structure factors |Fhkl|
2) is

calculated from the (known) real-space crystal lattice with the

predominant orientation GD. The simulated diffraction scans

are then obtained by calculating a trace through reciprocal

space, where for every discrete point j, the intensity is

obtained by the approximation

Ij ¼
P

n

LPV jFhklj
2 P1 WQ;Qj �Qn

� �

� P2 W?; 
j � 
n
� �

P3 Wjj; ’j � ’n
� �

: ð12Þ

The sum is over all reciprocal-lattice points n. LPV denotes

the Lorentz, polarization and volume corrections, all

depending on the detector angles. Because the detector has a

fixed position for in-plane rocking scans (constant Q), the

LPV factors contribute only a multiplicative factor in this case.

The weighting factors Pi in equation (12) are peak functions of

width Wi, the second argument being the offset from the peak

maximum. The pseudo-Voigt P1 measures the radial distance

(Q mismatch, units Å�1) from the current point j to lattice

point n, and the width WQ arises from mosaic spread and

instrumental resolution. Similarly, out-of-plane and in-plane

preferred orientation are accounted for by pseudo-Voigt

functions P2 and P3, respectively.

6. Presenting the simulations

Diffraction data are often presented with the scattered

intensity as function of Q, Qx, Qy or Qz. For displaying the

diffraction (Bragg) peaks for a two-dimensional powder, the

most natural approach is to plot the reflections in the QxyQz

plane, with Qxy � (Qx
2 + Qy

2)1/2. From the out-going wave-

vector kf = GE + kin the detector angles (�, �) are easily

calculated; by defining kxy as the projection of kf onto the

xlabylab plane (cf. Fig. 1) we have

� ¼ arccos ŷy � kxy=jkxyj
� �

ð13Þ

and
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Figure 3
The influence of total substrate reflection and refraction on the scattering
from a thin film on a substrate. The incoming beam ki with incidence
angle �i is refracted to give an effective incidence angle �i,eff. When �i,eff <
�c,substrate the incoming beam will be totally reflected; kspec denotes the
specularly reflected beam. The resulting scattering is the superposition of
scattering from the ‘primary’ beam (A) going into the film and from the
totally substrate-reflected ‘secondary’ beam (B). Inside the film, the
scattering from (A) and (B) will differ by 2�i,eff. For simplicity, the
refraction of the beams kf and kf

0 is suppressed in this figure. Note that the
angles �i and �i,eff are greatly exaggerated for clarity.



� ¼ arccos kf � kxy=jkfjjkxyj
� �

: ð14Þ

Considering a two-dimensional detector, it is also straight-

forward to calculate the pixel coordinates (px, pz) with respect

to the beam centre, as px = (L/dp)tan� and pz = [(L/cos�)/

dp]tan�, where L is the camera length and dp is the pixel size.

Note that because the incoming beam is approximately

parallel to the substrate, the resulting peak broadening caused

by the extended footprint of the beam can be accounted for by

allowing a range of values for L.

The experimental peak width is a convolution of the

instrumental resolution and the intrinsic width relating to the

sample. With synchrotron radiation, the instrumental resolu-

tion is sometimes negligible when compared with the broad

peaks often observed for organic samples. Neglecting strain in

the material, a simple parameterization of the peak width in

terms of crystallite size � is given by the Scherrer formula (see

e.g. Warren, 1969). The peak width can be accounted for by

convoluting the simulated diffractogram with an appropriate

function. Typical choices are Gaussian or Lorentzian peak

shapes, or combinations of these (Voigt or pseudo-Voigt)

profiles. We note that for many setups, especially home

laboratory instruments, the instrumental resolution function

may prove detrimental to a meaningful analysis of the peak

widths.

7. Practical example: perylene

As mentioned in x1, further progress in nanotechnology

requires improved methods for inducing and characterizing

material order. To illustrate the concepts treated in this article,

we have chosen perylene as a relevant example from organic

small-molecule electronics. Perylene is much studied both for

fundamental chemistry reasons and as a potential building

block in future molecular electronics. For simulating the

diffraction data the unit cell advanced by Camerman & Trotter

(1964) was used. This cell is monoclinic: a= 11.28, b= 10.83, c=

10.26 Å and � = 100.55� (cf. Fig. 4 for an illustration).

Small crystallites of height 	70 nm and lateral size of up to

1 mm (cf. Breiby et al., 2008) were obtained by chemical

vacuum deposition (CVD) perpendicularly onto (1) a clean

silicon substrate and (2) a silicon substrate with friction-

deposited polytetrafluoroethylene (PTFE, ‘Teflon’) for indu-

cing in-plane orientation (Wittman & Smith, 1991). Si

substrates for CVD were cleaned by boiling in photoresist

remover, followed by ultrasonic cleaning in first acetone and

then dichloromethane for 10 min, before drying in filtered N2

gas flow. For the PTFE deposition, the substrates were wiped

off with ethanol.

Using the rotating-anode-based GIXD setup at Risø

National Laboratory, the images shown in Figs. 5(a) and 6(a)

were captured with a Fuji image plate having a resolution

(‘pixel size’) of 50 � 50 mm. The wavelength 	 was 1.5418 Å

(Cu K�), monochromated by a multilayer X-ray mirror. The

incoming beam had dimensions of approximately 0.4 �

0.4 mm and impinged onto the sample substrate at an inci-

dence angle of 0.20 (1)� with a considerable divergence. This

gives a footprint of 	0.4/sin(0.2�) mm = 115 mm, which

implies that the diameter of the sample limits the effective

scattering volume. The thin film and the image plate at a

distance of L = 120 mm from the sample were mounted in an

evacuated chamber.

Separate synchrotron measurements were carried out at the

z-axis diffractometer associated with the BW-2 beamline at

HASYLAB in Germany, using a wavelength 	 = 1.240 Å and

an incidence angle of 0.158�. A special adapter with a ’

rotation was employed, giving a vertical sample surface

normal [see Bunk & Nielsen (2004) for further details]. The

last defining slit 	150 mm upstream of the sample was

adjusted to give a beam size of 1 mm (horizontal) by 0.01 mm

(vertical). This gives a footprint of only 	3.6 mm, well within

the sample diameter of about 20 mm, thus ensuring that no

intensity artefacts caused by a changing scattering volume

arise during sample ’ rotations. The diffracted intensity was

measured with a Cyberstar point detector.

As demonstrated in Figs. 5 and 6, excellent fits are obtained

when assuming that the ab plane of the unit cell is oriented

parallel to the substrate (i.e. R = 1). As it turned out, the

degree of orientation for the sample cast on Si (no in-plane

orientation) was sufficiently high that, within the experimental

accuracy, the correction for preferred orientation � could be

taken as unity in the simulations. In fact, tangentially, the

peaks in Fig. 5(a) can be well fitted by Gaussians of FWHM ’

0.7–0.8�, which suggests that the crystallites are grown directly

onto the substrate giving a ‘perfect’ (001) orientation, only

smeared by the instrumental resolution. In the magnification
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Figure 4
Schematic drawing of the monoclinic unit cell of perylene, having four
molecules per unit cell, shown in the laboratory coordinate system with ki
|| ylab. The unit cell is drawn with the ab plane parallel to the substrate,
which gives c* parallel to the sample normal. The incidence angle �i is
exaggerated for clarity. The xsys plane of the sample coordinate system,
which is parallel to the sample substrate, is indicated by the shaded grey
rectangle. If exhibiting cylindrical symmetry, the sample contains
crystallites having all possible orientations in the plane of the substrate,
as indicated by the circular arrow.



of Fig. 5(c), the splitting caused by the two-beam effect is

clearly seen and faithfully reproduced, using �i = 0.20� and an

effective incidence angle �i,eff ’ 0.12�. For this sample, a 3 mm

footprint correction was applied, which is the main contribu-

tion to the radial width of the peaks.

The image in Fig. 6(a) for perylene oriented on PTFE is

very different from that obtained for the sample with cylind-

rical symmetry in Fig. 5. To obtain the former, the sample was
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Figure 6
Comparison of (a) the experimental diffraction image and (b) the
simulated image assuming highly biaxially oriented families of perylene
crystallites having the ab plane parallel to the substrate and the {110} axes
parallel to the PTFE alignment. The green ‘+’ denotes the position of the
direct beam. The radial peak broadening is accounted for discretely by
calculating for different camera lengths L, varying from the nominal
120 mm by {�4, �3.75, . . . , 4} mm, thus corresponding to a beam
footprint of 8 mm for this sample. The out-of-plane orientation
distribution was modelled as the sum of two equally weighted fractions,
one highly oriented (FWHM 	1.8�) and one less oriented (FWHM
	15�). The resulting reproduction of the perylene peak positions, widths
and intensities is very good. The feature marked ‘PTFE’ corresponds to
the PTFE 100 reflection, and the pseudo-specular scattering marked with
an asterisk can be ascribed to the divergence of the incoming beam. (c)
Synchrotron scan performed on a sample similar to that in (a). This
rocking scan about the sample normal was performed on the �2201
reflection, revealing a high degree of in-plane orientation. The simulated
curve was obtained assuming crystallites oriented with {110} axes parallel
to the PTFE alignment (see main text for further details). The smaller
peaks in the scan are discussed by Breiby et al. (2008).

Figure 5
Comparison of (a) the experimental diffraction image and (b) the
simulated image assuming a cylindrical distribution of perylene crystal-
lites having the ab plane parallel to the Si substrate. The agreement of the
perylene peak positions, widths and intensities is very good. (c)
Magnification of the original raw data (pixel coordinates) corresponding
to the encircled region in (a). The peak splitting caused by scattering from
both the incident and the reflected beams is clearly seen. The magenta
circles indicate the simulated peak positions, including refraction in the
two-beam approximation. The radial peak broadening is accounted for
discretely by calculating for different camera lengths L, varying from the
nominal 120 mm by {�1.5, �0.75, . . . , 1.5} mm, thus corresponding to a
beam footprint of 3 mm.



oriented with an in-plane angle of 	10� between the PTFE

alignment and the incoming beam (while keeping an incidence

angle �i ’ 0.2�). To improve the counting statistics, and to

increase the number of Bragg peaks collected, the sample was

made to oscillate by 
4� about the sample normal (angle ’)

during the exposure time. This method is in fact very conve-

nient for quickly establishing the presence of in-plane

preferred orientations in thin films using conventional X-ray

equipment. Furthermore, it can also give indications of the

degree of preferred orientation, but clearly, without making

assumptions, one image is insufficient to establish the full

ODF. Therefore, a similar perylene on PTFE sample was

measured at the synchrotron (Breiby et al., 2008), where Fig.

6(c) shows the resulting rocking scan obtained for a full

rotation about the sample normal obtained with the (fixed

position) point detector at (Qxy, Qz) = (1.118, 0.416) Å�1,

corresponding to the {�2201} lattice planes.

As it turns out, the four principal peaks can be accounted

for with a model having highly biaxially oriented crystallites

with h110i parallel to the PTFE alignment. The orientational

distribution of crystallites was modelled by the ODF of

equation (10), combined with two symmetry operations

imposed by the alignment layer: For each crystallite orienta-

tion, there is (i) an equal probability of an orientation rotated

by 180� about the sample normal, and (ii) an equal probability

of being mirrored about the PTFE alignment direction. In

particular, from the synchrotron rocking scan in Fig. 6(c), but

also from the high asymmetry of the image in Fig. 6(a), it is

clear that the in-plane distribution is narrow. The synchrotron

point detector scan was fitted by using W|| = 3.2� (FWHM),

with P3 in equation (12) given by a pseudo-Voigt function with

relative weights 0.8 and 0.2 assigned to its Lorentzian and

Gaussian parts, respectively. P1 was taken as a pure Lorent-

zian, with width WQ < 0.03 Å�1 (FWHM). The simulations

were not very sensitive to P2, which was taken to be Lorent-

zian with W? ’ 1� (FWHM).

For simulating the image in Fig. 6(b), the same model as

described for the point detector scan was employed, but with a

fixed incoming direction of the X-ray beam with respect to the

PTFE alignment of 10�. To account for the continuous rocking

of the sample during the experiment, an effectiveW|| ’ 8� was

used. For this sample, weak scattering is observed in the !?

direction near the Bragg peaks. The simulated image is

therefore obtained as the equally weighted sum of two

contributions: a highly oriented fraction withW? ’ 1.8� and a

less oriented fraction with W? ’ 15�. Scattering from PTFE

was neglected in the simulations, but scattering from the (100)

planes of PTFE at Q = 1.265 Å�1 (Clark, 1999) can be seen in

Fig. 6(a). This sample was larger than the perylene on Si

sample, and a 8 mm footprint was employed. Further details of

the perylene system will be published elsewhere (Breiby et al.,

2008).

The computation time for producing Fig. 5(b) is less than

10 s on a Pentium 4 3.0 GHz PC with 512 Mbyte RAM

running Windows XP. Because of the heavier computation

burden imposed by the symmetry operations in Fig. 6(b), the

computation time for this image was 	1 min.

8. Conclusion

Based on the standard framework of kinematical X-ray

diffraction, we have outlined a computationally efficient

algorithm for simulating grazing-incidence X-ray diffraction

from polycrystalline films. This algorithm is implemented in

the computer program SimDiffraction. Particular attention

has been given to the modelling of intensity for textured films

with crystallites having an orientation distribution function

tending towards cylindrical ‘fibre’ symmetry. Throughout,

efforts have been made to keep the descriptions intuitively

simple yet reasonably elegant. The use of the program was

demonstrated for thin films of the organic material perylene.

Being the first generally available program for simulating

GIXD, we believe that SimDiffraction will be a valuable tool

to the rapidly growing community using GIXD for material

characterization.
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the European Science Foundation through the Self-Organized
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