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Abstract

This paper presents a 2 DOF ”Hardware in the Loop” mechatronic simulator for the

study of regenerative chatter in milling. The main motivation behind the construction of

the simulator is to propose active damping as a strategy to stabilize chatter in milling. A

good comprehension of regenerative chatter in milling is essential for that purpose. Char-

acterization of chatter in a real machining environment may be difficult. The mechatronic

simulator provides an alternative way to conduct investigations on chatter in milling in a

laboratory environment, without conducting actual cutting tests. The simulator is found

to simulate realistically various kinds of bifurcation phenomena, normally expected in

milling operations. Active damping is then implemented on the system to investigate

its effect on stability. It is shown experimentally that stability lobes are enhanced due

to application of active damping, which fulfils the original objective of proposing active

damping as a chatter stabilizing strategy.

Keywords: Milling, Chatter simulator, Active Damping

1 Introduction

The chatter phenomenon is a vibrational instability in the metal cutting process, which

affects the efficiency of the cutting process by reducing the metal removal rate (MRR)

and the life of the cutting tool. Chatter has been a popular topic of industrial research for

quite some time. The regenerative theory of chatter, proposed independently by Tobias

and Fishwick (1958a) and Tlusty and Polacek (1963), forms the theoretical foundation of
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research on chatter. The regenerative process is described in Figure 1 for a single degree

of freedom (SDOF) turning operation, involving a rotating cylindrical workpiece and a

cutting tool. If the system is rigid, the thickness of chip removed from the surface is h0

which is called the feed of the tool into the workpiece. While machining, the flexible tool

may face a hard spot on the surface of the workpiece and some vibrations are triggered.

This leaves behind a wavy surface, as shown in the figure and after one full rotation the

tool faces the waves left during the previous pass. Therefore, according to Figure 1, the

dynamic chip thickness is given by,

h(t) = h0 + y(t − T ) − y(t) (1)

where y and y(t− T ) are displacements during the current and previous pass of the tool,

T = 60/N is the time of one revolution of the workpiece and N is the spindle speed in

RPM. Assuming that the cutting forces are proportional to the frontal area of the chip,

the cutting force in the Y direction is equal to

Fc(t) = Kf .a.[h0 + y(t − T ) − y(t)] (2)

where Kf is the cutting force constant, a is the axial width of cut, measured perpendicular

to the plane of Figure 1. The tool now encounters a dynamic excitation force, which gen-

erates more vibration waves on the workpiece surface. These waves continue to modulate

the chip thickness one revolution later. If the vibrations keep on increasing, an unstable

situation accompanied by loud noise is encountered. Merrit (1965) models this process in

the form of a feedback loop interaction between the cutting mechanics and the structural

dynamics of the machine tool system as shown in Figure 2. The study provides a control

engineering viewpoint of chatter instability. Defining G(s) as the system transfer function

between the force Fc and the displacement y, Laplace transforming Equ. 2 and neglecting

the term due to the feed due to the fact that this is a linear analysis, we get the following

equation.

Fc(s) = Kfa(e−sT
− 1)G(s)Fc(s) (3)
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Figure 1: The regeneration process

Here y(t− T ) is substituted as y(s)e−sT in Laplace domain. From Equ. 3, the character-

istic equation for turning can be written as,

1 + Kfa(1 − e−sT )G(s) = 0 (4)

At the limit of stability, for a particular combination of the axial depth of cut a and spindle

rotation period T , at least a pair of conjugate roots of the characteristic equation may lie

on the imaginary axis. This value of a corresponds to the limit of stable machining for

the chosen spindle speed. A plot of the maximum axial width of cut for stable machining

for different spindle speeds is called the stability lobe diagram. A typical stability lobe

diagram is shown in Figure 3. The area below the curve denotes chatter free machining

and the region above denotes the unstable region. The straight line joining the minimum

value of the stability limit on the different lobes is called the Asymptotic Level of stability

and this level varies approximately as 2ξ(1+ ξ), where ξ is the structural damping ratio.

Chatter in milling is more complicated than turning, due to the involvement of mul-

tiple teeth in the cutting process and the changing directions of the cutting forces as the
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Figure 2: Merrit’s model for chatter in turning

cutter rotates inside the cut. Chatter in turning is governed by a delay differential equa-

tion (DDE) with constant coefficients, whereas in milling, the system is governed by a

DDE with periodic coefficients. Frequency domain techniques cannot be applied as in the

case of the time invariant turning example. This has forced many researchers to study the

stability aspects of milling in time domain. Tlusty and Ismail (1983) generate stability

lobe diagrams for milling, based on time domain simulations. The main objective behind

this work is to propose active damping as a strategy for chatter stabilization in milling.

A good understanding of the phenomenon and its various aspects are essential for that

purpose. Experimental investigations on chatter via real metal cutting tests may be diffi-

cult, due to the involvement of numerous parameters in the cutting process. In this paper

a simplified approach is proposed to demonstrate the phenomenon experimentally. The

authors present a mechatronic simulator, developed using the ”Hardware in the Loop”

concept for chatter simulation in milling, which is able to reproduce the various aspects of

the instability realistically. Active damping is then implemented as a control strategy on

the simulator to check whether stabilization of chatter is possible. The paper is organized

as follows. Section 2 deals with the mathematical formulations of dynamic regenerative

model of chatter in milling, which are used in the simulator. Section 3 presents various

methods of stability analysis in literature to develop a background on chatter in milling

and to demonstrate the different mechanisms of chatter, as reported by other authors.

Section 4 discusses about the experimental setup and numerical and experimental inves-
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tigations on the system. Stability lobe diagrams are presented by numerical time domain

simulations, using an identified model of the structure and the mathematical model of

regenerative chatter, developed in Section 2. The results are compared to show the ca-

pability of the setup to simulate real chatter situations. The effect of active damping on

the stabilization of chatter instability is investigated in Section 5.

2 The dynamic milling system

Three kinds of milling operations are shown in Figure 4: upmilling, downmilling and

slotting. The intercept of the arc through which a cutting tool rotates inside the cut

on the vertical axis is called the radial depth of cut. If the radial depth is equal to

the diameter of the tool, as in the case of slotting, the radial immersion is 100%. 50%

immersion means that the radial depth of cut is half of the diameter of the cutting tool

and the angle of cut is therefore 90 degrees. Radial immersions for which the angle of

the cut is very low are called low immersion milling operations. Figure 5 a) shows a 2D

flexible milling tool. The tool is assumed to be non helical. In case of a rigid cutter and

workpiece system, the metal removed by a tooth can be approximated by the area between

the dotted lines, as shown in Figure 5 a). However, due to general flexibility of the tool

workpiece system, vibration of the tool occurs. Each tooth leaves a wavy surface, which is

encountered by the subsequent tooth. This causes the fluctuation of the cutting force and

further excites the structure. With each pass of the tooth, if the vibrations increase, the

chatter instability is triggered. This is the regeneration process in the milling operation.
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As shown in Figure 5 b), let ft, be the horizontal motion of the tool into the workpiece,

also called the feed. Assuming that the diameter of the tool is much larger compared to

the feed, the thickness of the metal encountered by a single tooth can be assumed to

be the small strip between the two circular arcs. Then the chip thickness in the radial

direction is approximated by,

h0 = ft sin θ (5)

Referring to Figure 5 a), the i-th tooth is acted upon by an orthogonal system of forces, Fti,

which is the tangential component and Fri, which acts in the radial direction. Following

Altintas (2000), the force encountered by the milling tooth is taken proportional to the

instantaneous chip thickness.







Fti

Fri







=





Kt.h0.a

Kr.Fti



 (6)

where Kt and Kr are the tangential and the radial cutting constants and a is the axial

width of cut, measured perpendicular to the plane of Figure 5.
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Figure 5: a) A flexible 2 DOF milling tool system b) Horizontal feed in milling

From figure 5 a), it is observed that the direction of the instantaneous tangential and

radial forces on a cutting tooth depend on the location of the tooth in the cut. The

total force acting on the milling tool in the direction of flexibilities, i.e., the X and Y

directions, is the sum of the contributions of the total number of teeth inside the cut.

Early models of milling did not consider the changing direction of the cutting forces

and considered an average direction of the forces. Sridhar et al. (1968a) and (1968b)

incorporate the varying direction of the cutting forces in their detailed formulation of the

milling forces. Considering Figure 5 a), X and Y are the global axes of reference and θ is

the instantaneous position of the i- th tooth of the cutter. Let the displacements in the

radial and the tangential directions be ui and vi respectively. Considering the regeneration
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effect, which is shown magnified in the circle in Figure 5 a), the instantaneous uncut radial

chip thickness is,

h(θ) = ft sin θ + ui−1 − ui (7)

where ui and ui−1 are the deflections of the i- th tooth and the i−1 th tooth respectively.

Here ui−1 = u(t − T ) where T is the tooth passing period, as given by Equ. 8.

T =
60

nN
(8)

where N is the spindle speed and n is the total number of teeth. Expressing the displace-

ment u in terms of the global displacements x and y of the cutter,

ui = −x sin θ − y cos θ

ui−1 = −x(t − T ) sin θ − y(t − T ) cos θ (9)

Using Equ. 9, the radial chip thickness can be expressed as,

h(θ) = ft sin θ +
[

sin θ cos θ
]







x(t) − x(t − T )

y(t) − y(t − T )







(10)

Therefore, referring to Equ. 6, the tangential and radial cutting forces acting on the i-th

tooth are expressed as,






Fti

Fri







=





Kt.h(θ).a

Kr.Kt.h(θ).a



 (11)

Transforming to global coordinates, the forces are,







Fxi

Fyi







=





− cos θ − sin θ

sin θ − cos θ











Fti

Fri







(12)

Substituting equations 10 and 11 in Equ. 12, the system of forces, acting on the i-th

tooth, in the X and Y directions are,







Fxi

Fyi







=







−Kt cos θ sin θ − KtKr sin2 θ

−Kt sin2 θ − KtKr sin θ cos θ







ft.a
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+





−Kt sin θ cos θ − KtKr sin2 θ −Kt cos2 θ − KtKr sin θ cos θ

Kt sin2 θ − KtKr sin θ cos θ Kt sin θ cos θ − KtKr cos2 θ











x(t) − x(t − T )

y(t) − y(t − T )







(13)

Since milling involves multiple teeth in the cut, the total force in the two directions is the

summation of the contributions from each tooth. This is shown in Equ. 14. Substituting

x(t) − x(t − T ) = ∆x and y(t) − y(t − T ) = ∆y and summing up the contributions of n

teeth, the forces in the x and y directions are,







Fx

Fy







= Kt.a.

n
∑

i=1











α11i

α21i







.ft +





α11i α12i

α21i α22i











∆x

∆y









 g(θi) (14)

where

α11i =
1

2
[− sin 2θi − Kr(1 − cos 2θi)]

α11i =
1

2
[−(1 + cos 2θi) − Kr sin 2θi]

α21i =
1

2
[(1 − cos 2θi) − Kr sin 2θi]

α22i =
1

2
[sin 2θi − Kr(1 + cos 2θi)]

θi = θ + (i − 1)2π/n (15)

The function g(θi) denotes whether a tooth is inside the cut or not. g(θi) = 1 for θentry <

θi < θexit and zero elsewhere, where θentry and θexit are the angles of entry and exit

respectively. Therefore, expressing the displacement vector as x = [x y]T and Kcut = Kt.a,

the general form of the forces can be presented as,

F = Γ(t)ft.Kcut + Ψ(t).Kcut.(x − x(t − T )) (16)

Γ(t) and Ψ(t) are periodic functions with periodicity equal to the tooth passing period

T . The forcing function consists of two components: a periodic component arising out of

the feed force and a periodic regenerative component, coming from a periodic modulation

of the chip thickness. The stability of the system is determined by the stability of the

motions due to the regenerative component of the forcing function. Let M, C and K

be the generalized m × m mass matrix, damping matrix and stiffness matrices of the
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structure. Assuming x to be the m × 1 displacement vector, the dynamic equation of

motion is given by,

Mẍ + Cẋ + Kx = bF (17)

where b is the m × 2 influence matrix containing the information about the degrees of

freedom where the force vector F is acting. Substituting Equ. 16 in Equ. 17,

Mẍ + Cẋ + Kx− ft.Kcut.bΓ(t) − Kcut.bΨ(t).bT (x − x(t − T )) = 0 (18)

In state-space notation, Equ. 18 can be written as,







ẋ

ẍ







=





0 I

−M−1K −M−1C











x

ẋ







+





0 0

KcutM
−1bΨ(t)bT 0











x − x(t − T )

ẋ − ẋ(t − T )







+





0

KcutM
−1bΓ(t)



 ft (19)

Equ. 19 represents a system of linear delay differential equation (DDE) with periodic

coefficients. The solution for x consists of two parts: a periodic response due to the

periodic feed force; the second part is due to the periodically modulated regenerative

term, which decides the stability of the whole solution.

3 Stability Analysis

Chatter in milling is governed by delay differential equations with periodic coefficients.

Two notable methods have recently been proposed for the analysis of such systems: the

Temporal Finite Element Analysis method (Bayly et al. 2002; Mann et al. 2004) and the

Semi Discretization method (Insperger et al. 2003b; Mann et al. 2003; Gradisek et al.

2005). Both methods apply the Floquet’s theorem (Wiberg 1971) for stability analysis of

periodic systems. The methods recognize the existence of multiple frequencies of chatter,

as shown by Insperger, Mann, Stepan, and Bayly (2003a) and the occurrence of two kinds

of instabilities, i.e., the Hopf and Flip Bifurcations. The instabilities are characterized by

the peculiarity of the chatter frequencies.

• In case of Hopf Bifurcation, the chatter frequency is given by the expression ωc =

±ω ±
2kπ
T

, where k = 0, 1, 2 . . .. Normally ω is approximately close to a modal fre-
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quency of the structure and the other frequencies are separated from this frequency

by harmonics of the tooth passing frequency.

• In case of Flip Bifurcation, the chatter frequencies occur at odd multiples of one half

of the tooth passing frequency, i.e., ωc = ±
π
T
±

2kπ
T

. This form of instability does

not happen in turning but may occur in low immersion milling operations.

Before the advent of these two methods, Minis (1993) had proposed the expansion

of the periodic function Ψ(t) into a Fourier series and approximation of Ψ(t) with the

zero-th order coefficient Ψ0. This makes the system time invariant. Altintas and Budak

(1998) show that inclusion of some higher harmonics in the Fourier expansion do not give

substantial differences in the stability limits for high immersion milling examples. This

renders the zero-th order approximation sufficient for stability analysis of high immersion

milling operations. Substituting Ψ0 for Ψ(t) and neglecting the feed term (assuming

a linear analysis) and Laplace transforming Equ. 19 we get the following characteristic

equation,

det



sI −





0 I

−M−1K + Kcut(1 − e−sT )M−1bΨ0b
T

−M−1C







 = 0 (20)

Solving the characteristic equation for the chosen chatter frequency s = jωc, the limiting

Kcut and the the tooth passing period T can be obtained. This form of stability analysis is

generally called the zero-th order single frequency solution for milling chatter. The method

generates accurate stability limits for high immersion milling but cannot demonstrate the

multiple chatter frequency perspective of chatter and does not identify the occurrence

of Flip Bifurcations for low immersion milling, as shown in Bayly et al. (2002) and

Insperger et al. (2003b). The reason is that the cutting process in low immersion milling is

intermittent and the contribution of the high frequency harmonics of the Fourier expansion

of Ψ may be substantial. Merdol and Altintas (2004) show that inclusion of the higher

harmonics in the Fourier expansion of Ψ, as proposed in Altintas and Budak (1998), can

predict better stability limits for low immersion milling operations.

The complexities in the time varying nature of chatter in milling motivated the earlier

researchers to study the phenomenon in time domain. Most of the work in this direction

is done by Tlusty and his co-workers (1975, 1983, 1983). Tlusty and Ismail (1981) and

Kondo and Sato (1981) incorporate the effect of the milling cutter, jumping out of the cut
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and introduce the concept of the multiple regeneration process. A modified stability lobe

diagram, involving the spindle speed, the peak to peak (PTP) magnitude of the cutting

forces and the axial depth of cut is presented in Smith and Tlusty (1993). Smith and

Tlusty (1990) observe the presence of a highly stable machining region in the stability

lobe diagram for spindle speeds where the tooth passing frequency is approximately equal

to a dominant modal frequency of the machine tool structure. Zhao et al. (Balachandran

and Zhao 2001) show the occurrence of Flip and Hopf bifurcations and the existence

of multiple chatter frequencies via time domain simulations for low immersion milling.

The main drawback of a time domain simulation is that it is computationally inefficient.

However, the inclusion of assumptions is minimal and the ability to incorporate various

criteria make time domain simulations more realistic and a benchmark for comparing

results from frequency domain analysis.

In the next sections, the development of the simulator for milling will be described

and stability analysis will be performed, using the Root Locus Method with zero-th order

approximation and time domain simulations. The results, obtained by these methods

will be compared with experimental data and various aspects of milling chatter will be

demonstrated.

4 Hardware in the Loop milling chatter simulator

Experimental characterization of chatter is difficult due to the involvement of a huge

number of parameters and the requirement of numerous cutting tests. The characteriza-

tion process requires the system to be actually unstable and this may be detrimental to

the machine tool. The mathematical model of chatter is however, quite well-established.

Representation of chatter as a feedback loop interaction between the structural dynamics

and the cutting process is proposed by Merrit (1965) for turning, as shown in Figure 2.

An alternative way to demonstrate chatter via a mechatronic simulator is proposed in

this paper. The work follows the ”Hardware in the Loop” concept, used for the develop-

ment of a simulator for chatter in turning in the Active Structures Laboratory at ULB

(Ganguli et al. 2005). The approach for milling is shown in Figure 6. Under the effect

of the cutting forces, the flexible tool-workpiece system undergoes displacements. This

along with the rotation of the tool creates the periodic regenerative effect and generate

milling forces which further excite the machine tool structure.
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The conceptual model of a 2 DOF simulator for milling is shown in Figure 7. The

multi degree of freedom (MDOF) dynamics of the flexible machine tool and workpiece

system is simulated by a rectangular hollow cantilever beam. Although it is understood

that the machine tool structure is more complicated in terms of design and components,

the dynamic behavior would be qualitatively same as the MDOF structural dynamics of

a simple cantilever beam. Two voice coil actuators are attached to the free end of the

beam in order to generate excitations in the two orthogonal directions. This simulates

the cutting forces, acting on the cutting tool. The displacements in the two directions

are sensed by eddy current sensors, manufactured by KAMAN Instrumentation and are

fed into a DSP board, where a time domain simulation of the cutting forces is running.

The dSpace Controldesk software provides a Graphical User Interface (GUI) to change

the various cutting parameters, such as the axial width of cut, the spindle speed, the

feed, the angles of entry and exit. The software calculates the system of cutting forces

(calculated using Eqs. 14 and 15) according to the various cutting conditions, specified by

the user. The calculated force signals are directed to current amplifiers through the output

resources of the DSP board. The current amplifiers generate the necessary current to drive

the voice coil actuators, according to the calculated cutting forces. For a chosen spindle
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speed and cutting condition, a chatter situation can be triggered by gradual increase in

the value of Kcut, until the oscillations of the beam start to grow. The cutting force or the

displacement signals can be analyzed in a Fourier analyzer and the frequency content of the

signal under stable and unstable conditions can be studied and conclusions can be made as

to whether the instability is a Hopf or a Flip Bifurcation. This helps in characterization

of the chatter instability in milling. The simulator also has an active damping setup,

consisting of a couple of proof mass dampers also called Active Mass dampers (AMD)

(manufactured by Micromega Dynamics S.A www.micromega-dynamics.com), collocated

with accelerometers, located at an intermediate distance on the beam. Details of the

control setup will be dealt with in a section devoted to active damping of chatter.

Milling
Process

Simulation

Current
Amplifier

Software
Layer

Force Signals to
Voice Coil Actuators

Displacements

Hardware
Layer

Beam

Displacement
Sensor

GUI
Environment

for user

User
specified
cutting

conditions

Figure 7: Conceptual model of the simulator for milling

4.1 Time domain simulations

Time domain simulations are performed to demonstrate the various aspects of chatter

instability. For this purpose, a state space model of the mechanical setup is identified,

using the MATLAB based Structural Dynamics Toolbox, developed by SDTools (SDTools

). The identified frequency bandwidth is 100 Hz. The identified modal parameters are

presented in the following table.
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Modes Frequency (Hz) Damping (%)

Active Mass Damper X direction 8 20

Active Mass Damper Y direction 8.9 14

1st Flexible Mode X direction 37 2

2nd Flexible Mode X direction 66.9 1

1st Flexible Mode Y direction 60.6 1.1

2nd Flexible Mode Y direction 72.8 0.9

Table 1: Modal frequencies and damping properties of the beam-PMD setup

In comparison to the natural frequencies of a real machine tool, where the tool modes

are normally hundreds or thousands of Hz, the modal frequencies of the beam are rather

low. However, within the framework of the SMARTOOL project (www.smartool.org)

under which the work was performed, there were real machining centers with chattering

modes within 50 and 100 Hz. This guided the choice of the natural frequency of the first

mode of the beam. The time domain simulations were performed via a SIMULINK model

that utilizes the identified state-space model of the beam and simulates the regenerative

cutting process to calculate the cutting forces, according to the formulae (Eqs. 14 and

15) in Section 2.

The time domain simulation for a milling example is performed with the following

cutting parameters: 50 % immersion upmilling, i.e., angle of cut is 90 degrees, feed ft = 0.1

mm per revolution, spindle speed N = 1200 RPM, number of teeth n = 4. A low value

of Kcut is chosen to demonstrate a stable machining situation at this spindle speed. The

power spectral density (PSD) of the cutting force signals in the X and Y directions at

this spindle speed are shown in Figure 8. Both of the spectra is dominated by the tooth

passing frequency at 80 Hz (calculated as Spindle Speed × Number of Teeth/60) and its

harmonics.
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Figure 8: PSD of the cutting forces at 1200 RPM under a stable condition

The spectra of the displacements in the two directions are shown in Figure 9. The

tooth passing frequencies are marked by circles. The signal in the X direction contains

the first flexible modal frequency at approximately 37 Hz, the second flexible mode at

66 Hz and the harmonics of the tooth passing frequency. For the Y direction, the two

modal frequencies are visible, with the second bending mode more dominant, due to its

proximity to the excitation tooth passing harmonic.
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Figure 9: PSD of the displacements in a stable cutting condition at 1200 RPM

Unstable and stable situations are compared for a spindle speed of 1500 RPM and

varying cutting conditions. The PSD of the displacement signals for unstable situations

are presented with continuous lines and those corresponding to stable situations are pre-

sented with dotted lines. In an unstable situation, several peaks appear in the PSD plot.

Some of the peaks correspond to the harmonics of the tooth passing frequency and the

others to the chatter frequencies. The separation between two successive chatter frequen-

cies is equal to the tooth passing frequency. In Figure 10, a chatter situation for slotting

(180 degrees angle of cut) with the 4 teeth tool, described before, is investigated for 1500

RPM. The PSD of the displacements show only a single frequency and no tooth passing

frequency. This can be explained as follows. For slotting with four teeth, there will always

be two teeth in contact with the workpiece and the remaining teeth will be out of the

cut. The angle between successive teeth is 90 degrees. Due to this orientation of the teeth

inside the cut, it can be shown from Equ. 14 and 15, that the feed force and the milling

force coefficients are always constant for any location of the teeth inside the cut. There-

fore slotting is a special case in milling, where the milling coefficients remain constant

and there is no periodicity in the feed forces and the regenerative process. Therefore,

unlike in Figure 9, the tooth passing frequencies are absent in the displacement spectra.

The instability is similar to the case of turning since there is only one chatter frequency.

The same chatter frequency arises in the two directions, since there is a coupling between
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the two directions through the milling coefficient matrix Ψ. There may also be some

mechanical coupling between the two directions since the placement of the actuators may

not be exactly on the vertical middle line of the beam. So if there is some vibration

at a particular frequency in one direction, it excites the other direction as well at the

same frequency. In Figure 11, a chatter condition for 50% upmilling at 1500 RPM with
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Figure 10: PSD of displacements for slotting at 1500 RPM

4 teeth is investigated. The tooth passing frequency at multiples of 100 Hz are marked

by circles. The case is that of a Flip Bifurcation since the chatter frequencies (marked by

black squares) exist at multiples of one half of the tooth passing frequency of 100 Hz.
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Figure 11: PSD of displacements for 50% immersion upmilling at 1500 RPM

For 50% immersion downmilling for the same spindle speed, the case is that of a Hopf

Bifurcation, as shown in Figure 12. The dominant chatter frequency arises from the second

flexible mode in the Y direction at 72 Hz. The chatter frequency is not commensurate

with the tooth passing frequency at 100 Hz, which is normal for Hopf Bifurcation. A low

immersion upmilling example, with an angle of cut equal to 30 degrees, is examined in

Figure 13. The instability is Flip Bifurcation since the chatter frequencies are at integer

multiples of one half of the tooth passing frequency. A popular way of identifying whether

an instability is Hopf or Flip Bifurcation is by sampling the displacement signal, once per

tooth passing period. The procedure is proposed by Scmitz (Schmitz 2003) for chatter

recognition by sensing the sound signal, generated in the cutting process. The technique

has been used for detecting the type of instability by many authors in subsequent works.

If during a Flip Bifurcation, the basic chatter frequency is 50 Hz and the tooth passing

frequency is 100 Hz, a one per tooth pass sampling will generate 2 samples of displacement,

during one period of oscillation of the structure. At the stability limit, assuming that the

displacement neither grows or decays and the system oscillates with a single dominant

frequency, the sampled signal value will always have two exact values. This is shown in

19



Figure 14 a) for the low immersion milling example at 1500 RPM. This characteristic of

the sample displacement signal helps to identify a Flip Bifurcation situation. In case of

Hopf Bifurcation, there is no relationship between the basic chatter frequency and the

tooth passing frequency. So sampling once per tooth passing period will not yield any

particular characteristic of the distribution of the data with time, as in the case of Flip

Bifurcation. A Hopf Bifurcation case for 50% immersion downmilling is shown in Figure

14 b).

0 50 100 150 200 250 300 350 400 450 500
10

−20

10
−15

10
−10

10
−5

0 50 100 150 200 250 300 350 400 450 500
10

−20

10
−15

10
−10

10
−5

Chatter
Chatter Frequency
Tooth Passing Frequency
Stable

Chatter
Tooth Passing Frequency
Chatter Frequency
Stable

Frequency (Hz) 

Frequency (Hz) 

P
S

D
 X

 D
is

pl
ac

em
en

t (
m

2 s)
P

S
D

 Y
 D

is
pl

ac
em

en
t (

m
2 s)

Figure 12: PSD of displacements for 50% immersion downmilling at 1500 RPM
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Figure 13: PSD of displacements for low immersion upmilling at 1500 RPM

21



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2
x 10

−5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−6

a)            Time (secs) 

Time (secs) 

X
 D

is
pl

ac
em

en
t 

Y
 D

is
pl

ac
em

en
t 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

2

3

4
x 10

−5

Time (secs) 

X
 D

is
pl

ac
em

en
t 

Y
 D

is
pl

ac
em

en
t 

b)            Time (secs) 

Figure 14: Demonstration of once per revolution sampled data for a) Flip Bifurcation b) Hopf

Bifurcation
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4.2 Stability Limits

Stability limits, obtained by time domain simulations are compared with the results ob-

tained by the Root Locus Method. Two approximations are made in the Root Locus

Method. The 2 DOF system has two delay terms instead of one to simulate the regener-

ation terms for the two directions. They are approximated by the Padé Approximation

for eigenvalue analysis, as described in Ganguli et al. (2005). The periodic term Ψ is

approximated by the constant matrix Ψ0. This transforms the problem to a DDE with

constant coefficients. For a chosen spindle speed and increasing values of Kcut, the eigen-

value problem for the system is solved. The value of Kcut, corresponding to which a

couple of conjugate roots cross the imaginary axis is taken as the stability limit for that

spindle speed. Figure 15 shows the evolution of the roots of the closed loop system in the

complex plane. Since the system is described by a transcendental DDE, along with the

structural poles, there are infinite number of eigenvalues, corresponding to the delay. The

Padé approximation converts the system to one with finite number of roots by approxi-

mating the delay term by a rational fraction in s. As shown in Figure 15, the eigenvalues

of the system migrate towards the imaginary axis with increasing Kcut. The value of

Kcut, for which a pair of conjugate roots are on the imaginary axis, is the stability limit.

The stability lobe diagram is constructed by plotting the ratio between limiting Kcut and
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Figure 15: Evolution of eigenvalues with increasing Kcut

structural stiffness in the X direction, for various spindle speeds. Numerical simulations
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are performed for 4 cases of milling operations with a 4 teeth tool : slotting , 50% im-

mersion up and downmilling and a case of low immersion upmilling with angle of cut

equal to 30 degrees. Figure 16, shows the results for slotting. The time domain and the

Root Locus simulation results are exactly on top of each other. A high stability region is

located between 400 and 600 RPM. The spindle speed corresponding to the highest value

of the stability limit, obtained experimentally, is 535 RPM. The tooth passing frequency

at this spindle speed is approximately equal to 36 Hz, which is near the first bending

mode in the more flexible X direction.
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Figure 16: Comparison between stability limits obtained experimentally, by the Root Locus

Method and by Time domain simulations for a slotting operation

In figures 17 a) and b), the stability limits corresponding to 50% upmilling and down-

milling are plotted. For upmilling, the Root Locus method gives a good match at spindle

speeds lower than 1000 RPM. Certain portions of the stability lobe diagram, where Hopf

and Flip Bifurcations occur are identified by the oval shaped regions in the Figure 17

a). The stability limits, obtained by the Root Locus Method for the Flip Bifurcation

regions do not match with their counterparts from the time domain simulation results. In

Figure 17 b), the Root Locus results do not show the Flip Bifurcation regions. In Figure

18, a study of a low immersion milling example with angle of cut equal to 30 degrees is

presented. The stability lobes obtained from time domain simulations show a prominent
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region, where Flip Bifurcation is occurring, which is not observed in the Root Locus result.
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Figure 17: Comparison between stability limits obtained experimentally, by the Root Locus

Method and by Time domain simulations for 50% immersion a) upmilling and b) downmilling
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Figure 18: Comparison between stability limits obtained experimentally, by the Root Locus

Method and by Time domain simulations for low immersion milling

4.3 Experimental Results

Stability analysis is performed on the setup experimentally and the stability limits for

different milling operations are plotted in Figures 16, 17 and 18 for comparison with

numerical results. For a chosen spindle speed, Kcut is increased stepwise until the onset

of unstable oscillations, which are monitored on a PC. The corresponding value of Kcut is

stored as the stability limit for the chosen spindle speed. In case of slotting, as shown in

Figure 16, the experimental results follow the results from time domain simulation and the

Root Locus analysis technique. For upmilling, experimental results match very well with

numerical results for spindle speeds less than 1000 RPM. The experimental results deviate

from the numerical results, especially from the Root Locus results in the Flip bifurcation

regions at high spindle speeds. In the case of downmilling, the experimental results follow

the time domain simulation data but are not in good agreement with the results from the

Root Locus method. For low immersion upmilling in Figure 18, the experimental data

match very well with time domain results. Figures 19 a) and b) represent the experimental

PSD of the displacement in the X direction for a low immersion milling operation. A Hopf

bifurcation scenario occurs for 750 RPM and a Flip bifurcation occurs for 1200 RPM.

The results of the numerical and experimental investigations can be summarized as
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follows. The experimental stability lobes follow the same trend as the time domain simu-

lation results for all the milling examples. The Root Locus Method has good agreement

with the time domain and experimental results for high immersion milling. For partial

immersion milling, there is agreement in the Hopf Bifurcation regions of the stability lobe

diagram but the match is not good for spindle speeds where Flip Bifurcations occur.
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cation (1200 RPM)
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5 Application of active damping for chatter control

Control of chatter is an important subject of research. The stability lobe diagram (Tobias

and Fishwick 1958a; Tobias and Fishwick 1958b) is the first attempt to avoid chatter in-

stability during a machining process. Efforts have been made by Slavicek (1965) to avoid

chatter by changing the geometry of the tool. Among the active control techniques of chat-

ter, the spindle speed modulation technique and the spindle speed selection techniques

are quite popular. The spindle speed modulation technique involves periodic variation of

the spindle speed with very low frequency, as proposed by Hoshi et al. (1977) experimen-

tally and also by Sexton et al. (1978) and Lin et al. (1990). However, the modulation

technique is costly and limited by the inertia of the rotating parts of the machine. Smith

and Tlusty (1992), present a spindle speed selection technique, which iteratively finds out

the spindle speed, corresponding to the maximum stability region in the stability lobe

diagram. Soliman and Ismail (1998) present a control system that ramps up the spindle

speed until a stable machining situation is reached.

Vibration control strategies have also been attempted for chatter control. In many

studies on chatter, it has been observed that machining stability can be enhanced by

increased damping of the whole system. Tlusty (1978) shows that damping in the cutting

process stabilizes chatter. Merrit (1965) shows that increase in the structural damping

would raise the asymptotic threshold of stability and the region of stable machining would

increase. Passive damping techniques such as the ”Lanchester” damper have been pro-

posed in Hahn (1951), impact dampers in Ema and Marui (2000) and tuned mass dampers

in Tarng, Kao, and Lee (2000). But the amount of damping achievable is limited and the

performance of tuned mass dampers depends on the accurate tuning between the damper

frequency and the structural modal frequency. Active vibration control strategies have

also been applied for chatter control. Glaser et al. (1979) and Nachtigal (1972) propose

a feedforward strategy of using the cutting force signal for chatter control in turning. An

adaptive control technique, using filtered-X least mean square algorithm is proposed by

Browning, Golioto, and Thompson (1997) for chatter suppression in boring bars. Dohner

et al. (2004) propose a pole placement strategy using a LQG controller and strain gage

sensors and electrostrictive actuators for milling. Smart fluids such as electrorheologi-

cal or magnetorheological fluids have been used for chatter suppression in Segalman and

Redmond (1996).
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In the present work, an active damping strategy using a collocated sensor actuator

configuration is used for chatter control on the simulator. Active damping for chatter

suppression in milling have been applied by Chung et al. (1997) and more recently by

Sims et al. (2003), (2005). In the latter case, the authors have used collocated piezo-

electric sensor and actuator patches on thin flexible workpieces to actively damp chatter

vibrations. A collocated configuration ensures unconditional stability in the closed loop

(Miu 1991; Preumont 2002). However, the present setup is not strictly collocated, as will

be shown in a later part of this section.

H(s)
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Active
Mass

Damper

Active
Mass

Damper

Accelerometer

Accelerometer

Chatter
Simulation

Layer

Figure 20: Active damping setup for the 2 DOF simulator

Certain structural modifications are made on the simulator setup. Two retroreflectors

are mounted at the tip of the beam in the two directions as part of a ZYGO laser in-

terferometry setup, used to measure the displacements in the two directions. The modal

properties of the setup are thus changed (shown in Table 2). Active damping is applied

in the two directions by two decentralized local acceleration feedback loops. The setup,

as shown in Figure 20, consists of two AMDs, collocated with a pair of accelerometers,

which sense the acceleration signal in the two directions. These signals are fed into the

controllers, shown by H(s), integrated and multiplied by a gain and fed into the AMDs.
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A similar approach, using inertial actuators, is adopted by Cowley (1970). The simulator

now has two independent layers: the chatter simulation loop and the active damping loop.

A photograph of the whole setup is shown in Figure 21.
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Figure 21: The experimental setup
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Mode Uncontrolled Controlled 1 Controlled 2

ω (Hz) ξ (%) ω (Hz) ξ (%) ω (Hz) ξ (%)

Bending X 25.7 2.1 25.1 6.7 24.3 8.2

Bending Y 48.1 2.7 46.2 4.5 46.2 5.8

Torsion 67.6 0.8 67.8 0.8 67.6 0.5

Table 2: Modal frequencies and damping properties of the beam−AMD setup

Two feedback gains are applied in each active damping loop and the structural prop-

erties with and without control are compared in Table 2. The case corresponding to

”Controlled 2” has higher feedback gains in comparison to ”Controlled 1” case. It is ob-

served that higher feedback gains augment damping in both of the bending modes in the

two directions. This is demonstrated by Root Locus plots in Figure 22 a) and b). It can

be commented that the control setup is not an exact collocated system since the feedback

signal is the absolute acceleration of the beam at the location of the sensor and the control

force is a relative electromagnetic force between the beam and the proof mass. However,

the arrangement is the closest approximation of collocated feedback control, achievable in

the present setup. Thus, an alternate pole zero configuration of a collocated system is not

observed in the Root Locus plots. In Figure 22 a), the actuator mode becomes unstable

and the maximum damping ratio achievable in the first bending mode is about 50%. In

the Y direction, the control system is able to apply critical damping to the system. How-

ever, experimentally such high damping ratios were not achievable. No particular reason

was found to be responsible for the low closed loop damping values, since several factors,

such as spillover effect from the high frequency modes, finite bandwidth of the electronic

hardware may be lead to an unstable closed loop. Thus the maximum achievable damp-

ing, 8.2% for X and 5.8% for the Y direction, are lower than the theoretical values for

both directions.
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Figure 22: Loci of closed loop poles due to active damping a) X direction b) Y direction

The effect of active damping on the stability of slotting, upmilling and downmilling

is investigated numerically and experimentally. Figures 23 a) and 24 a) compare the

numerical and the experimental data for the undamped system and the two controlled

cases for slotting and upmilling respectively. The experimental data follow the time

domain simulation results quite well. The experimental results in Figures 23 b) and 24 b)

show a general rise in the stability lobe diagrams, especially in the low stability regions.
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Figure 23: Comparison between a) numerical and experimental stability lobes b) experimental

stability lobes for slotting with and without active damping
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Figure 24: Comparison between a) numerical and experimental stability lobes b) experimental

stability lobes for upmilling with and without active damping

In case of downmilling, as shown in Figure 25 a), the match between the experimental

and the numerical results is not very good and the authors could not explain the fall in the

level of stability at certain spindle speeds for the higher value of feedback gain. However,

Figure 25 b) still shows that active damping is able to raise the stability limits.

Therefore, the active damping technique seems to be an efficient strategy for stabilizing

chatter in milling, just as in the case of turning (Ganguli et al. 2005). It is observed that

active damping is more efficient in enhancing the stability in the low stability regions than
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the high ones. This can be seen as an advantage of active damping over spindle speed

selection technique of chatter control (Smith and Tlusty 1992). The latter normally

changes the spindle speed iteratively to the highest stability region of the stability lobe

diagram and allows one to machine with high values of axial width of cut. However, the

stability lobe diagram tapers in the high stability regions and a change in system dynamics

may shift the lobes horizontally, leading to instability in a previously stable situation. Low

stability regions are less susceptible to changes in system dynamics. Application of active

damping raises these low stability regions, enabling one to machine with higher values of

axial depth of cut in a region, less vulnerable to changes in the system dynamics.
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Figure 25: Comparison between a) numerical and experimental stability lobes b) experimental

stability lobes for downmilling with and without active damping

6 Conclusion

The paper presents a 2 DOF mechatronic simulator for the study of chatter in the milling

process. The simulator follows the regenerative milling process model and can experi-

mentally simulate the occurrence of Hopf and Flip bifurcations in various kinds of milling

operations. The experimental stability lobes are found to match well with the numerical

time domain results. This shows the capability of the simulator to simulate regenerative
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chatter in milling realistically.

Active damping, as a chatter control strategy is also implemented in the setup. It is

shown that active damping is able to stabilize all kinds of milling operations by raising the

stability limits. The effect is more pronounced in the low stability regions of the stability

lobe diagram of the uncontrolled system than the originally high stability regions. This

can be seen as an advantage of active damping over spindle speed selection technique

of chatter control. Thus, active damping can be proposed as a potential candidate for

stabilization of chatter in real machining operations.

The simulator has some limitations in terms of the maximum spindle speeds it can

simulate due to bandwidth limitations of the hardware, i.e., the displacement sensor, the

actuator and the amplifiers used in the experimental investigations and the computational

resource. However, if viewed from a qualitative perspective, spindle speed frequencies

higher than the dominant natural frequency of the structure can be viewed as high spindle

speeds. The simulator is able to simulate cutting at 2000 RPM with 4 teeth. The

corresponding tooth passing frequency is about 5 times the first modal frequency of the

structure and therefore the chosen range of spindle speed considers a high spindle speed

part. The paper presents a qualitative study of regenerative chatter in milling and the

associated mechanisms of instability via a mechatronic simulator. The potential of active

damping for chatter reduction is also demonstrated in the setup. The simulator thus

fulfills an intermediate step between theory and actual implementation of active damping

on a real setup in the framework of the SMARTOOL project.
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