
Received 2 September 2020; revised 14 October 2020; accepted 19 October 2020.
Date of current version 7 January 2021.

Digital Object Identifier 10.1109/JMW.2020.3033780

Simulation and Automated Modeling of
Microwave Circuits: State-of-the-Art and

Emerging Trends
QI-JUN ZHANG 1 (Fellow, IEEE), EMAD GAD 2 (Senior Member, IEEE), BEHZAD NOURI1 (Member, IEEE),

WEICONG NA 3 (Member, IEEE), AND MICHEL NAKHLA 1 (Life Fellow, IEEE)

(Invited Paper)
1Department of Electronics, Carleton University, Ottawa, ON K1S 5B6, Canada

2School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
3Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

CORRESPONDING AUTHOR: Qi-Jun Zhang (e-mail: qjz@ doe.carleton.ca).

This work was supported by the Natural Sciences and Engineering Research Council of Canada under Grants RGPIN-2017-06420 and RGPIN 2017-06368.

ABSTRACT Microwave modeling and simulation are essential to designing microwave circuits and systems.
Although fundamental concepts and approaches for modeling and simulation are mature, the drive to
higher frequencies, tighter design margins, and more functionality/complexity of circuits continue to defy
the capabilities of existing modeling and simulation methods. Newer algorithms are being developed to
address the speed, accuracy and robustness of design algorithms. Coupled with the advent of more powerful
computers and algorithms, microwave design automations are solving much more complex problems in much
shorter time than previously imaginable. This paper describes the advances and state-of-the-art in automated
modeling and simulation. Automated data-driven modeling approaches covering data sampling/generation,
model structure adaptation, and model training/validation are described. Simulation of nonlinear microwave
circuits is described covering formulations of simulation equations and advanced solution algorithms ad-
dressing problem size, convergence speed and solution accuracy. The descriptions highlight fundamental
concepts, advanced methodologies, and future trends of development.

INDEX TERMS Microwave modeling, simulation, model order reduction, neural networks, harmonic
balance.

I. INTRODUCTION
Microwave modeling and simulation are two of the most fun-
damental steps in designing today’s and tomorrow’s wireless
components and systems for new generations of communi-
cation networks, autonomous systems and IoT. Built on the
foundation for microwave modeling and simulation estab-
lished throughout the past century, microwave designers have
for many decades used models and simulations to estimate the
microwave circuit behavior before the circuit is built, and to
complete design efficiently. However, the drive to higher fre-
quencies, more functionality, higher performance, and tighter
design margins of microwave circuits/systems have resulted
in significantly increased design complexity and computa-
tional cost, defying the capabilities of existing modeling and

simulation methods. Newer algorithms constantly evolve to
address the increasing demand on speed, accuracy and ro-
bustness of design algorithms. At the same time, computers
are becoming faster and more powerful. The combination of
newer computational algorithms and modern generation of
computers is enabling microwave designers to solve much
more complicated and challenging modeling and simulation
problems not imaginable decades ago.

With ongoing progress in microwave design automation,
an increasing scope of microwave design aspects are be-
ing simulated by computational algorithms. Various model-
ing and simulation tasks which previously required an often
expensive trial-and-error process are being formulated into
computational algorithms, so that problems can be solved
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systematically and in a more automated way. Designers, in the
pursuit of a quick closure to their design process, rely on the
computer-aided design tools to perform a simulation of the
design at the nominal values for the key design parameters.
Besides the simulation of the circuit, the designer will often
seek to optimize its performance through improving its key
figure-of-merit or by making it fit within a pre-specified set of
design constraints.

Simulation of microwave circuits requires accurate models
of all devices in the circuit, where the outputs from device
models are used in the overall circuit simulation equations.
Detailed models for devices lead to good accuracy and are
useful for accurate simulation. This accuracy requirement is
typically motivated by the need to take into account the accu-
rate behaviour of the devices under all possible environmental
conditions. For microwave circuit/system design, on the other
hand, simulations may need to be performed repeatedly. In
this context, fully detailed device models may become too
cumbersome. Instead, models that are fast to evaluate but with
equally accurate characteristics are more desirable.

The purpose of this article is to outline the current state-
of-the-art in modeling and simulations of microwave and
RF circuits and devices. Automated modeling algorithms
are described highlighting data sampling/data generation,
model structural adaptation, and model training/validation.
Advanced simulation algorithms are described with an em-
phasis on the tasks more often used in the context of nonlinear
microwave and RF circuits, e.g., distortion analysis, inter-
modulation analysis, gain compression, noise analysis, etc.
Those tasks typically require finding the steady-state response
to a periodical or quasi-periodical stimulus in the frequency-
domain using the harmonic balance (HB) approach.

The paper is organized as follows. Section II presents
the state-of-the-art approaches used in automated modeling.
Section III discusses applications of automated modeling for
passive and active microwave devices and circuits. Section IV
presents the mathematical formulation of the HB problem and
Section V describes the various fundamental and advanced
approaches used in the HB analysis. Section VI discusses
some emerging trends with a significant potential to impact
the current approaches to modeling and simulations.

II. AUTOMATED MODELING TECHNIQUES
Modeling is fundamental for microwave design automation.
Models are mathematical representations of the microwave
devices or subsystems, and are building blocks needed for
simulation, optimization and design. Traditional approaches
to develop microwave models are either based on physics
laws, analytical/semi-analytical equations, equivalent circuits
or empirical approximations. Model development has tra-
ditionally been based on physical insight of the problem
and is a human intensive process. While the physical in-
sight for a device model is valuable for design especially
at device level design, faster models representing device be-
havior have gained increased use for higher level designs
such as circuit and system level simulation and design. With

FIGURE 1. Flowchart of automated modeling process.

the tremendous progress in design automation in the recent
decades, computer-based algorithms for behavior modeling
have evolved which makes the model development faster,
more systematic and efficient. Automated modeling based on
computational algorithms is nowadays one of the significant
directions in design automation.

Automated modeling proceeds in a stepwise manner.
Examples of the steps are: automated data sampling/data
generation, automated model structure adaptation, automated
training and model validation. Fig. 1 shows the flowchart of
automated modeling process. For a given microwave device,
automated sampling/data generation is firstly performed to
generate training and validation data for model development.
Then the model structure is formulated and refined through
automated model structure adaptation. The model is trained
and validated using the data samples obtained during auto-
mated sampling/data generation process. Finally, after model
validation, a microwave device model with user-specified ac-
curacy is produced.

One of the factors that stimulated automated modeling
is the development of artificial neural networks for mi-
crowave modeling and design [1]–[3]. Significant speed-up
of computer-aided-design by using neural network models in
place of CPU-intensive electromagnetic (EM)/physics models
resulted in a drive to develop advanced neural modeling tech-
niques, including the automated microwave modeling tech-
niques [4]–[6]. These techniques automate the neural network
model development process by integrating all subtasks like
data sampling/data generation, neural network model struc-
ture adaptation, training, and validation into a unified frame-
work. By using automated modeling algorithm, microwave
designers can produce models more efficiently and system-
atically, helping to shorten the cycle of microwave design.

In the following subsections, key aspects of the automated
modeling techniques are described.

A. AUTOMATED DATA SAMPLING
In microwave modeling, data sampling is the starting point
of modeling information, and its quality affects the efficiency
and accuracy of the data-driven models [7]–[10], such as
neural network, knowledge-based neural network, support
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FIGURE 2. Intertwined automated distribution of training samples (•) and
validation samples (×) obtained by automated sampling algorithm for a
two-input modeling example [4]. The horizontal and vertical axises
represent two inputs of the model. The algorithm identifies nonlinear
subregions of the input space and automatically generates more samples
in such regions [4].

vector machine (SVM) and Gaussian process (GP). While
too many samples are expensive (e.g., measurement data and
three-dimensional EM simulations), too few samples lead to
over-learning of models. Therefore, automated data sampling
algorithms [4], [5] are important for systematically determin-
ing the number of samples needed for developing a model
with desired accuracy and their distribution in the model input
space.

Let p and y be vectors of model inputs and outputs, where
p represents a vector containing Np physical parameters of a
microwave component and y represents a vector containing
the outputs of the component model under consideration. The
data sampling process proceeds stage by stage. To begin with,
the data sampling algorithm regards the original bounded Np-
dimensional inputs space (p-space) of interest as one region,
denoted as R0. Let Dk

T and Dk
V be defined as the training

data set and validation data set for the kth stage during data
sampling process. Let Sk represent the model developed using
the data at stage k. For the first stage (i.e., k = 1), training data
(D1

T ) and validation data (D1
V ) are systematically generated in

R0 in a predefined way as illustrated in Fig. 2(a). A first stage
model S1 with a simple model structure is trained with data
in D1

T . The resulting model is validated (tested) with data in
D1

V . Let Ev be defined as the validation error which represents
the error between model and all validation data at the present
stage. Let Ed represent the corresponding accuracy threshold
required from a user. The algorithm stops if the validation
error of the current model satisfies the user-desired thresh-
old, i.e., Ev ≤ Ed . Otherwise, based on the model error cri-
teria, over-learning of the model is detected and the algorithm
moves to next stage by adding new data. New training data
are added by decomposing the region into several subregions.

New validation data are also added in each subregion. For the
kth stage, the validation sample p∗ ∈ Dk

V where the model has
the largest error is identified by

p∗ = arg max
p∈Dk

V

E (p) (1)

where E(p) is defined as the error between the model at the
present stage and a specific sample of validation data where
p ∈ Dk

V . The subregion with the largest validation error is
defined as the worst subregion R∗, to which p∗ belongs. Then
in the next stage, R∗ is further divided (split) into multiple
new subregions. With these new subregions, Dk

T and Dk
V are

updated, i.e.,

Dk+1
T = Dk

T ∪ Dnew
T (2)

Dk+1
V = Dk

V ∪ Dnew
V (3)

where Dnew
T and Dnew

V represent the sets of new data samples
to be generated. The new training samples in Dnew

T are located
at the vertices of the new subregions. The new validation sam-
ples in Dnew

V are located at the center of each new subregion.
Fig. 2 shows an example of automated sampling process in
a 2-dimensional input space after 4 stages. The intermediate
model Sk is trained and validated using data in Dk

T and Dk
V

in each stage until Ev ≤ Ed , when the automated sampling
process stops. As an example, such data sampling process
has been used for neural network model development [4].
The automated sampling algorithm determines the numbers
of training and validation samples and the sample distribu-
tion. Using such an algorithm, nonsmooth subregions will
automatically end up with dense training data, while smooth
subregions will automatically end up with sparse training data.
In this way, data are generated only where they are most
needed, minimizing cost of data generation while maintaining
sufficient modeling information from data.

Interpolation techniques can be incorporated into data sam-
pling algorithm to enhance efficiency [5]. Simple and local
interpolation for each subregion can be used to replace in-
termediate models Sk and to evaluate the validation errors of
various subregions to assess the adequacy of data samples. In
this way, this advanced automated sampling method [5] takes
advantage of availability of training data to produce localized
interpolation, avoiding the training of intermediate model dur-
ing data sampling, and speeding up model development.

B. AUTOMATED MODEL STRUCTURE ADAPTATION
For the development of data-driven models (such as neural
network, knowledge-based neural network, SVM and GP),
the model structure adaptation will help to achieve accurate,
smooth and compact models avoiding over/under-learning is-
sues. Several techniques are available, e.g., [4]–[6] to make
the process of model structural adaptation systematic and ef-
ficient.

For example, the methods for neural network structure
adaptation can be training with regularization or the use of
over/under-learning criterion. In [4], automated neural model
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structure adaptation algorithm was firstly applied to develop
multilayer perceptrons (MLPs). Starting with a small-size
MLP, the automated structure adaptation algorithm proceeds
stage by stage. When the algorithm detects under-learning
(i.e., training error is large) during neural network training
process, it dynamically adds more hidden neurons in next
stage to provide increased freedom in the model to better
learn the nonlinearities in training data. The model structure
adaptation process stops when Ev ≤ Ed . The algorithm can
also reduce the number of hidden neurons if good learning is
detected while the validation error can continue remain within
accuracy requirement [5]. This procedure allows the guess
of the initial number of hidden neurons of MLP to be more
flexible, and make the final model more compact.

Knowledge-based neural network modeling techniques
[11]–[15] combine existing knowledge of microwave mod-
els (such as semi-analytical or empirical models) with neu-
ral network structures. In such models, the neural network
learns the mapping between the spaces of knowledge models
and the training data, i.e., space mapping [16] [17]. Such
mapping can be at the input side of the knowledge model
(input mapping), output side of the knowledge model (output
mapping) or in parallel with the knowledge model (difference
mapping). The mapping can also be applied to the frequency
variable (frequency mapping). Any of these mappings can be
either linear or nonlinear. The selection of mapping structure
of a knowledge-based neural network model depends on sev-
eral factors, such as the complexity of the specific modeling
problem, the quality of the empirical model, and the model-
ing range of input parameters. Since the mapping structure
is problem dependent, the development of automated model
structure adaptation algorithm for knowledge-based neural
network is very important. A genetic algorithm can be used to
determine the topology of neural network mapping structure
and the empirical model [18].

A further advance is an automated model structure adap-
tation algorithm for knowledge-based models [6]. A hybrid
knowledge-based model structure is formulated to encom-
pass input mapping, output mapping and frequency mapping
with both linear and nonlinear mapping capabilities in all the
mapping modules, as shown in Fig. 3. The error function
for training includes error of the model versus training data
and regularization terms with neural network weights. A two-
stage training method with such formulation of error func-
tions using l1 optimization determines all the mappings in the
knowledge-based model. The l1 optimization has the distinc-
tive property for feature selection within the training process.
At the end of l1 optimization, some weights in the mapping
neural networks are zeros while others remain nonzeros. Zero
weights mean that the corresponding parts of the mapping can
be ignored and deleted. Using this property, l1 optimization
solutions are formulated to indicate whether a mapping is
linear or nonlinear, and whether a mapping should be input
mapping, frequency mapping, or output mapping. Compared
to traditional knowledge-based models with a fixed mapping
structure, this method uses a computational approach to adjust

FIGURE 3. A hybrid knowledge-based model structure [6]. The overall
model includes the empirical model (representing microwave knowledge
of the component), the input mapping, output mapping and frequency
mapping. Each of the three mappings is formulated as a neural network
represented by the bottom half of the figure.

the mapping structure to achieve an accurate model with the
most suitable and compact structure. It is a systematic tech-
nique and helps further speeding up the process of developing
a knowledge-based neural network model.

C. AUTOMATED TRAINING AND VALIDATION
During the automated modeling process for microwave appli-
cations, model training and verification are performed either
as part of the data sampling stage [4], and/or in subsequent
stages after data sampling has completed [5], [6]. Each train-
ing/validation stage will produce a training error and a val-
idation error. For neural network and knowledge-based neu-
ral model, the training and validation are performed through
an optimization process such that neural network internal
synaptic weight parameters are adjusted to minimize train-
ing/validation errors. For SVM and GP models, the training
and validation are performed to adjust the weights in SVM and
hyper parameters in GP such that the training/validation errors
are minimized to satisfy user-desired model accuracy. The
automated modeling process terminates when the validation
error satisfies accuracy requirement. The final model is valid
in the entire modeling region represented by validation data.

D. ADDITIONAL METHODS FOR MODEL GENERATION
Well-established methods for microwave modeling are
physics-based modeling, analytical/semi-analytical modeling,
equivalent circuit/empirical modeling, table-lookup, among
others. For specific applications, equivalent circuit models can
be derived from electromagnetic analysis.
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The automated modeling approaches described in this
paper are focused on behavioral modeling for microwave
simulations which are normally performed in the frequency
domain. The emphasis is on data-driven behavioral model
generation with multidimensional model inputs. These devel-
opments complement the synthesis approach for modeling,
where equivalent circuit models are derived from circuit re-
sponses such as S-parameters [19]–[24]. Such synthesis ap-
proaches are widely used in commercial software presently.
One of the motivations for the synthesis approach is the need
of the model for time-domain simulations such as signal in-
tegrity and EMC analysis for high-speed IC packages and
interconnects. Another motivation is to develop equivalent
circuit models to provide physical insights of the components.
An example of the synthesis process is to first express the
frequency domain response in rational function format (such
as pole/residue format), and then convert the pole/residue
information into lumped equivalent circuit, e.g., [25]–[28].
Another example of the synthesis process is a fast method
to synthesize each port-to-port connection as a branch model
selected systematically out of all possible combinations of
resistors, inductors and capacitors up to a certain level of com-
plexity, subsequently forming a multiport lumped equivalent
circuit model which is the best of a huge number (e.g., hun-
dreds of millions) of possible models [29]. The realizability
of the resulting equivalent circuit model in simulators has
been an issue of investigation, e.g., [27]. The advances in
SPICE-type simulators including the ability to handle nega-
tive elements, and to directly accept frequency-domain trans-
fer functions, have helped in solving some of the important
realizability issues. The synthesis process often involves the
enforcement of passivity and causality of the model, which are
crucial for time-domain simulations [20], [27], [30]. However,
passivity and causality play an insignificant role in typical
microwave simulations because such simulations are normally
in the frequency domain. Therefore, detailed discussions on
passivity-related investigations are not the focus of the present
paper.

The focus of the present paper is on microwave-oriented
modeling and simulation which are typically performed in the
frequency domain. In such a situation, the S-parameters for
passive components can be directly supplied to microwave
simulators, without having to be converted into lumped equiv-
alent circuits. For the passive modeling case, our emphasis
is on addressing the challenges of evaluating the EM be-
havior for repetitive changes in geometrical design variables.
Subsequently we focus our description on automated process
for multidimensional parameterized modeling where multiple
geometrical variables are the model inputs, and S-parameter
outputs from the model can be directly supplied to simulators
such as harmonic balance simulators.

The equivalent circuit models obtained from the synthesis
methods can be utilized in the model generation methods
described in this paper to relate the device behavior to mul-
tidimensional design variables (such as geometrical design
variables). In this case, our aim is for the resulting models

to provide fast answers of component behaviors for repetitive
changes in component geometrical variables. In this sense, the
equivalent circuit models especially with physical insights of
the components [31] can be used as microwave knowledge
such that mapping relationships between multidimensional
geometrical variables and equivalent circuit parameters can be
established.

The automated modeling approaches described in this pa-
per provide systematic solutions for modeling new microwave
devices when the existing methods became constrained in
modeling accuracy, development time/cost, or flexibility in
permitting repetitive changes in values of geometrical vari-
ables. Data driven modeling approaches used in the automated
model generation process help address the gaps between ex-
isting device models and device data containing variations
of device behavior with respect to multidimensional model
input variables. Apart from the approaches described, another
important approach is vector fitting based approach to pa-
rameterized macromodeling, where polytopic descriptor form
[32] or state space form functions [33] are developed from
given training data. The method when used to model passive
microwave components, can preserve passivity. The order of
the model is a user-controllable parameter that can be se-
lected to help achieving required accuracy needs efficiently
[32]–[37].

III. APPLICATIONS OF AUTOMATED MODELING
TECHNIQUES
Two major categories of applications for automated modeling
techniques are parametric EM modeling for passive compo-
nents/circuits, e.g., [4]–[6], and nonlinear modeling for active
components/circuits, e.g., [38]–[41].

A. AUTOMATED MODELING FOR PARAMETRIC
EM MODELING
For parametric EM modeling, automated sampling algorithm
drives EM simulators with varying values of geometrical pa-
rameters to generate training/validation data. The values of
geometrical parameters for the EM structure are sampled ac-
cording to data sampling algorithm. Typical outputs of the
model, i.e., y, can be scattering parameters which are used
by circuit and system level simulations. Types of data-driven
models can be, such as neural network, knowledge-based
neural network, SVM [42] and GP [43]. Different types of
models are suitable for different modeling cases. SVM and GP
models have good generalization capability when the training
data are limited [44], [45], while the neural network model
is well suited to the case when the amount of training data
is relatively large. Neural network is also used in complicated
microwave modeling problems with a big database, such as in-
verse modeling with multi-valued solutions[46]. Deep neural
networks are used to solve high-dimensional microwave mod-
eling problems [47]. In addition, the extrapolation properties
of the models [48]–[52] can also be considered with the model
structure for a specific modeling problem. After training and
validation, fast, accurate and compact models representing
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EM behavior for varying values of geometrical parameters are
produced. In addition to parametric EM modeling, application
of data driven modeling is also exploited for multi-physics
oriented modeling [53]–[55].

B. AUTOMATED MODELING FOR NONLINEAR DEVICES
For nonlinear device modeling, data samples for model train-
ing and validation are usually measurement data. For ex-
ample, DC, small-signal, and large-signal data of the active
devices can be measured. The measurements can be per-
formed under different quiescent biases, pulsed biases, tem-
peratures, frequencies, input powers and load impedances.
After data generation, the model structures are formulated
and refined with structure adaptation. Dynamic neural net-
work, recurrent neural network, time-delay neural network
and knowledge-based neural model are commonly used neural
model structures for data-driven nonlinear device modeling.
The outputs of the model, i.e., y, typically are the terminal
currents and charges of the device needed by the circuit level
simulations.

In [38], nonlinear modeling for GaN transistors using
measurement data from Nonlinear Vector Network Analyzer
(NVNA) is presented. To include trapping and self-heating
effects, temperature and two new dynamical input variables
(i.e., gate trapping and drain trapping) are added to act as
the knowledge part of the entire neural model. Using the
measurement data and selected model structure, the model is
trained and extensively validated on an advanced millimeter
GaN FET. The final model can predict the broad-band, linear
and high power nonlinear behavior of the GaN FET, including
harmonic and intermodulation distortion and load-pull perfor-
mance over the full range of device operation. This neural net-
work based approach is currently one of the most accurate and
systematic modeling approaches for solving the complicated
task of GaN device modeling.

By taking advantage of the vast set of empirical/equivalent
circuit models already available for microwave devices,
knowledge-based approach can train neural networks to
learn the mappings between the empirical/equivalent models
and the device data. This provides a systematic way using
computer-based algorithms to modify the behavior of existing
models to match that demanded from new device data. Such
an approach, called Neuro-Space Mapping (Neuro-SM), has
been used for device modeling as well as statistical model-
ing [39], [40]. A further advance to Neuro-SM is the use of
decomposed mapping for GaN HEMTs with trapping effects
[41]. By moving the mapping space into the internal branches
of the knowledge model (equivalent circuit), separate map-
pings for individual branches can be developed based on their
vastly different behaviors. Therefore, special behaviors, such
as trapping effects and frequency dispersion in GaN HEMTs,
can be mapped separately and effectively. The trainings are
applied to multiple mapping modules, achieving good accu-
racy of the overall model under DC, pulse I-V, small-signal,
and large-signal conditions.

IV. HARMONIC BALANCE SIMULATION
The course of designing microwave and RF circuits, such
as power amplifiers, oscillators and mixer circuits, often
requires rigorous analysis to compute fundamental design
metrics. Examples of those metrics, to name a few, include
gain, gain compression, intermodulation products and noise
figure. Computing those metrics requires a frequency-domain
analysis. With the devices in the circuits being essentially
modelled using nonlinear equations, the harmonic balance
(HB) approach has emerged as one of the most efficient
approaches to compute those metrics. Development of the
HB was originally intended for frequency-domain analysis of
microwave circuits. It has become one of the major research
topics in the area of computer-aided design tools at large. This
section describes the basis for the mathematical formulation
of the HB problem, while the solution approaches are pro-
vided in the next section.

A. FORMULATION OF GENERAL CIRCUIT EQUATIONS
A general nonlinear circuit is typically formulated in the time
domain using the Modified Nodal Analysis (MNA) [56] as
follows

dq(x(t ))

dt
+ i(x(t )) = b(t ) (4)

where x(t ) ∈ RN is a vector of node voltages, appended
by currents in inductors and independent voltage sources,
i(x(t )), q(x(t )) ∈ RN are vectors representing, respectively,
the currents and charges/fluxes in (linear or nonlinear) mem-
oryless and memory elements, b(t ) ∈ RN is a vector repre-
senting the independent stimuli, and N is the size of the MNA
formulation.

One should note there that i(x(t )) and q(x(t )) are obtained
based on models of the devices that could be constructed
through physics-based models, or they could be based on the
automated modeling techniques described in Section II.

There are two main classes of circuits that are encountered
within the context of microwave or RFIC:

1) The input stimuli is a set of periodical sources having
a set of W independent tones ωi, (i = 1, . . . ,W ) 1 and
the objective is to compute the circuit response in its
periodic or quasi periodic steady-state [57] without the
transient phase. The circuits under this class are typi-
cally labelled non-autonomous circuits.

2) The independent stimuli are DC sources, but the circuit
is designed such that its response settles into a periodic
steady-state with some unknown angular frequency ω0.
Those types of circuits are usually called autonomous
circuits.

We consider the problem formulation for each class inde-
pendently.

1ωi, (i = 1, . . . ,W ) is said to be independent if there are no di’s such that∑W
i=1 diωi = 0.
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B. HB FOR NON-AUTONOMOUS CIRCUITS
In non-autonomous circuits, the HB approach to compute the
quasi-periodic response is to expand all t-dependent quantities
in (4) as a generalized Fourier series. For example,

x(t ) = X0 +
∑

κ∈�G

X[C]
κ cos

(
κ�ωt

) + X[S]
κ sin

(
κ�ωt

)
(5)

where X0, X[C]
κ , X[S]

κ are the Fourier coefficients and κ ∈
ZW is a multi-index2, while ω is given by ω ∈ RW =
[ω1, ω2, . . . , ωW ]�, (superscript � represents the matrix
transpose), which is a column-wise vector of the simulation
tones, �G is a set of multi-indices in ZW with G elements.
Typically �G is created by including all multi-indices κ ∈ ZW

in a box- or diamond-shaped regions in ZW [58].
Expansions for i(x(t )), q(x(t )), and b(t ) similar to (5) can

be written with coefficients I0, I[C]
κ , I[S]

κ , Q0, Q[C]
κ , Q[S]

κ , and
B0, B[C]

κ , B[S]
κ , respectively. The HB problem is formulated

using the Galerkin projection which is carried out by substi-
tuting all the Fourier series expansions in (4) and requiring
that the residual be orthogonal to all the basis functions used
in the expansion. This process produces a system of nonlinear
equations in X̄ defined by

�
(
X̄

)
� �̄�̄Q̄

(
X̄

) + �̄Ī
(
X̄

) − B̄ (6)

where X̄, and B̄ ∈ RNH are vectors containing the Fourier
coefficients X0, X[C]

κ , X[S]
κ and B0, B[C]

κ , B[S]
κ , respectively, or-

dered by grouping all the Fourier coefficients of a single MNA
variable in a contiguous subvector3 of size H , where H =
2G + 1. Ī(X̄), Q̄(X̄), and �̄ can all be described succinctly
with the help of the Kronecker operator ⊗. For example,
denoting the identity matrix of size M, by 1M and its k-th
column by ek,M , Ī(X̄), Q̄(X̄) can be compactly expressed as

Ī
Q̄

} (
X̄

) =
H∑

u=1

i
q

} (
1N ⊗ e�

u,H �̄−1X̄
) ⊗ eu,H , (7)

�̄ and �̄ are also represented using the ⊗ operator as �̄ =
1N ⊗ �, and �̄ = 1N ⊗ �, where � is the Discrete Fourier
Transform (DFT) operator, and � is given by

� =
[

0 0
0 �L

]
, with �L = T�G ⊗

[
0 1

−1 0

]
(8)

with T�G ∈ RG×G being a diagonal matrix having the ele-
ments of κ�ω, ∀κ ∈ �G, on the diagonal.

The system of equations, �(X̄) = 0, is solved using the
Newton method which, starting from an initial guess X̄(0),
iterates through the update X̄(i+1) = X̄(i) − �X̄, where �X̄
is the solution of the linear system,(

J̄HB
(
X̄(i))) �X̄ = �

(
X̄(i)) , (9)

2A multi-index is a vector whose components are restricted to the posi-
tive/negative integers domain, Z.

3This mode of ordering is known as node-major or frequency-minor. It is
possible to write the HB formulation in frequency-major by multiplying from
the left by a permutation matrix P and doing a change of variables X̄ → PX̄,
where P = ∑H

u=1 eu,H
� ⊗ 1N ⊗ eu,H .

which requires forming the Jacobian matrix J̄HB(X̄) expressed
as

J̄HB
(
X̄

)
� �̄�̄J̄Q

(
X̄

)
�̄−1 + �̄J̄I

(
X̄

)
�̄−1 (10)

where

J̄{
Q
I

} (
X̄

) =
H∑

u=1

J{
Q
I

} (
1N ⊗ e�

u,H �̄−1X̄
) ⊗ eu,H e�

u,H (11)

and JI (x) ∈ RN×N (JQ(x)) is the N × N Jacobian matrix
given by ∂i(x)

∂x ( ∂q(x)
∂x ).

C. HB FOR AUTONOMOUS CIRCUITS
In autonomous circuits, the HB is developed similar to the
above process for non-autonomous circuits, but with key mod-
ifications. Firstly, the response is expanded in a single tone,
ω = ω0 (W = 1), where ω0 is treated as an additional un-
known in the HB problem. Secondly, the number of equa-
tions is balanced with the number of unknowns by using
the fact that the phase of the circuit waveforms is arbitrary.
This fact is utilized by setting the phase on arbitrary circuit
variable in x(t ) to an arbitrary value. Thus, for example, the
additional equation needed to balance the system is obtained
from e�

i,NH X̄ = 0, where i is chosen to select an arbitrary

component in X[C]
κ or X[S]

κ , thereby setting the phase angle
of the selected component to 0 or 90◦, respectively. It should
be noted, however, that such a formulation for the HB encoun-
ters significant difficulties in convergence. More particularly,
the reason for those difficulties arise from the fact that the
oscillatory periodic solution exists alongside the quiescent DC
operating point of the system. The method of auxiliary voltage
or current probe has been introduced and is widely used to
address this difficulty in convergence [59].

V. SOLUTION OF THE HB PROBLEM
Over the past two decades, extensive research efforts have
been thrust on finding efficient ways to factorize the Jacobian
matrix J̄HB. There is a two-fold reason for this fact. Firstly,
this matrix does not exhibit the sparsity pattern that charac-
terizes the matrices arising from typical circuits, where the
number of non-zero entries is almost on par with the circuit
size. It should be noted that J̄HB inherits the sparsity pattern
of the underlying circuit due to being constructed from the
circuit Jacobians JI and JQ. However, the DFT operator ma-
trices, which are full, create dense size-H × H blocks in place
of nonzero entries in JI and JQ. In addition, the number of
Fourier coefficients H grows exponentially with the number
of tones, W , in the stimulus, making the simulation intractable
in large circuits.

In the context of HB analysis, two main issues are typically
addressed simultaneously, namely, the construction and fac-
torization of J̄HB. The computational complexity of construct-
ing J̄HB approaches O(LnlH2log2(H )) as H approaches pow-
ers of 2, (Lnl being the number of nonlinear elements) if the
fast Fourier transform (FFT) algorithm is used in multiplying
a vector by the DFT �̄ or the inverse DFT (�̄−1) [60] [Ch. 6].

500 VOLUME 1, NO. 1, JANUARY 2021



In RFIC, Lnl is typically comparable to the circuit size N , due
to the design placing more emphasis on using Silicon devices
rather than passive off-chip components. Although the con-
struction part places significant demands on the computational
and memory resources of the used platform, the factorization
part presents the true bottleneck in the HB analysis.

The research directions instigated by this challenge
emerged in the late 1990’s. It sought to forego the explicit
construction and direct factorization of J̄HB in the pursuit of
solving (9) and instead use the iterative methods [61], the
review of which is in order.

A. ITERATIVE METHODS IN HB ANALYSIS
In solving the linear system in (9), iterative techniques rely
on multiplying J̄HB by a sequence of vectors Vm, m =
0, 1, 2, · · · , where a vector Vm is obtained by first computing
J̄HBVm−1, and then orthogonalizing the result with respect
to all previous vectors V j , j = 0, 1, 2, . . . , m − 1. The so-
lution is approximated from the subspace spanned by the
vectors Vm, known as the Krylov subspace, and the method
is considered converged if the resulting residual error is below
a user-specified threshold. The generalized minimal residual
(GMRES) is a variant of the iterative techniques most widely
used within the context of the HB. References [62] and [63]
were among the first to report on the use of those methods
in HB. Using a matrix-vector multiplication at the core of
GMRES implies that J̄HB need not be explicitly computed and
stored; only its effect on a given vector is required: a process
that can be done with complexity of O(NH (1 + log(H ))).
However, the orthogonalization process incurs a complexity
of O(mNH ), which is acceptable if the convergence occurs
after few iterations, i.e., m � NH . However, convergence at
small m is only possible if the eigenvalues of J̄HB are clustered
away from the origin of the complex plane, a condition that is
not often satisfied for general circuits.

Accelerating the convergence of the iterative techniques has
been suggested through the use of the preconditioner matrix,
which is an approximate inverse of J̄HB constructed at low
computational cost. Although general purpose precondition-
ers are available, the preconditioner matrix is more effective in
reducing the number of iterations to convergence, m, when it
is derived based on prior knowledge of the specific domain in
which the matrix arises. In fact, most of the research activities
may be largely viewed through the prism of the approach
chosen to construct the preconditioner. Those activities are
briefly outlined next.

1) AVERAGED PRECONDITIONER
The earliest form of preconditioner J̃ave, is constructed
through using J̃ave = �̄�̄J̃Q�̄−1 + �̄J̃Q�̄−1, where

J̃{
Q
I

} �
H∑

u=1

J[ave]{
Q
I

} ⊗ eu,H e�
u,H (12)

and J[ave]
I,Q = 1

H

∑H
u=1 JI,Q(1N ⊗ e�

u,H �̄−1X̄). It is easy to

show that J̃ave can be permuted to a block diagonal matrix
(with H sparse diagonal blocks of size N) and therefore is
easy to invert (by inverting each block individually) which is
an indispensable requirement in a preconditioner.

2) SCHUR COMPLEMENT
Another preconditioner approach, proposed in [64], is derived
from the observation that J̄HB can be viewed as a sparse
2D N × N array of blocks with size H × H . It assumes that
many of those blocks result from linear, or almost linear,
elements and therefore are diagonal, with only few (c) that
are full blocks, c � N . The preconditioner is constructed by
permuting those c columns to the right of the matrix, using
a (rectangular) block diagonal sparse solver to factorize the
N − c left columns and updating the last c columns with the
L and U factors of the left part of the matrix.

3) TIME-DOMAIN-BASED PRECONDITIONER
Using the change of variables X̄ → �̄X̄TD, and multiplying
(6) from the left by �̄−1 converts the HB problem into a
time-domain formulation. The Jacobian matrix in this case
can be approximated using a low-rank displacement of the
block-circulant matrix �̄−1�̄�̄, whose inverse is expressed as
a short series of block-circulant matrices. This feature makes
the multiplication of this (approximate) inverse by a vector
a process implementable with complexity O(αNH log(NH )),
where α is the rank of the displacement structure [65]. This
approximate inverse is then deployed as the required precon-
ditioner matrix.

4) ONE-STEP CORRECTION PRECONDITIONER
The one-step correction preconditioner was proposed in [66]
to improve the averaged preconditioner J̃ave presented earlier.
The method views the full HB Jacobian matrix J̄HB as being
the summation of two matrices: the first part is the averaged
matrix J̃ave and the second one is a correction matrix J̄�, i.e.,
J̄HB ≡ J̃ave + J̄�. Using the first two terms in a Taylor series
approximation,

J̄−1
HB ≈ (

1NH − J̃−1
aveJ̄�

)
J̃−1

ave (13)

The above matrix, being a first-order approximation to the
inverse of the J̄HB, is then used as the required preconditioner
in [66]. Note here that multiplications of this preconditioner
with a vector is done at low computational cost, since it
only requires the LU factorization of the block diagonal, J̃ave,
and multiplications by J̄� which can be done in an implicit
way using FFT. This approach to preconditioning is leveraged
further through a hierarchical approach which was developed
later for parallel platforms in [67].

5) PRECONDITIONER BASED ON GRAPH SPARSIFICATION
Results from graph theory [68] were utilized in [69] to create a
preconditioner that can be factorized directly at a much lower
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cost than direct factorization of the original HB Jacobian ma-
trix J̄HB. The main idea used in this work starts from the graph
representing N × N MNA matrix JI + JQ and approximate it,
using the Laplacian measure, with a tree-like “support graph”
that has much fewer edges but maintains the same number
of vertices. The circuit corresponding to the support graph,
referred to as the support circuit, is then treated in the HB
framework, where the resulting NH × NH Jacobian, J̃SCP, is
considered as an approximation to J̄HB, with its inverse used
as the preconditioner matrix. Here, J̃−1

SCP is computed through
direct block LU factorization similar to [70], where the main
computational advantage, compared to direct factorization of
J̄HB, is that the growth of (block) fillins is significantly con-
trolled.

B. DIRECT LU FACTORIZATION
The success of iterative techniques remains largely dependent
on the nature of the circuit. For example, increasing the input
power limits the effectiveness of the preconditioner matrix in
accelerating the convergence of the Krylov iterative methods.
In addition, iterative techniques do not achieve the extremely
accurate solution obtained in solving the linear problem using
the direct factorization. These observations made the direct
factorization receive renewed interest. In fact, direct factor-
ization becomes more attractive if the entire HB Jacobian,
as well as the fillins that arise during the factorization, can
fit on the system memory. With the technology developments
that enabled workstations with vast memory resources, direct
factorization became again a viable alternative to solving the
linear problem (9). Direct factorization was developed in [70]
using a block form of the classical LU factorization used
in transient circuit simulations, where results showed supe-
rior performance to iterative techniques in circuits with high
power excitations. It was also shown in [71], [72] that using
platforms with graphical processing units (GPU) significantly
leverages the performance of the direct factorization.

C. ENVELOP TECHNIQUES
The origin for the envelope approaches in circuit simulations
may be traced back to the area of numerical solution of differ-
ential equations in the time-domain. It was mainly instigated
by the observation that waveforms appear to be evolving with
two different time scales. The wide separation of the observed
time scales prompted the work in [73]. This work, which was
extended to time-domain circuit simulations in [74]–[76] is
mainly premised on the idea that the time scale (TC) at which
the waveform moves faster is known apriori. The problem is
subsequently formulated as tracking the waveform along the
slower time scale by taking time steps equivalent to (large)
multiples of TC . In this line of work, the slower time scale is
considered fictitious, in the sense that there is no system of
differential equations that prescribes its evolution.

This concept was then employed in the domain of mi-
crowave circuits by incorporating the different time scales
explicitly in the form of the solution as in [77] or to the form
of the differential equations that model the circuit, as in [78],

[79]. The idea was put more on firm theoretical grounds in
[80], by showing the link between the partial differential equa-
tions and multi-rate circuit response. The various approaches
that relied on the envelop methodology may be collectively
described by rewriting the response of the circuit from (5) in
the following form,

x̂(te, tc) = X̂0(te) +
∑

κ∈�G

X̂[C]
κ (te) cos

(
κ� (ω � tc)

) +

X̂[S]
κ (te) sin

(
κ� (ω � tc)

)
(14)

where tc ∈ RWF , te ∈ RWS are vectors representing WF fast,
and WS slow time scales in the circuit, and the operator �
denotes the Hadamard (entrywise) product. The system of
differential equations to which (14) is a solution is given by

WS∑
i=1

∂q(x̂(te, tc))

∂ti,e
+

WF∑
i=1

∂q(x̂(te, tc))

∂ti,c
+ i(x̂(te, tc)) = b̂(te, tc)

(15)
where ti,e and ti,c are assumed to be the individual components
in te and tc vectors, respectively. The relation between the
solution x̂(te, tc) of (15) and the solution x(t ) of (4) typically
depends on the relation between b̂(te, tc) and b(t ) when ti,e =
t j,c = t , i = 1, . . . ,WS, j = 1, . . . ,WF [80]. Several methods
can be constructed by the particular choices of te and tc, with
different stability criteria [81]. This method was applied in
system-level steady-state including a propagation link [82],
and also in different applications, e.g. [83]. It was extended
for handling autonomous circuits in [84], [85].

D. HB WITH NON-SINUSOIDAL BASIS
Although the periodicity of the sinusoidal basis functions
made it the ideal vessel to express the periodic steady-state
response of nonlinear circuits, its infinite support over the
time-domain was well recognized as the root cause for the
dense structure of the resulting HB Jacobian matrix. This fact
represented the main motivation in exploring other approaches
that rely on different basis functions. Notable among those
approaches, is the one that used the Wavelets basis functions
in steady-state analysis, [86], [87], where it was shown that
wavelet-based HB results in a much sparser Jacobian matrix
compared with its sinusoidal counterpart.

E. HB PROBLEM SIZE REDUCTION
The HB problem was also tackled from the perspective of
reducing the number of unknowns. One of the earlier works to
consider this approach was the one presented in [88], where
concepts of model-order reduction (MOR) were utilized to
project a homotopy-like formulation of the HB equations onto
a space of much smaller dimension than the dimension of
the full HB problem (NH). The reduced equations were used
to track the solution versus the homotopy parameter, thereby
requiring the factorization of much smaller Jacobian matrix.

Another approach that relies on the principle of reduction
was proposed more recently in [89] where the reduction is
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approached on two steps. In the first step, the Galerkin pro-
jection is done by projecting the N residuals onto a smaller
set of 2M + 1 basis functions, 2M + 1 � H . In the second
step, the Galerkin projection is done by projecting only M of
the residuals on the entire set of basis functions H . The first
step produces of a problem with N (2M + 1) unknowns and
the second step produces a problem in MH unknowns. Both
problems are solved separately using the iterative techniques
such as the GMRES method, and the method would alternate
between the two steps for few iterations until an acceptable
error level has been achieved for the unreduced problem (NH
unknowns). However, achieving a high accuracy in solving the
full unreduced problem may require a large number of such
two-tiered iterations. This is a drawback, that is mitigated in
this framework by using the low accuracy solution achieved
from the two-step projection as a starting vector for a final
phase of the method where the GMRES is run on the orig-
inal unreduced problem, thereby reducing significantly the
number of iterations needed to reach convergence. The main
computational gain from this method is that during the two-
step iteration, the GMRES is run on reduced spaces, thereby
reducing the cost of orthogonalization. On the other hand, the
final phase requires the GMRES to be applied on the original
problem but for a small number of iterations, which limits the
growth of the orthogonalization process.

Another approach that eyed the growth in the problem size,
especially when the goal is to run circuit-level simulation in
the context of simulating an entire front-end communication
system, is based on the concept of domain decomposition
[90]. In this approach the system is divided into subsystems
that operate at similar parts of the spectrum. Those subsys-
tems are considered 1st tier system decomposition. A 2nd tier
decomposition is carried out on those subsystems further di-
viding them into blocks connected through ports. Each block
in the 2nd tier is further divided into two subblocks housing
the nonlinear and linear networks of the block. The reduction
in the problem size and computational complexity is enabled
on two levels. On the first level, reduction is achieved by
limiting the problem unknowns to the spectra (harmonics)
of the waveforms at the ports of the nonlinear subnetworks
[91] and the ports interconnecting the different blocks. On the
second level, computational complexity is further reduced by
boosting the sparsity of the Jacobian matrix due to decoupling
the spectral components among the 1st tier subsystems. This
approach leads to a Jacobian matrix with bordered structure,
as it is customary in domain decomposition techniques.

VI. FUTURE TRENDS
The trend for further progress in speed, accuracy and effi-
ciency of modeling and simulation algorithms will continue.
Increased development of multi-physics oriented automated
modeling covering electromagnetic, thermal, mechanical
stress and other domains will be an important direction. Algo-
rithms that handle the gap between computationally intensive
multi-physics numerical solvers versus design needs for faster

and accurate behavioral modeling will be essential. Incorpo-
ration of multi-physics domain knowledges into data driven
models will play an important role. The increasing complexity
of future generation wireless systems will drive the trend to
systematically model more complex structures from compo-
nents to packages and systems. Mathematical concepts such
as decomposition and hierarchical analysis need to be used in
combination with domain specific knowledges of the package
and systems for systematic modeling. The increased capabil-
ities from deep neural networks, machine learning, and other
computational intelligence techniques will spur new advances
in data driven modeling algorithms to handle higher dimen-
sional design spaces, and to address increased complexity of
nonlinear relationships in models. Together with the expand-
ing computing resources and powers, advances in automated
modeling would lead to new generations of systematic com-
putational algorithms to address future design needs to model
highly complex structures and relationships accurately and
efficiently.

Simulation approaches will advance to handle larger cir-
cuits and systems, perhaps spanning multiple energy (elec-
trical, mechanical, acoustic) domains. Advanced partitioning
techniques, such as those based on domain decomposition or
node tearing, may need to be developed to address the increas-
ing complexity of those systems. Simulation approaches need
to factor in the high variability of some of the physical design
parameters and its effect on the performance of the circuit.
The uncertainty arising from such variability will need to be
accurately and efficiently quantified.

Recent developments in the mathematical sciences are cre-
ating new roads that are worth traveling. One of the new areas
that may hold a significant potential in the steady-state analy-
sis is related to the notion of compressed tensor train decom-
position (TTD), which was presented in [92]. This approach
was employed in [93] to create an algorithm to perform the
Fourier transform. It works by structuring the vector, which
needs to be Fourier transformed, into d-dimensional tensor
assuming that the vector length is 2d . Complexity analysis
of this approach showed a Fourier transform that scales with
O(d2L3) where L is the maximal rank of the tensors. This is to
be compared with O(2d d ) of the regular FFT, which for low
rank tensor representation provides an attractive competitive
edge over the century-old FFT. On the front of using a precon-
ditioner matrix to accelerate the convergence of Krylov sub-
space iterative methods, the development of preconditioner,
for domain decomposition in the area of computational elec-
tromagnetic, appears to be largely untapped for HB problem.

Another class of techniques worthy of note for its promise
in accelerating the simulation process is the one based on the
paradigm of model-order reduction (MOR). MOR was first
initiated for modeling large linear time-invariant (LTI) circuits
using a system with much smaller order. Rather than start-
ing with the input/output data generated through simulation
or measurements, which represents the modeling approaches
presented earlier, MOR constructs the model using the sys-
tem of equations representing the system that needs to be
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modelled. Those equations are mostly the Kirchoff cur-
rent/voltage laws which are extracted in an automated man-
ner. The model is constructed by projecting the system of
equations onto a subspace with much smaller dimension,
and the methodology is widely known as projection-based
MOR [94], [95]. The success of projection-based MOR in
compactly and accurately modeling large LTI circuits has
prompted researchers to investigate its applicability in non-
linear circuits. The first idea in this direction was proposed in
[96] for modeling weakly nonlinear circuits, and went through
several phases improving its feasibility for circuits with strong
nonlinear behaviour [97]–[99]. This area has recently wit-
nessed a significant uptick in activity with the introduction of
some novel ideas such as those based on the Lowener matrix
[100], interpolation projection approach [105], and the Hankel
norm balancing approach [101]. These approaches, although
mostly developed and applied in domains remotely related
to nonlinear microwave devices and RF circuits, hold signifi-
cant potentials for advancing the simulation and modeling for
those circuits. For example, the recent work in [104] shows the
relation of some of those approaches to the Volterra series of
nonlinear systems which are known to model distortion effects
of nonlinear circuits.

Parametrized model-order reduction (PMOR) is a concept
that was born out of MOR and was used in the framework of
linear circuit analysis to accelerate tasks such as uncertainty
quantification and variability analysis [106]. PMOR was re-
cently extended to nonlinear circuits in the context of DC anal-
ysis [102]. PMOR shows a great potential in accelerating tasks
such as variability analysis in the context of HB simulation.

VII. CONCLUSION
This paper has presented the current state-of-the-art in auto-
mated modeling and simulations of microwave and RF cir-
cuits and devices. Automated modeling algorithms have been
described covering data sampling, model structure adaptation
and training/validation. State of the art harmonic balance sim-
ulation algorithms have been described conquering histori-
cally difficult issues in solving nonlinear microwave circuits
and addressing problem size, convergence speed and solu-
tion accuracy. The advanced simulation algorithms facilitate
efficient simulation of steady-state response to periodical or
quasi-periodical stimulus in the frequency-domain. The al-
gorithms permit efficient simulation of nonlinear microwave
and RF circuits, e.g., distortion, intermodulation analysis, gain
compression, noise analysis, etc. Future trends in automated
modeling and simulations have been highlighted. As model-
ing and simulation algorithms continue to expand to handle
future design needs, exciting opportunities lie ahead in devel-
oping new breakthrough algorithms to handle larger and more
complex systems than possible today.
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