
International Journal of Computer Applications (0975 – 8887)

 Volume 81 – No 14, November 2013

31

Simulation and Comparison of Various Lossless Data

Compression Techniques based on Compression Ratio

and Processing Delay

Dhananjay Patel
Don Bosco Institute Of
Technology, Mumbai

Vinayak Bhogan
Don Bosco Institute Of
Technology,Mumbai

Alan Janson
Don Bosco Institute Of
Technology, Mumbai

ABSTRACT
With increasing need to store data in lesser memory several

lossless compression techniques are developed. This paper

intends to provide the performance analysis of lossless

compression techniques over various parameters like

compression ratio, delay in processing, size of image etc. It

provides the relevant data about variations in them as well as

to describe the possible causes for it. It describes the basic

lossless techniques as Huffman encoding, run length

encoding, arithmetic encoding and Lempel-ziv-welch

encoding briefly with their effectiveness under varying

parameters. Considering the simulation results of grayscale

image compression achieved in MATLAB software, it also

focused to propose the possible reasons behind differences in

comparison.

General Terms

Image compression, Lossless compression techniques,

Huffman, Arithmetic, Lempel-ziv-welch (LZW), Run length

Coding (RLE).

Keywords

Compression Ratio, Probability of Zero and Processing Delay.

1. INTRODUCTION
The storage of data using minimum memory is always a

problem. A digital image obtained after the process of

sampling and quantizing of a continuous tone picture requires

an enormous storage space. For Example a 1024x1024 pixels

image requires normally 1Megabyte of space. To overcome

this storage issue and to make proper management of space

various image compression techniques were developed. Image

compression is a process of reducing the amount of data

required to represent a sampled digital image thereby reducing

the cost for storage and transmission without degrading the

quality of the image to an unacceptable level [1] [9].

The important applications of Image compression such as

including image database, image communications and time

reduction required for images to be sent over the Internet or

downloaded from Web pages.

The important parameter of the image compression techniques

is compression ratio. It is defined as the ratio of the original

image size to the compressed image size. For example an

image of 100x100 pixels will require normally 10KB of size

but after compression the size becomes 5KB. Hence the

compression ratio is 2. A good compression technique should

have compression ratio greater than 1. To achieve this many

image compression were developed.

Image compression Techniques are broadly divided into 2

types such as “lossless” and “lossy”. In lossless compression,

the original data should be same after the compression has

occurred. Text File are stored using lossless compression

techniques since because loss of a single character can change

the meaning and will lead to improper information. The group

storage of sources for images, audio data and video data

generally needs to be lossless as well.

Lossless compression techniques cannot give much

compression as lossy compression techniques can give. In

lossy compression, much information can be simply discarded

away from image, audio data and video data and when they

are uncompressed the data will still be of acceptable quality.

Lossy compression techniques can give much greater

compression ratio then the lossless compression available for

given image data, audio data and video data [1].

Some of the lossless compression techniques are

1. Huffman Coding

2. Arithmetic coding

3. RLE

4. LZW

2. COMPRESSION TECHNIQUES

2.1 Huffman coding
It is a fixed length coding technique which is coded for the

symbols based on their statistical occurrence frequencies that

is the probability. Symbols are generated on the basis of

pixels in an image. On the basis of its frequently occurrence,

bits are assigned to it. Less bits are assigned to symbols that

occurs more frequently while larger number of bits are

assigned to symbols that occur less. In Huffman codes the

generated binary code of any symbol is not the prefix of the

code of any other symbol [4] [2].

Implementing Huffman coding on MATLAB v7.12 (R2011a),

following steps are executed [10]:

1. Read a greyscale image & convert the array into single

row vector.

2. Form a Huffman encoding tree using probability of

symbols in gray scale image read.

3. Encode each symbol independently using the encoding

tree.

4. Get the ratio of compression ratio from size of original

image and size of Huffman coded sequence.

International Journal of Computer Applications (0975 – 8887)

 Volume 81 – No 14, November 2013

32

2.2 Run length coding
This is one of the simplest compression techniques used for

compression of repeated or sequential data. In this technique,

it scans for a repeated symbol that is pixels in an image and

replaces it by a shorter symbol called “run”. Hence it is

known as run length encoding. This redundancy is used for

compression. For a gray scale image, the run length code is

represented by {Si, Ci} where Si is the symbol or intensity of

pixels and Ci is the count or the number of repeated symbol Si

occurred. This compression technique is useful for

monochrome images or images having of same background

pixels. Generally, all pixels are first converted into binary

values & then individual counts of consecutive zeroes & ones

are stored, known as run length encoding [2].

To implement the run length encoding in MATLAB following

steps are executed:

1. Read the gray scale image and rearrange data of image

as single row vector.

2. Convert all intensities values to binary state & obtain a

binary stream representation of image.

3. Count consecutive 1’s & 0’s appeared in a sequence

and stored as run length encoded sequence.

4. Get the compression ratios using original size of image

and size of run length encoded sequence.

2.3 Arithmetic encoding
Arithmetic coding is also a variable length coding technique.

In this compression technique, it converts the entire symbols

generated from the pixels into a single floating point number

also termed as binary fraction. In arithmetic coding technique,

a tag is generated for the sequence which is to be encoded.

This tag signifies the given binary fraction and becomes the

unique binary code for the sequence. This unique binary code

generated for a given sequence of length L is not depended on

the entire sequence of length L [2] [3] [9].

The results are generated using following algorithm steps that

are followed during practical implementation of arithmetic

encoding in MATLAB [11].

1. Read the image & store all intensity values as a single

row vector.

2. Convert the matrix into binary form and arrange all bits

in binary stream representing the same image.

3. Encode the entire stream using arithmetic encoding tree

algorithm

4. Get the compression ratios using size of original image

and the size of encoded image.

2.4 Lempel-Ziv-Welch (LZW) coding
LZW known as Lempel-Ziv-Welch is an image compression

technique is based on “Dictionary”. Dictionary based coding

scheme are of two types, Static and Adaptive. In Static

Dictionary based coding, dictionary size is fixed during

encoding and decoding processes and in Adaptive Dictionary

based coding; dictionary size is updated and reset when it is

completely filled. Since we use images as data, static coding

suits fine for the compression job with minimum delay [2] [5]

[6].

In order to obtain results, following steps are executed in

MATLAB [5][6]:

1. Read an image & arrange all intensity value in single

row vector.

2. Convert all the values in binary for & achieve a single

row binary representation of same image.

3. Initialize dictionary with basic symbols viz 1 & 0.

4. Start encoding & decoding based on search & find

method. Add any new word found in dictionary &

encode the sequence.

5. If dictionary is completely filled, continue using same

dictionary.

6. Get the compression ratios using size of original image

& size of encoded sequence.

3. EVALUATION AND COMPARISON

3.1 Results with real images
Table 1: Compressionratio with real images

Table 2:Bits per pixel with real images

As seen in the table 1 and table 2, the relative compression

ratios and bits per pixel are displayed with respect to each

technique used for compression. Among all, the run length

shows minimum compression ratio and also bits per pixel

because run length algorithm simply works to reduce inter-

pixel redundancy which exists only when extreme shades are

significant. Since with most of the real world images lack

such dominance of shades, run length is totally obsolete

technique for lossless data compression. Considering the

available data about compression ratio, Huffman encoding

scheme is found to be optimum since it solely works on

reducing redundancy in input data. However, though it seems

that Arithmetic also generates closest results as Huffman

encoding, it also considers inter-pixel redundancy which

reduces the compression factor in case of real images.

Lempel-Ziv-Welch encoding totally works on dictionary size

Image size Huffman Run Length Arithmatic LZW

dictionary size = 512

Face 32 x 32 1.1034 0.29889 1.0049 0.9258

Keyboard 48 x 48 1.1791 0.2321 1.0034 0.9446

Airpacific 64 x 64 3.0704 1.1145 2.2667 2.7788

Vegitables 128 x 128 1.0435 0.2283 1.0015 0.9686

Einstein 153 x 153 1.1244 0.2348 1.0013 0.9683

Horses 160 x 160 1.0479 0.2326 1 0.973

Moon 240 x 240 1.389 0.3481 1.1179 1.1635

Image Size Huffman Run Length Arithmatic LZW

dictionary size = 512

Face 32 x 32 7.2503 26.765 7.9609 8.6411

Keyboard 48 x 48 6.7848 34.4679 7.9728 8.4691

Airpacific 64 x 64 2.6055 7.1781 3.5293 2.8789

Vegitables 128 x 128 7.6665 35.0416 7.988 8.2593

Einstein 153 x 153 7.1149 34.0715 7.9896 8.2619

Horses 160 x 160 7.6343 34.393 8 8.2219

Moon 240 x 240 5.7595 22.9819 7.1562 6.8758

International Journal of Computer Applications (0975 – 8887)

 Volume 81 – No 14, November 2013

33

as a key factor to achieve greater compression ratios. Thus

with lower dictionary sizes the compression results are still

lower as compared to other compression techniques.

3.2 Compression ratio against probability

of zero
This paper discusses all the essential differentiation between

Huffman, run length, arithmetic& Lempel-Ziv-Welch

compression techniques using images as data. The

comparisons are dealing with some important parameters viz.

compression ratio & delay in processing. In order to develop

comparative data for each one, simulations of compression

techniques were performed on MATLAB software using

random images.

The variations of compression ratio & probability of zero are

achieved by generating random images of same size 50x50

pixels while changing probabilities for symbol zero in each by

0.1.

Fig 1: Compression ratio against probability for Huffman

coding

Fig 2: Compression ratio against probability for Run

length coding

Fig 3: Compression ratio against probability for

Arithmetic coding

Fig 4: Compression ratio against probability for LZW

coding

The Fig 1, 2, 3& 4 shows variation of compression ratio with

probability of zero (i.e zero symbol) in the image to be

compressed. As the probability zero approaches to zero the

compression ratio decreases. Irrespective of technique used

for compression the results are similar showing minimal

compression ratio at probability of zero as 0.5. This indeed

closely can be related to the standard entropy of any binary

data with respect to probability of occurrences of symbols.

When probability of zero & one in given data is equal (each as

0.5) the content of information is maximum. As we tend to

move towards extreme probabilities the redundancy in

information becomes more & more significant. Thus by any

lossless technique, the compression results are best when

probabilities of symbols lie to either extreme probabilities.

However the Huffman coding shows almost linear increase &

decrease in compression ratio as we move away from the

center probability whereas others show the nonlinearity in the

same. This behavior can be easily explained as the Huffman

coding totally based of modifying information by simply

assigning bits to respective symbols. Other techniques follow

the technique of data modification by means of counting the

occurrences, probability range split or dictionary, which are

nonlinear. Thus the changes in compression ratios are

nonlinear for others.

International Journal of Computer Applications (0975 – 8887)

 Volume 81 – No 14, November 2013

34

3.3 Delay performance
Results are achieved by compressing random images of

different sizes but same probabilities. Three distinct data sets

are generated with probability of symbol zero as 0.25 0.5 &

0.75.It’s obvious that as size of image increases the time

required for compression or processing delay also increases.

But delay profile shows changes when there is any change in

probability of zero while keeping size variation same.

Steps followed to measure delay are

1. Measure the CPU time (initial time) at the start of

compression.

2. Measure the CPU time (final time) at the end of

compression.

3. Subtract initial time from final time in order to get

processing delay for particular program.

Fig 5: Processing delay variations against size of image for

Huffman encoding

In the Fig 5 processing delay reduces as we increase

probability of zero in image for Huffman coding. For

Huffman compression technique, the compression is basically

rearrangement of bits as per the content of information. When

the symbol zero has probability less than 0, Huffman coding

will assign 1 to it. Now as per the Huffman encoding tree

structure in MATLAB, the coding will firstly be done to

assignment 0 & then assignment 1.Thus more the no of

zeroes, more the assignment 1 in coding table & more is the

delay for encoding entire data. Same can be applied in reverse

way when probability of zero crosses the equi-probable point.

Fig 6: Processing delay variations against size of image for

Run length encoding

In the Fig 6showing processing delay profile for run length

compression technique, delay in processing is independent on

probability of zero. The Principle of run length encoding is

simply counting number of same symbols (both 0’s as well as

1’s) in sequence. Thus whatever may be probability of zero,

the encoding process has no effect & hence no delay

variations are observed with variation in probability of zero

for same image size.

Fig 7: Processing delay variations against size of image for

Arithmetic encoding

In the Fig 7, first the entire probability range is segmented as

per the probability of symbol that is fetched. This step is

followed till the end of sequence & final value at the center of

segment is treated as encoded value. Now in case of binary

data, the arithmetic encoding process changes the current

segment as there is transition from 1 to 0 or 0 to 1, which is

again a delaying process. When the probability of either

symbol is less, the transitions among symbols are also less.

Therefore segment change is less frequent & delay observed

is less too. Hence when two symbols are equiprobable the

delay observed is maximum as transitions are maximum.

Delay reduces as we move away from equiprobable point.

International Journal of Computer Applications (0975 – 8887)

 Volume 81 – No 14, November 2013

35

Fig 8: Processing delay variations against size of image for

LZW encoding

Compression technique of LZW is totally based on the

formation of dictionary rather than other probability

dependent techniques. Thus in Fig 8 it can be easily found that

processing delays are almost same for any given image size

irrespective of the probability of symbols.

4. CONCLUSION
From above implementation & simulation we conclude

1) With findings of real images, Huffman is better than

other techniques since it follows optimal method to

remove redundancy from given data.

2) From evaluation of compression ratio against probability

of zero in data, compression ratio achieved would be

maximum if one of the symbols has much greater

probability in data. In other words, more the entropy

lesser the compression achieved for data.

3) From relative comparison of processing delay, for the

techniques which focuses on removal of redundancy in

data like Huffman & arithmetic, probabilities of symbol

affects delay in processing. But those techniques which

are dictionary based/inter-pixel redundancy based do not

show any significant change in delay with change

probability of symbol.

5. REFERENCES
[1] Mohammed Al-laham1 & Ibrahiem M. M. El Emary2,

“Comparative Study BetweenVarious Algorithms of

Data Compression Techniques”, Proceedings of the

World Congress on Engineering and Computer Science

2007 WCE CS 2007, October 24-26, 2007, San

Francisco, USA.

[2] Sonal Dinesh Kumar, “A Study Of Various Image

CompressionTechniques”, Proceedings of COIT, RIMT

Institute of Engineering and Technology, Pacific, 2000,

pp. 799-803.

[3] Amir said, “Introduction to arithmetic coding- theory and

practice”,Imaging System Laboratory HP Laboratories

Palo Alto HPL-2004-76, April 21,2004.

[4] Huffman D.A., “A method for the construction of

minimumredundancycodes”, Proceedings of the Institute

of RadioEngineers, 40 (9), pp. 1098–1101, September

1952.

[5] Ziv. J and Lempel A., “A Universal Algorithm for

Sequential Data Compression”, IEEE Transactions on

Information Theory 23 (3), pp. 337–342, May 1977.

[6] Ziv. J and Lempel A., “Compression of Individual

Sequences via Variable-Rate Coding”, IEEE

Transactions on InformationTheory 24 (5), pp. 530–536,

September 1978.

[7] Subramanya A, “Image CompressionTechnique,”

Potentials IEEE, Vol. 20, Issue 1, pp 19-23, Feb-March

2001.

[8] David Jeff Jackson & Sidney Joel Hannah, “Comparative

Analysis of image Compression Techniques,” System

Theory 1993, Proceedings SSST’93, 25th Southeastern

Symposium,pp 513-517, 7 –9March 1993.

[9] Khalid Sayood, “Introduction to Data Compression”, 3nd

Edition,San Francisco, CA, Morgan Kaufmann, 2000.

[10] Dr. T. Bhaskara Reddy, Miss. Hema Suresh Yaragunti ,

Dr. S. Kiran, Mrs. T. Anuradha , “A Novel Approach of

Lossless Image Compression using Hashing andHuffman

Coding”, International Journal of Engineering Research

& Technology (IJERT) ISSN: 2278-0181, Vol. 2 Issue 3,

March – 2013.

[11] Paul G. Howard and Jeffrey Scott Vitter, “Arithmetic

coding for Data Compression”, Proceeding of the IEEE,

VOL 82, No. 6, June 1994.

IJCATM : www.ijcaonline.org

